Publications


Below is a list of some of our recent publications organized under seven research umbrellas:

EXPLAINABLE SENTIMENT ANALYSIS
PERSONALIZED SENTIMENT ANALYSIS
MULTIMODAL SENTIMENT ANALYSIS
MULTILINGUAL SENTIMENT ANALYSIS
MULTITASK SENTIMENT ANALYSIS
FINANCIAL SENTIMENT ANALYSIS
CONVERSATIONAL SENTIMENT ANALYSIS

sentic umbrellas

For the full list of our publications, please check Google Scholar




EXPLAINABLE SENTIMENT ANALYSIS
• E Cambria, X Zhang, R Mao, M Chen, K Kwok. SenticNet 8: Fusing Emotion AI and Commonsense AI for Interpretable, Trustworthy, and Explainable Affective Computing. In: Proceedings of the International Conference on Human-Computer Interaction (HCII), 198-217 (2024)

• X Zhang, R Mao, E Cambria. SenticVec: Toward Robust and Human-Centric Neurosymbolic Sentiment Analysis. Proceedings of ACL, 4851-4863 (2024)

• WJ Yeo, T Ferdinan, P Kazienko, R Satapathy, E Cambria. Self-training Large Language Models through Knowledge Detection. In: EMNLP, 15033-15045 (2024)

• P Kazienko and E Cambria. Towards Responsible Recommender Systems. IEEE Intelligent Systems 39(3), 5-12 (2024)

• E Cambria, L Malandri, F Mercorio, N Nobani, A Seveso. XAI meets LLMs: A Survey of the Relation between Explainable AI and Large Language Models. arXiv preprint arXiv:2407.15248 (2024)

• WJ Yeo, R Satapathy, SM Goh, E Cambria. How Interpretable are Reasoning Explanations from Prompting Large Language Models? NAACL, 2148-2164 (2024)

• A Diwali, K Saeedi, K Dashtipour, M Gogate, E Cambria, A Hussain. Sentiment Analysis Meets Explainable Artificial Intelligence: A Survey on Explainable Sentiment Analysis. IEEE Transactions on Affective Computing 15 (2024)

• Mohammad Nadeem, Shahab Saquib Sohail, Erik Cambria, Björn Schuller, Amir Hussain. Negation Blindness in Large Language Models: Unveiling the ‘NO Syndrome’ in Image Generation. arXiv preprint arXiv:2407.17523 (2024)

• E Cambria, L Malandri, F Mercorio, M Mezzanzanica, N Nobani. A Survey on XAI and Natural Language Explanations. Information Processing and Management 60, 103111 (2023)

• E Cambria, R Mao, M Chen, Z Wang, SB Ho. Seven Pillars for the Future of Artificial Intelligence. IEEE Intelligent Systems 38(6), 62-69 (2023)

• R Mao, Q Liu, K He, W Li, E Cambria. The Biases of Pre-Trained Language Models: An Empirical Study on Prompt-Based Sentiment Analysis and Emotion Detection. IEEE Transactions on Affective Computing 14(3), 1743-1753 (2023)

sentic activation




PERSONALIZED SENTIMENT ANALYSIS
• L Zhu, R Mao, E Cambria, BJ Jansen. Neurosymbolic AI for Personalized Sentiment Analysis. International Conference on Human-Computer Interaction (2024)

• L Zhu, W Li, R Mao, E Cambria. HIPPL: Hierarchical Intent-Inferring Pointer Network with Pseudo Labeling for Consistent Persona-Driven Dialogue Generation. IEEE Computational Intelligence Magazine 19(4), 63-78 (2024)

• M Liu, J Liu, Y Dong, R Mao, E Cambria. Interest-Driven Community Detection on Attributed Heterogeneous Information Networks. Information Fusion 111, 102525 (2024)

• AK Jayaraman, G Ananthakrishnan, TE Trueman, E Cambria. Text-based Personality Prediction using XLNet. Advances in Computers 132, 49-65 (2024)

• L Zhu, W Li, R Mao, V Pandelea, E Cambria. PAED: Zero-Shot Persona Attribute Extraction in Dialogues. ACL, 9771-9787 (2023)

• J Salminen, S Jung, H Almerekhi, E Cambria, B Jansen. How Can Natural Language Processing and Generative AI Address Grand Challenges of Quantitative User Personas? International Conference on Human-Computer Interaction, 211-231 (2023)

• S Dhelim, N Aung, M Bouras, H Ning, E Cambria. A Survey on Personality-Aware Recommendation Systems. Artificial Intelligence Review 55, 2409-2454 (2022)

• Y Li, A Kazameini, Y Mehta, E Cambria. Multitask Learning for Emotion and Personality Traits Detection. Neurocomputing 493, 340-350 (2022)

• A Kumar, T Trueman, E Cambria. Gender-Based Multi-Aspect Sentiment Detection using Multilabel Learning. Information Sciences 606, 453-468 (2022)

• A Kazemeini, SS Roy, RE Mercer, E Cambria. Interpretable Representation Learning for Personality Detection. Proceedings of ICDM Workshops, 158-165 (2021)

• Y Mehta, N Majumder, A Gelbukh, E Cambria. Recent Trends in Deep Learning Based Personality Detection. Artificial Intelligence Review 53, 2313-2339 (2020)

• Y Mehta, S Fatehi, A Kazameini, C Stachl, E Cambria, S Eetemadi. Bottom-Up and Top-Down: Predicting Personality with Psycholinguistic and Language Model Features. In: ICDM, 1184-1189 (2020)

personalized sentiment analysis




MULTIMODAL SENTIMENT ANALYSIS
• L Xiao, R Mao, X Zhang, L He, E Cambria. Vanessa 🦋: Visual Connotation and Aesthetic Attributes Understanding Network for Multimodal Aspect-based Sentiment Analysis. Proceedings of EMNLP (2024)

• M Luo, H Fei, B Li, S Wu, Q Liu, S Poria, E Cambria, ML Lee, W Hsu. PanoSent: A Panoptic Sextuple Extraction Benchmark for Multimodal Conversational Aspect-based Sentiment Analysis. Proceedings of ACM Multimedia, 7667-7676 (2024)

• C Fan, J Lin, R Mao, E Cambria. Fusing Pairwise Modalities for Emotion Recognition in Conversations. Information Fusion 106, 102306 (2024)

• B Liang, L Gui, Y He, E Cambria, R Xu. Fusion and Discrimination: A Multimodal Graph Contrastive Learning Framework for Multimodal Sarcasm Detection. IEEE Transactions on Affective Computing 15 (2024)

• A Gandhi, K Adhvaryu, S Poria, E Cambria, A Hussain. Multimodal Sentiment Analysis: A Systematic Review of History, Datasets, Multimodal Fusion Methods, Applications, Challenges and Future Directions. Information Fusion 91, 424-444 (2023)

• T Yue, R Mao, H Wang, Z Hu, E Cambria. KnowleNet: Knowledge Fusion Network for Multimodal Sarcasm Detection. Information Fusion 100, 101921 (2023)

• K Zhang, YQ Li, JG Wang, E Cambria, XL Li. Real-Time Video Emotion Recognition based on Reinforcement Learning and Domain Knowledge. IEEE Trans on Circuits and Systems for Video Technology 32(3), 1034-1047 (2022)

• L Stappen, A Baird, E Cambria, BW Schuller Sentiment Analysis and Topic Recognition in Video Transcriptions. IEEE Intelligent Systems 36(2), 88-95 (2021)

• I Chaturvedi, R Satapathy, S Cavallari, E Cambria. Fuzzy Commonsense Reasoning for Multimodal Sentiment Analysis. Pattern Recognition Letters 125, 264-270 (2019)

• E Cambria, D Hazarika, S Poria, A Hussain, RBV Subramaanyam. Benchmarking Multimodal Sentiment Analysis. In: CICLing, 166-179 (2017)

multimodal sentiment analysis




MULTILINGUAL SENTIMENT ANALYSIS
• X Zhang, R Mao, E Cambria. Multilingual Emotion Recognition: Discovering the Variations of Lexical Semantics between Languages. In: IJCNN (2024)

• T Yue, X Shi, R Mao, Z Hu, E Cambria. SarcNet: A Multilingual Multimodal Sarcasm Detection Dataset. In: LREC-COLING, 14325-14335 (2024)

• Z Wang, X Zhang, J Cui, SB Ho, E Cambria. A Review of Chinese Sentiment Analysis: Subjects, Methods, and Trends. Artificial Intelligence Review (2024)

• M Bounhas, B Elayeb, A Chouigui, A Hussain, E Cambria. Arabic Text Classification based on Analogical Proportions. Expert Systems e13609 (2024)

• P Le-Hong, E Cambria. A Semantics-Aware Approach for Multilingual Natural Language Inference. Language Resources and Evaluation 57, 611-639 (2023)

• P Le-Hong, E Cambria. Integrating Graph Embedding and Neural Models for Improving Transition-based Dependency Parsing. Neural Computing and Applications (2023)

• ALS Mohammad, MM Hammad, A Sa’ad, ALT Saja, E Cambria. Gated Recurrent Unit with Multilingual Universal Sentence Encoder for Arabic Aspect-Based Sentiment Analysis. Knowledge-Based Systems 261, 107540 (2023)

• H Peng, Y Ma, S Poria, Yang Li, E Cambria. Phonetic-Enriched Text Representation for Chinese Sentiment Analysis with Reinforcement Learning. Information Fusion 70, 88-99 (2021)

• D Vilares, H Peng, R Satapathy, E Cambria. BabelSenticNet: A Commonsense Reasoning Framework for Multilingual Sentiment Analysis. In: IEEE SSCI, 1292-1298 (2018)

• H Peng, Y Ma, Y Li, E Cambria. Learning Multi-grained Aspect Target Sequence for Chinese Sentiment Analysis. Knowledge-Based Systems 148, 167-176 (2018)

• SL Lo, E Cambria, R Chiong, D Cornforth. Multilingual Sentiment Analysis: From Formal to Informal and Scarce Resource Languages. Artificial Intelligence Review 48(4), 499-527 (2017)

multilingual sentiment analysis




MULTITASK SENTIMENT ANALYSIS
• X Zhang, R Mao, E Cambria. Granular Syntax Processing with Multi-task and Curriculum Learning. Cognitive Computation 16, 3020–3034 (2024)

• K He, R Mao, Y Huang, T Gong, C Li, E Cambria. Template-Free Prompting for Few-Shot Named Entity Recognition via Semantic-Enhanced Contrastive Learning. IEEE Transactions on Neural Networks and Learning Systems (2024)

• Z Zhang, SYM Lee, J Wu, D Zhang, S Li, E Cambria, G Zhou. Cross-domain NER with Generated Task-Oriented Knowledge: An Empirical Study from Information Density Perspective. EMNLP (2024)

• M Firdaus, A Ekbal, E Cambria. Multitask Learning for Multilingual Intent Detection and Slot Filling in Dialogue Systems. Information Fusion 91, 299-315 (2023)

• X Zhang, R Mao, K He, E Cambria. Neurosymbolic Sentiment Analysis with Dynamic Word Sense Disambiguation. In: EMNLP, 8772-8783 (2023)

• K He, R Mao, T Gong, C Li, E Cambria. Meta-based Self-training and Re-weighting for Aspect-based Sentiment Analysis. IEEE Transactions on Affective Computing 14(3), 1731-1742 (2023)

• R Liu, G Chen, R Mao, E Cambria. A Multi-task Learning Model for Gold-two-mention Co-reference Resolution. IJCNN (2023)

• R Satapathy, E Cambria. Polarity and Subjectivity Detection with Multitask Learning and BERT Embedding. Future Internet 14(7), 191 (2022)

• M Ge, R Mao, E Cambria. Explainable Metaphor Identification Inspired by Conceptual Metaphor Theory. In: AAAI, 10681-10689 (2022)

• D Jiang, R Wei, H Liu, J Wen, G Tu, L Zheng, E Cambria. A Multitask Learning Framework for Multimodal Sentiment Analysis. In: ICDM Workshops, 151-157 (2021)

• N Majumder, S Poria, H Peng, N Chhaya, E Cambria, A Gelbukh. Sentiment and Sarcasm Classification with Multitask Learning. IEEE Intelligent Systems 34(3), 38-43 (2019)

• A Valdivia, MV Luzón, E Cambria, F Herrera. Consensus Vote Models for Detecting and Filtering Neutrality in Sentiment Analysis. Information Fusion 44, 126-135 (2018)

sarcasm detection




FINANCIAL SENTIMENT ANALYSIS
• K Du, Y Zhao, R Mao, F Xing, E Cambria. Natural Language Processing in Finance: A Survey. Information Fusion 115, 102755 (2025)

• K Du, F Xing, R Mao, E Cambria. Financial Sentiment Analysis: Techniques and Applications. ACM Computing Surveys 56(9), 220 (2024)

• K Du, F Xing, R Mao, E Cambria. An Evaluation of Reasoning Capabilities of Large Language Models in Financial Sentiment Analysis. In: IEEE CAI, 189-194 (2024)

• K Ong, R Mao, R Satapathy, E Cambria, J Sulaeman, G Mengaldo. Explainable Natural Language Processing for Corporate Sustainability Analysis. Information Fusion 114 (2025)

• K Du, F Xing, R Mao, E Cambria. Explainable Stock Price Movement Prediction using Contrastive Learning. In: CIKM, 529-537 (2024)

• WJ Yeo, W Van Der Heever, R Mao, E Cambria, R Satapathy, G Mengaldo. A Comprehensive Review on Financial Explainable AI. arXiv preprint arXiv:2309.11960 (2024)

• Y Ma, R Mao, Q Lin, P Wu, E Cambria. Quantitative Stock Portfolio Optimization by Multi-task Learning Risk and Return. Information Fusion 104, 102165 (2024)

• K Du, R Mao, F Xing, E Cambria. A Dynamic Dual-Graph Neural Network for Stock Price Movement Prediction. In: IJCNN (2024)

• R Manro, R Mao, L Dahiya, Y Ma, E Cambria. A Cognitive Analysis of CEO Speeches and Their Effects on Stock Markets. In: ICFT (2024)

• R Mao, K Du, Y Ma, L Zhu, E Cambria. Discovering the Cognition behind Language: Financial Metaphor Analysis with MetaPro. In: ICDM, 1211-1216 (2023)

• K Ong, W van der Heever, R Satapathy, G Mengaldo, E Cambria. FinXABSA: Explainable Finance through Aspect-Based Sentiment Analysis. In: ICDM Workshops, 773-782 (2023)

• K Du, F Xing, R Mao, E Cambria. FinSenticNet: A Concept-Level Lexicon for Financial Sentiment Analysis. In: IEEE SSCI, 109-114 (2023)

• K Du, F Xing, E Cambria. Incorporating Multiple Knowledge Sources for Targeted Aspect-based Financial Sentiment Analysis. ACM Transactions on Management Information Systems 14(3), 23 (2023)

• Z Wang, Z Hu, F Li, SB Ho, E Cambria. Learning-Based Stock Trending Prediction by Incorporating Technical Indicators and Social Media Sentiment. Cognitive Computation 15(3), 1092-1102 (2023)

• Y Ma, R Mao, Q Lin, P Wu, E Cambria. Multi-source Aggregated Classification for Stock Price Movement Prediction. Information Fusion 91, 515-528 (2023)

• F Xing, L Malandri, Y Zhang, E Cambria. Financial Sentiment Analysis: An Investigation into Common Mistakes and Silver Bullets. In: COLING, 978-987 (2020)

NLFF




CONVERSATIONAL SENTIMENT ANALYSIS
• D Jiang, H Liu, G Tu, R Wei, E Cambria. Self-supervised Utterance Order Prediction for Emotion Recognition in Conversations. Neurocomputing 577, 127370 (2024)

• D Varshney, A Ekbal, E Cambria. Emotion-and-Knowledge Grounded Response Generation in an Open-domain Dialogue Setting. Knowledge-Based Systems 284, 111173 (2024)

• H Liu, R Wei, G Tu, J Lin, D Jiang, E Cambria. Knowing What and Why: Causal Emotion Entailment for Emotion Recognition in Conversations. Expert Systems with Applications (2024)

• M Amin, E Cambria, B Schuller. Will Affective Computing Emerge from Foundation Models and General Artificial Intelligence? A First Evaluation of ChatGPT. IEEE Intelligent Systems 38(2), 15-23 (2023)

• W Li, L Zhu, W Shao, Z Yang, E Cambria. Task-Aware Self-Supervised Framework for Dialogue Discourse Parsing. In: EMNLP, 14162-14173 (2023)

• W Li, L Zhu, R Mao, E Cambria. SKIER: A Symbolic Knowledge Integrated Model for Conversational Emotion Recognition. In: AAAI, 13121-13129 (2023)

• W Li, Y Li, V Pandelea, M Ge, L Zhu, E Cambria. ECPEC: Emotion-Cause Pair Extraction in Conversations. IEEE Transactions on Affective Computing 14(3), 1754-1765 (2023)

• D Jiang, R Wei, J Wen, G Tu, E Cambria. AutoML-Emo: Automatic Knowledge Selection using Congruent Effect for Emotion Identification in Conversations. IEEE Transactions on Affective Computing 14(3), 1845-1856 (2023)

• J Wen, D Jiang, G Tu, C Liu, E Cambria. Dynamic Interactive Multiview Memory Network for Emotion Recognition in Conversation. Information Fusion 91, 123-133 (2023)

• W Li, W Shao, SX Ji, E Cambria. BiERU: Bidirectional Emotional Recurrent Unit for Conversational Sentiment Analysis. Neurocomputing 467, 73-82 (2022)

• N Mishra, M Ramanathan, R Satapathy, E Cambria, N Thalmann. Can a Humanoid Robot be part of the Organizational Workforce? A User Study Leveraging Sentiment Analysis. In: Ro-Man (2019)


human-robot interaction