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Abstract
Predicting stock price movements is a high-stakes task that de-
mands explainability for human decision-makers. A key shortcom-
ing in current methods is treating sub-predictions independently,
without learning from accumulated experiences. We propose a
novel triplet network for contrastive learning to enhance the ex-
plainability of stock movement prediction by considering instances
of “integrated textual information and quantitative indicators”. We
refer to the target past-𝑙-day tweet-price time series as the “anchor
instance”. Each anchor instance is paired with a “positive instance”
characterized by highly correlated return trends yet significant dif-
ferences across the entire feature space, and a “negative instance”
that exhibits similar return trends along with high proximity in
the feature space. The model is designed with the objective of (1)
minimizing the cross entropy loss between input logits and tar-
get, (2) minimizing the distance between the anchor instances and
positive instances, and (3) maximizing the distance between the
anchor instances and negative instances. Our framework’s effective-
ness is demonstrated through extensive testing, showing superior
performance on stock prediction benchmarks.
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1 Introduction
Stock price movement prediction is a challenging task due to the
dynamic and complex nature of the financial market. Early stud-
ies [23] believed that achieving a prediction accuracy rate over 50%
is seen as a substantial benefit to the daily trading activities for
practical traders. Conventionally, there are two dominant meth-
ods used in stock market analysis, i.e., fundamental analysis and
technical analysis [23]. Fundamental analysis examines stocks from
their inherent value perspective, considering factors such as from
the macro-economy and industry circumstances to the individ-
ual financial robustness of companies. Aspects such as earnings,
expenditures, assets, and liabilities are integrative parts of this
analysis. Conversely, technical analysis seeks to identify potential
opportunities by examining statistical trends in stock price move-
ments. Well-known technical indicators include the Simple Moving
Average (SMA), Exponential Moving Average (EMA), and Mov-
ing Average Convergence/Divergence (MACD) etc. Many previous
studies on market forecasting have predominantly used historical
stock trading data, technical indicators, and macroeconomic factors
as the basis for their analysis [23]. However, there is a novel and
rapidly expanding field of research that focuses on the integration
of financial textual data with fundamental and technical indica-
tors in financial forecasting, using natural language processing
(NLP) [7, 17–19, 22, 31, 32], because textual information reflects
the cognitive patterns of market participants [20]. Among financial
textual sources, social media and self-media data offer subjective
judgment and analysis from investors and analysts [8] and are
crucial data resources for financial market prediction [33].

A notable limitation of existing research in this domain is the
insufficient exploration of the intrinsic connections inherent to
stock price dynamics, which encompass two distinct categories:
firstly, the inherent patterns of price movements intrinsic to a spe-
cific stock, discernible across historical price data; secondly, the
analogous price movement patterns exhibited by other stocks in
the market. One prospective approach for uncovering price connec-
tions is through contrastive learning. Adopted in computer vision
and NLP research [10, 27], contrastive learning is a potent tech-
nique that facilitates the enhancement of feature representation by
accentuating the differentiation between positive (similar) and neg-
ative (dissimilar) samples. Previous works [21, 34, 37] highlighted
that hard negative triplets, which are the most similar negative
instances that have opposite labels, are the most informative.
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To the best of our knowledge, [29] was the first study that in-
troduced contrastive learning to financial time series forecasting.
Addressing the problem that time series datasets are usually sample-
insufficient for predictive learning, it was proposed to first learn
compact time series representations, then classify new samples
based on their conditional mutual information to the represen-
tations [29]. In the same vein, [11] proposed the representations
to include high-frequency data, and the multi-granularity hetero-
geneity problem handled with adaptive fusion. [15] used similar
approaches not on time series, but on stocks to generate “stock
embeddings” using internal and relational attributes. The efficacy
of stock embeddings is subsequently evaluated using covariance
matrix insertion in portfolio optimization. However, these studies
did not incorporate textual features and explainable mechanisms,
resulting in a limitation in their ability to enhance accuracy, ex-
plainability, and trustworthiness [1, 2]. As a result, the previous
methods cannot help financial analysts and investors investigate a
critical question: What factors induce alterations in the stock
price’s trajectory on the subsequent trading day, assuming a
comparable historical price trend?

To address the aforementioned gaps, we propose a novel stock
price movement prediction framework that integrates quantitative
indicators and textual information, leveraging contrastive learning
techniques to enhance its predictive capability and explainability.
Each 𝑙-day lag time series is designated as an anchor instance, ac-
companied by its most correlated instance in the price trend time
series but with the largest distance in other feature spaces display-
ing the same price movement, identified as the positive instance,
and the most closely correlated instance in price trend and smallest
distance in other feature space exhibiting an opposite movement,
considered as the negative instance. The essence of this approach
is to scrutinize the feature disparities among the anchor, positive,
and negative instances, allowing the model to strategically position
the anchor and positive instances in closer proximity through a
thorough comprehension of their underlying representations and
characteristics. This strategic alignment captures subtle features
instrumental in predicting price movement deviations on the sub-
sequent trading day. Remarkably, it proves effective in scenarios
where the anchor and positive instances, as well as the anchor
and negative instances, demonstrate congruent trends over the
preceding 𝑙 days. In practice, the positive and negative samples can
serve as references, allowing traders to assess the inference logic
and outcomes generated by machines. This approach enhances the
accuracy of trading by incorporating human influence within the
decision-making loop, which is a significant advantage, compared
to other black-box models.

The efficacy of our proposed framework is validated through
extensive experimentation on three benchmark datasets. On aver-
age, our model exceeds the strongest baseline by 1.5% in accuracy
across datasets, showcasing its superior performance compared to
existing approaches. We also demonstrate the explainability of our
method. Our contributions can be summarized from three perspec-
tives: (1) A novel and explainable triplet network architecture for
contrastive learning is proposed. The framework revolves around
predicting stock price movements by comparing textual and quan-
titative features of the current time interval against those of a prior
time span characterized by the most analogous price movement

trend to the present period. (2) Building upon the aforementioned
explainable framework, we conduct a comprehensive analysis of
the factors leading to discernible fluctuations in the subsequent
trading day, despite the presence of highly comparable price trends
in historical data. (3) The proposed model demonstrates competi-
tive performance on publicly available datasets, underscoring its
effectiveness in stock price movement prediction.

2 Related Work
Research in the field of stock market prediction encompasses vari-
ous aspects, such as market index, stock price, stock price move-
ment, return rate, and volatility etc. To achieve prediction goals,
time series models, machine learning techniques, deep learning
approaches, and reinforcement learning methods have been ex-
plored. Specifically, [5] proposed a novel neural tensor network
combined with a deep convolutional neural network (CNN) to pre-
dict event-driven stock price movements in the S&P 500 index
and individual stocks. [36] proposed event-driven trading strate-
gies that detect corporate events, considered as driving forces of
market movements, from news articles. A bi-level event detection
model is trained using the masked-language model (MLM) loss.
Two trading strategies were tested on the EDT dataset, with trade-
at-end strategy yielding a return outperforming sentiment-based
models. The trade-at-best strategy, which completed transactions
within a specified time frame, resulted in a return also surpassing
all sentiment-based models.

Another study by [16] focused on extracting features from news
titles through a CNN and event tuples (agent, predicate, and ob-
ject) via knowledge graph embedding. The features were combined
with daily trading and technical analysis data, and support vec-
tor machine (SVM) and long short-term memory (LSTM) models
were utilized for stock price movement prediction. Joint learning
of event tuples and text was found to be the most effective ap-
proach, addressing the text sparsity problem in feature extraction.
A deep generative model called StockNet was proposed by [33] for
stock market prediction based on binary movement, denoting a
rise in stock price as one and a fall as zero. The model consisted of
three components: Market Information Encoder, Variational Move-
ment Decoder, and Attentive Temporal Auxiliary. [9] proposed to
implement adversarial training as a means to enhance the predic-
tive model’s generalization capacity within the neural network
framework and achieved a significant performance improvement
as compare to [33].

Multiple studies have also investigated the integration of com-
pany relationships into the prediction of stock market movements.
Notably, [4] incorporated company relationships using Graph Con-
volutional Neural Networks, while [26] proposed a deep attentive
learning approach for predicting stock movements based on in-
formation from social media texts and company correlations. [35]
introduces DTML (Data-axis Transformer with Multi-Level con-
texts), a novel approach for accurate stock movement prediction by
efficiently correlating multiple stocks. DTML leverages temporal
and global market context to learn dynamic correlations and out-
performs existing methods, yielding a significant annualized return
in investment simulations.
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Another effort to enhance stock market movement prediction
is through self-supervised learning from sparse noisy tweets [28],
which overcomes biases towards popular stocks and filters out
noisy data. IIt employs self-supervised learning to create shared
embeddings for stocks and tweets, enabling accurate predictions
for less popular stocks and enhancing robustness by leveraging
multi-level relationships from tweets. In the study by [17] which
also strategically incorporates company relationships, two impor-
tant hypotheses were proposed: (1) market sentiment differs from
semantic sentiment, and (2) the stock price of a target company is
influenced by its related companies. To address these hypotheses, a
multi-source aggregated classifier is developed for stock price move-
ment prediction. [6] proposed a dual-graph neural network, which
dynamically generates and integrates price relationships and se-
mantic relationships between companies for stock price movement
prediction. While machine learning has significantly contributed to
the enhancement of stock price prediction, there exist two primary
constraints within earlier research endeavors: (1) The transparency
of the stock decision-making mechanism is deficient, leaving users
uninformed about the underlying factors responsible for the pre-
dicted increases or declines in stock prices. (2) It is unclear what
factors induce alterations in the stock price’s trajectory on the
subsequent trading day, assuming a comparable historical trend.

3 Methodology
The proposed framework is illustrated in Fig. 1. In a specific delin-
eation, the framework comprises six principal components: Tweet
Embedding Layer, Price Normalization Layer, Triplet Selector, Tex-
tual Information Encoder-Decoder (TIE) and Quantitative Indica-
tor Encoder-Decoder (QIE) with triplet network, and Stock Price
Movement Classifier. We employ contrastive learning-based loss
regularization, namely a triplet loss for the textual feature compara-
tive learning, and a triplet loss for the quantitative indicator feature
comparative learning.

3.1 Tweets Embedding Layer
The Tweets Embedding Layer encodes tweets and generates embed-
dings. Specifically, each tweet 𝑒 can be represented by an embedding
vector v ∈ R𝑑 using sentence-BERT [25], which represents a modi-
fication of the pre-trained BERT network, using Siamese network
architecture. This adaptation is specifically engineered to derive
semantically significant embeddings for sentences, and the dimen-
sion of the embedding 𝑑 is 384. Given 𝑛 number of tweets on day 𝑖
associated with stock𝐴, it can be represented as [𝑒1, 𝑒2, . . . 𝑒𝑛]. The
Tweet Embedding layer provides a representation for each tweet,
resulting in vectors [𝑣1, 𝑣2, . . . 𝑣𝑛] where 𝑣 𝑗 ∈ R𝑑 , 𝑗 ∈ [1, 2, ..., 𝑛]
and 𝑛 denotes the total number of tweets for stock 𝐴 on day 𝑖 .

3.2 Textual Information Encoder-Decoder
As the internet era advances, social networking platforms such as
X (formerly known as Twitter) and StockTwits have increasingly
shaped investor perspectives and market reactions [12]. In our
study, we adopt the Twittermessages provided by [33], [30] and [28].
The Textual Information Encoder-Decoder primarily comprises a
CNN and a dual-stage Attentive LSTM (ALSTM) network, collec-
tively designed to effectively encode the embeddings of tweets.
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Figure 1: Proposed Framework. (a) The overall architecture.
(b) The classifier layers in the overall architecture. ⊕ denotes
concatenation. 𝑎, 𝑝, 𝑛 denotes anchor, positive and negative
stock samples, respectively. 𝑣 denotes textual features; 𝑞 de-
notes quantitative indicator features.

3.2.1 Convolutional Neural Network. As emphasized by [12], tweets
possess diverse impacts within the market landscape. Consequently,
the Tweets Embedding Layer encodes intraday tweets and yields
output, a three-dimensional vector denoted as V ∈ R𝑙×𝑚×𝑑 . Here, 𝑙
signifies the sequence length,𝑚 denotes the maximum number of
daily tweets, and 𝑑 represents the dimensionality of the sentence
embedding, which serves as input to a 2D-CNN. The 2D-CNN’s
primary role is to discern and internalize intricate feature represen-
tations, denoted by the equation:

C = Conv2d(V) (1)
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The convolved features C undergo batch normalization, followed
by activation through the Rectified Linear Unit (ReLU) function,
and are subsequently subjected to adaptive max pooling, resulting
in an output size of (1, 128). The pooled feature maps are then
concatenated to form D ∈ R𝑙×3×128. The same process, using a 2D-
CNN with a kernel size of (3, 1) and 𝑙 filters, is applied to generate
X ∈ R𝑙×64.

3.2.2 Attentive LSTM. The dual-stage ALSTM is a widely recog-
nized attentive RNN architecture that was originally introduced
by [24] for time series prediction. We extended it to multivariate
time series for financial forecasting. In our implementation, the
ALSTM is composed of several layers, namely: Encoder (Input At-
tention and LSTM layers) and Decoder (Temporal Attention and
LSTM layers), as illustrated in Fig. 1. The input attention module
serves to assess the importance of input features at time 𝑡 , and the
temporal attention mechanism is applied in the decoder to adap-
tively select relevant encoder hidden states across all time steps. In
the context of a given multivariate time series, which is represented
as x𝑘 = (𝑥𝑘1 , 𝑥

𝑘
2 , . . . , 𝑥

𝑘
𝑙
)⊤ ∈ R𝑙 , an input attention mechanism can

be constructed using a deterministic attention model, specifically a
Multilayer Perceptron (MLP). This construction involves referenc-
ing the previous hidden state h𝑡−1 and the cell states s𝑡−1 within
the encoder LSTM unit. This is expressed as:

𝑒𝑘𝑡 = v⊤𝑒 · tanh
(
W𝑒 [h𝑡−1; s𝑡−1] + U𝑒x𝑘

)
, (2)

where v ∈ R𝑙 ,W𝑒 ∈ R𝑙×2𝑑1 , and U𝑒 ∈ R𝑙×𝑙 are parameters that are
learned with𝑑1 being the size of hidden states. The attention weight
𝛼𝑘𝑡 is given by Eq. 3, indicating the importance of the 𝑘-th input
feature at time 𝑡 . 𝑛 is the number of features. A softmax function is
applied to 𝑒𝑘𝑡 to ensure that all attention weights sum up to 1.

𝛼𝑘𝑡 =
exp(𝑒𝑘𝑡 )∑𝑛
𝑖=1 exp(𝑒𝑖𝑡 )

(3)

This input attention mechanism is implemented as a forward
network that can be jointly trained with other components of the
Attentive LSTM. Utilizing these attention weights, the hidden state
at time 𝑡 can be updated as:

h𝑡 = 𝑓1 (h𝑡−1, x̃𝑡 ) (4)

x̃𝑡 =
(
𝛼1𝑡 𝑥

1
𝑡 , 𝛼

2
𝑡 𝑥

2
𝑡 , . . . , 𝛼

𝑛
𝑡 𝑥

𝑛
𝑡

)⊤
(5)

Here, 𝑓 represents a LSTM unit with x𝑡 replaced by the newly
computed x̃𝑡 . Through this proposed input attention mechanism,
the encoder can selectively focus on specific feature series rather
than treating all input feature series uniformly. After the encoder
stage, the decoder with temporal attention is adopted to predict the
output using LSTM for decoding the encoded information. To adap-
tively select relevant encoder hidden states, a temporal attention
mechanism is employed in the decoder. Specifically, the attention
weight of each encoder hidden state at time 𝑡 is calculated based
upon the previous decoder hidden state h′𝑡−1 ∈ 𝑅𝑑2 and the cell
state of the LSTM unit s′𝑡−1 ∈ R𝑑2 , with 𝑑2 being the size of the
decoder hidden states, can be represented as:

𝑑
𝑗
𝑡 = v⊤

𝑑
· tanh

(
W𝑑

[
h′𝑡−1; s

′
𝑡−1

]
+ U𝑑h𝑗

)
, 1 ≤ 𝑗 ≤ 𝑙 , (6)

where [h′𝑡−1; s′𝑡−1] ∈ R2𝑑2 is a concatenation of the previous
hidden state and cell state of the LSTM unit. Also, v𝑑 ∈ 𝑅𝑑1 , W𝑑 ∈
𝑅𝑑1×2𝑧2 , and U𝑑 ∈ R𝑑1×𝑑1 are parameters to learn with bias terms
being omitted for clarity. The attention weight 𝛽 𝑗𝑡 of each encoder
hidden state at time 𝑡 , which represents the importance of the 𝑖-th
encoder hidden state for the prediction, is calculated as:

𝛽
𝑗
𝑡 =

exp(𝑑 𝑗𝑡 )∑𝑙
1 exp(𝑑𝑖𝑡 )

(7)

The context vector c𝑡 is computed as a weighted sum of encoder
hidden states:

c𝑡 =
𝑙∑︁

𝑖=1
𝛽𝑖𝑡h𝑖 (8)

Once we obtain the weighted summed context vectors, we can
combine them with the given target series (𝑦1, 𝑦2, . . . , 𝑦𝑇−1) as
follows:

𝑦𝑡−1 = w̃⊤ [𝑦𝑡−1; c𝑡−1] + 𝑏 (9)
where [𝑦𝑡−1; c𝑡−1] ∈ R𝑑1+1 is a concatenation of the decoder input
𝑦𝑡−1 and the computed context vector c𝑡−1. Parameters w̃ ∈ R𝑑1+1

and 𝑏 ∈ R map the concatenation to the size of the decoder input.
The newly computed 𝑦𝑡−1 is used to update the decoder hidden
state at time 𝑡 :

h′𝑡 = 𝑓2 (h′𝑡−1, 𝑦𝑡−1) (10)
This established attention strategy recognizes the variability in

the information quality of tweets and their differential impacts
across market phases.

3.3 Price Normalization Layer
The historical price data encompass open, high, low, close, and
adjusted close prices for every trading session. The price movement
indicators over intervals of 5, 10, 15, 20, 25, and 30 days are also
computed. To capture the market fluctuations, we normalize both
the price and its associatedmovement indicators using current day’s
close price for open, high and low price (e.g., 𝑛_𝑜𝑝𝑒𝑛 =

𝑜𝑝𝑒𝑛𝑡
𝑐𝑙𝑜𝑠𝑒𝑡

−
1), the previous day’s corresponding price for close and adjusted
close price (e.g., 𝑛_𝑐𝑙𝑜𝑠𝑒 = 𝑐𝑙𝑜𝑠𝑒𝑡

𝑐𝑙𝑜𝑠𝑒𝑡−1
− 1), and current day’s adjusted

close price for 5, 10, 15, 20, 25, and 30-day movement (e.g., 𝑛_5 −
𝑑𝑎𝑦 =

∑4
𝑖=0 adj_close𝑡−𝑖/5

adj_close𝑡
−1). Consequently, a total of 11 quantitative

indicators have been derived in this study.

3.4 Quantitative Indicator Encoder-Decoder
Technical analysis indicates that historical price offers significant
insights into prospective market movements [13]. The Quantitative
Indicator Encoder-Decoder is designed to encapsulate the tempo-
ral sequence representation of quantitative indicators spanning a
lookback period of 𝑙 days, which is 7 days in our study.

To represent the sequential interdependence of trading days, the
same dual-stage Attentive LSTM is adopted. Given multivariate
time series for quantitative indicators q𝑘 = (𝑞𝑘1 , 𝑞

𝑘
2 , . . . , 𝑞

𝑘
𝑡 ) ∈ R𝑙 .

The encoder output on the 𝑡𝑡ℎ day defined as:

p𝑡 = 𝑓1 (p𝑡−1, q̃𝑡 ) (11)

Here, 𝑞𝑖 ∈ R11 signifies the price vector on day 𝑖 for each stock 𝑠 in
the window of time steps.
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Existing literature suggests that each trading day’s trend influ-
ences stock trend prediction differently [9]. In alignment with this
understanding, we incorporate the same temporal attention mech-
anism in the decoder that ascertains the significance of particular
days, synthesizing a holistic feature representation from the LSTM’s
entire hidden states [24]. This mechanism, similar to the implemen-
tation in Textual Information Encoder-Decoder, employs the newly
computed 𝑦𝑡−1 to update the decoder’s hidden state at time 𝑡 :

p′𝑡 = 𝑓2 (p′𝑡−1, 𝑦𝑡−1) (12)

3.5 Triplet Selector
Our triplet selection process unfolds during training and is adept
at distinguishing between positive and negative instances within a
batch. Specifically, we begin by calculating the pairwise Pearson
correlation coefficient using 𝑙-day return trends derived from ad-
justed closing prices, and the Euclidean distances between both
quantitative and textual features to determine the relative closeness
of each instance to others during the forward pass. Based on the in-
put labels, we identify which pairs of instances are similar (positive)
and dissimilar (negative). For each anchor instance in the batch,
we select the top k instances that exhibit the highest correlation in
terms of price return, from instances with the same and opposite la-
bel respectively, using the Pearson correlation coefficient. We then
create a distance matrix by calculating pairwise Euclidean distance
using quantitative and textual features. From the top k instances
identified through the highest Pearson correlation coefficient, we
isolate the instance that exhibits the largest distance in the entire
feature space while maintaining the same polarity as positive, and
the instance with the smallest distance and opposite polarity as
negative. By leveraging these positive and negative instances, the
model computes the triplet loss. The training objective is to ensure
that the distance between the anchor and the positive instance is
smaller than the distance between the anchor and the negative
instance, by at least the defined margin.

3.6 Stock Price Movement Classifier
The stock price movement classifier comprises a series of operations
including batch normalization, concatenation of textual and quanti-
tative features, and the incorporation of linear and activation layers.
More precisely, the hidden states associated with anchor instances
for both textual and quantitative features undergo a sequence of
operations: batch normalization, concatenation, a linear layer with
ReLU activation, followed by dropout, and finally, a linear layer for
the computation of cross-entropy loss.

3.7 Weighted Multi-task Learning Objective
The model is designed with the objectives of minimizing entropy
loss between input logits and target, and the triplet loss between
the hidden states of anchor, positive and negative instances. Specifi-
cally, it aims to minimize the distance between the anchor instance
and positive instances that share a common identity, while simulta-
neously maximizing the distance between the anchor and negative
instances with contrasting identities. The triplet loss was intro-
duced by [27] in the field of face recognition. The anchor instance
(𝑎), a positive instance (𝑝) of the same class as the anchor, and a
negative instance (𝑛) from a different class than the anchor, form

a triplet (𝑎, 𝑝, 𝑛). The learning objective of the triplet loss is to
minimize the distance 𝐷 (𝑎, 𝑝) between the anchor and positive
instances and maximize the distance 𝐷 (𝑎, 𝑛) between the anchor
and negative instance:

𝐿𝑡 =

𝑁∑︁
𝑖=1

[
∥ 𝑓 (𝑥𝑎𝑖 ) − 𝑓 (𝑥𝑝

𝑖
)∥22 − ∥ 𝑓 (𝑥𝑎𝑖 ) − 𝑓 (𝑥𝑛𝑖 )∥

2
2 + 𝛼

]
+ (13)

∀(𝑓 (𝑥𝑎𝑖 ), 𝑓 (𝑥
𝑝

𝑖
), 𝑓 (𝑥𝑛𝑖 )) ∈ T , (14)

where T is the set of all possible triplets in the training set. The
distance is measured by the Euclidean distance. The + indicates
that when the value inside 𝐷 (𝑎, 𝑝) −𝐷 (𝑎, 𝑛) +𝛼 is greater than zero,
it is taken as that value, and when it is less than zero, it is zero. This
can also be expressed as:

𝐿𝑡 = max(𝐷 (𝑎, 𝑝) − 𝐷 (𝑎, 𝑛) + 𝛼, 0), (15)

where 𝛼 enforces a margin between positive pairs (𝑎, 𝑝) and nega-
tive pairs (𝑎, 𝑛). Regarding triplets, they can be categorized as:

• Easy triplets: In the case of 𝐿 = 0, where 𝐷 (𝑎, 𝑝) + 𝛼 <

𝐷 (𝑎, 𝑛), the intra-class distance is small, and the inter-class
distance is large; there’s no need for optimization.

• Hard triplets: For𝐷 (𝑎, 𝑛) < 𝐷 (𝑎, 𝑝), the inter-class distance
is smaller than the intra-class distance and requires special
attention.

• Semi-hard triplets: For 𝐷 (𝑎, 𝑝) < 𝐷 (𝑎, 𝑛) < 𝐷 (𝑎, 𝑝) + 𝛼 ,
the intra-class and inter-class distances are close, but there
is a margin 𝛼 , which is easier to optimize.

As depicted in Fig. 1, each of the identified triplets from the triplet
selector undergoes processing by both Textual Information Encoder-
Decoder and Quantitative Indicator Encoder-Decoder. The Textual
Information Encoder-Decoder generates distinct hidden states de-
noted as ℎ (𝑎)𝑣 , ℎ (𝑝 )𝑣 , and ℎ (𝑛)𝑣 for the anchor, positive, and negative
instances, while the Quantitative Indicator Encoder-Decoder pro-
duces corresponding hidden states represented as ℎ (𝑎)𝑞 , ℎ (𝑝 )𝑞 , and
ℎ
(𝑛)
𝑞 . Consequently, the triplet loss is computed for both the tex-
tual information, denoted as 𝐿𝑣 , and the quantitative indicators,
denoted as 𝐿𝑞 . Likewise, the identical triplet loss computation is ap-
plied to 𝐿𝑞 . This procedural step is designed to exam the disparities
present in the triplets, enabling the model to strategically position
the anchor and positive instances in higher proximity, while simul-
taneously ensuring that the negative instance is distanced further
away from the anchor instance. Simultaneously, the hidden states
corresponding to anchor instances undergo classifier layers. The
process culminates in the computation of the cross-entropy loss 𝐿𝑐
for binary classification:

𝐿𝑐 = −𝑤𝑦𝑛 ·
(
𝑦𝑛 log

(
1

1+exp(−𝑥𝑛 )

)
+ (1 − 𝑦𝑛) log

(
1 − 1

1+exp(−𝑥𝑛 )

))
The learning objective is finally defined as followswhere theweight-
ing of multiple loss functions is determined through an assessment
of the homoscedastic uncertainty associated with each respective
task [14] with 𝜆𝑖 as the learnable parameters:

𝐿 =
∑︁ 1

2𝜆2
𝑖

𝐿𝑖 + log(1 + 𝜆2𝑖 ) (16)
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Dataset No. of Stocks No. of Tweets Period
ACL18 [33] 87 106,271 2014-01-02 to 2015-12-30
CIKM18 [30] 38 955,788 2017-01-01 to 2017-12-28
BIGDATA22 [28] 50 272,762 2019-07-05 to 2020-06-30

Table 1: Description of “Price Movement - Text” Datasets.

4 Experimental Setup
4.1 Datasets
StockNet dataset1, released by [33], is one of the most representa-
tive datasets for stock price movement prediction, with 87 stocks
selected from various industries from January 2014 to December
2015. We also consider another social text-driven stock prediction
dataset built by [30], by aggregating stock prices from Yahoo Fi-
nance alongside relevant social media discourse, primarily from
Twitter. The dataset covers the time frame of January 2017 through
to December 2017 with 38 stocks selected from the broader Standard
& Poor’s 500 list, ensuring each had a substantial representation
on Twitter. Lastly, we include newly released data for stock market
forecasting, created by [28]. This dataset encompasses a selection
of 50 stocks, spanning from July 2019 to June 2020. We transform
the price movements into a binary classification problem as in re-
cent works for stock movement prediction [28, 33]. Specifically, we
label movements equal to or less than -0.5% as 0 and movements
greater than 0.55% as 1. We partitioned each dataset chronologically
into training, validation, and test subsets, aligning with established
methodologies applied in recent studies on stock movement pre-
diction [28]. Our reported results are averaged over 10 runs on the
testing sets with random seeds.

4.2 Evaluation Metrics
To make a fair comparison with previous studies on stock forecast-
ing [9, 33], our chosen evaluation metrics are bidirectional accuracy
and the Matthews Correlation Coefficient (MCC). Accuracy is ex-
tensively adopted across various classification problems. The MCC
becomes especially pertinent when the dataset presents notable
disparities in class distribution. The calculation of accuracy and
MCC necessitates the construction of a confusion matrix, which
enumerates true positives (TP), false positives (FP), true negatives
(TN), and false negatives (FN), and is defined as follows:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 +𝑇𝑁

𝑇𝑃 + 𝐹𝑃 +𝑇𝑁 + 𝐹𝑁
(17)

𝑀𝐶𝐶 =
𝑇𝑃 ×𝑇𝑁 − 𝐹𝑃 × 𝐹𝑁√︁

(𝑇𝑃+𝐹𝑃)×(𝑇𝑃+𝐹𝑁 )×(𝑇𝑁 +𝐹𝑃)×(𝑇𝑁 +𝐹𝑁 )
(18)

4.3 Baseline Models
We compare our model with strong baselines for stock price move-
ment prediction, as follows: Momentum (MOM) serves as a tech-
nical metric that forecasts the likelihood of positive or negative
movement for each instance based on the prevailing trend over
the preceding 10 days.Mean Reversion (MR) projects the move-
ment of each instance as a deviation from the recent price, aligning
1https://github.com/yumoxu/stocknet-dataset

towards the 30-day moving average [3]. StockNet is presented
by [33], in which the stock input undergoes encoding through a
Variational Autoencoder (VAE) to encapsulate its inherent stochas-
ticity. Attentive LSTM (ALSTM) synergizes the attention strategy
with diverse LSTM cell states, as highlighted by [24]. In the same
thread, two other variations, ALSTM-W and ALSTM-D are intro-
duced by [28], with Word2Vec and Doc2Vec for tweet embeddings,
respectively. Attentive LSTM using adversarial training (Adv-
ALSTM) is introduced by [9], which incorporates adversarial train-
ing with ALSTM to augment generalization capabilities. DTML
(Data-axis Transformer with Multi-Level contexts) is an innovative
approach for precise stock movement prediction that effectively
correlates multiple stocks introduced by [35]. SLOT improves pre-
dictions of stock market movements using self-supervised learning
from sparsely available and noisy tweets [28].

4.4 Experimental Details
The models in our study are trained on an NVIDIA Tesla T4 proces-
sor. The training process encompasses 100 epochs, during which the
validation dataset is employed to select the optimal model, while
the test dataset serves as the basis for reporting performance met-
rics. A learning rate of 1e-6 is used in conjunction with the Adam
optimizer, with a batch size of [64, 128], a hidden size of [256, 512],
the top k of [20, 30, 40] for triplet selector and 𝑙 of [5, 7, 10] days
for hyperparameter tuning.

5 Result and Analysis
Our investigation presents accuracy and MCC in Table 2. Across
all designated categories and evaluation metrics, our novel model
consistently exhibits superior performance relative to conventional
technical analysis methodologies [3], as well as machine learn-
ing models [9, 24, 28, 33], with notably substantial margins of im-
provement. Specifically, we attained the highest performance on
the CIKM’18 and BIGDATA’22 datasets, achieving the accuracy of
0.5790, and 0.5728, accompanied by improvements of 3.7% and 4.5%,
respectively. Furthermore, the model demonstrated its highest per-
formance with an MCC score of 0.1326 on the BIGDATA’22 dataset.
It also achieved the second-highest MCC score on the CIKM’18
dataset, and the third-highest MCC score on the ACL’18 dataset,
yielding values of 0.0589 and 0.1481, respectively. On average, our
model exceeds the strongest baseline by 1.5% in accuracy across the
three datasets. It’s important to emphasize that, unlike models func-
tioning as black-box systems, our proposed approach empowers
users to perform a comparative analysis between the anchor stock
and instances of both positive and negative stocks. The objective
of this comparison is to identify the most influential features that
contribute to prediction accuracy, as demonstrated in Section 7.

6 Ablation Study
An ablation study is conducted to ascertain the efficacy of con-
trastive learning. The outcomes derived from the training of models
utilizing 10 distinct random seeds have been detailed in Table 3,
which serves to underscore the favorable influence of contrastive
learning on both the performance and stability of the models. Evi-
dently, the incorporation of contrastive learning has led to a note-
worthy augmentation in model performance, particularly when
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Model ACL18 CIKM18 BIGDATA22
Accuracy MCC Accuracy MCC Accuracy MCC

MOM [3] 0.4701 -0.0640 - - - -
MR [3] 0.4621 -0.0782 - - - -
ALSTM [24] 0.5182 0.0429 0.5254 -0.0077 0.4869 -0.0254
ALSTM-W [28] 0.5332 0.0754 0.5364 0.0315 0.4828 -0.0116
ALSTM-D [28] 0.5298 0.0681 0.5040 -0.0449 0.4916 -0.0090
Adv-ALSTM [9] 0.5311 0.0685 0.5369 0.0217 0.5036 0.0120
StockNet [33] 0.5360 -0.0248 0.5235 -0.0161 0.5299 -0.0163
DTML [35] 0.5812 0.1806 0.5386 0.0049 0.5165 0.0651
SLOT [28] 0.5872 0.2065 0.5586 0.0899 0.5481 0.0952
Ours 0.5670 0.1481 0.5790 0.0589 0.5728 0.1326

Table 2: Performance comparison on the benchmark dataset.
The boldface indicates the highest scores.

Model ACL18 CIKM18 BIGDATA22
Accuracy MCC Accuracy MCC Accuracy MCC

TIE + QIE 0.5423 0.0886 0.5551 0.0197 0.5609 0.0898
CL + TIE 0.5177 0.0398 0.5426 0.0312 0.5184 0.0114
CL + QIE 0.5530 0.1029 0.5693 0.0369 0.5702 0.1188
CL + TIE + QIE 0.5670 0.1481 0.5790 0.0589 0.5728 0.1326

Table 3: Ablation Analysis for Contrastive Learning (CL). The
boldface indicated the best result.

applied to both the Quantitative Indicator Encoder-Decoder and
Textual Information Encoder-Decoder. Notably, employing con-
trastive learning solely on quantitative indicators has also yielded
superior results compared to scenarios where it is not applied. How-
ever, it is noteworthy that the model’s performance experiences
a significant decline when only textual information is considered.
This phenomenon can be attributed to several factors. Primarily,
the inherent relationships within quantitative indicators tend to be
more discernible in contrast to textual information. This distinc-
tion arises primarily from the inherent sparsity of content within
tweets. Additionally, quantitative indicators exert a more direct
influence on price fluctuations. To elaborate, the model enriched
with contrastive learning, specifically for the Quantitative Indicator
Encoder-Decoder, has demonstrated a substantial increase of 1 to 2
percentage points in accuracy and 3 to 4 percentage points in MCC.
This underscores the pivotal role played by quantitative informa-
tion in the prediction process, with textual information assuming a
supplementary role.

7 Explainability Demonstration
We have conducted a series of case studies to show how does the
explainability of our model work. Generally, we observe the varia-
tion in the attention weights of quantitative features to be greater
than that of textual features, aligning with the observation that
quantitative features play a crucial role in predictions, with tex-
tual information serving a supportive role. Although the distance
between the anchor and positive instance in the quantitative and
textual feature space is larger than that between the anchor and
negative instance, the visualization of temporal attention weights
reveals that the attention weights of the anchor and positive in-
stances become more correlated after training than the negative
instances. This suggests that the model recognizes the common
features from positive samples and distinct features from negative

Figure 2a: Visualization of Temporal Attention Weights. The
green heatmap denotes the significance of quantitative fea-
tures by different lagging days from T-1 to T-7; The blue
heatmap represents the significance of textual features. The
line charts represent normalized adjusted closing prices in
percentage. The anchor instance C and positive instance MO
are in a downtrend, while the negative instance REX is in an
uptrend on day T.

samples. Meanwhile, it shows that the more recent information of-
ten has a more significant impact on subsequent market movement.

In Fig. 2a, the anchor, positive, and negative instances have
similar historical trends from T-7 to T-1. The anchor pertains to
Citigroup (C) exhibiting a downtrend on trading day T, with Altria
Group (MO) serving as the positive reference with the same down-
ward movement direction, and Rex International Holding (REX)
serving as the negative instance with an upward trend on trading
day T. The Pearson correlation of attention weights of quantitative
features is 0.9754 for anchor and positive instances, and 0.7753
for anchor and negative instances, and that of textual features is
0.9751 for anchor and positive instances and 0.9039 for anchor and
negative instances. In the green heatmap, quantitative indicators
at T-4 (4 lagging days) still impact the current prediction for the
anchor and positive stocks, with a general downward trend as time
progresses, especially noticeable after the peak at T-5. For the quan-
titative indicators of the negative instance REX on T-1, there was
a continuous downward trend in the price return from T-3 to T-1,
which may have an impact on its upward trend on day T. On the
other hand, by viewing the textual feature importance heatmap
(blue), the most significant tweets for the prediction of the anchor
and positive stocks appear at T-1 and T-2, while the tweets on T-
3 and others are comparatively less significant. For example, we
found that C’s tweets mentioned that “top decliners”. For REX, we
also found significant tweets that likely resulted in the rise in its
stock price, e.g., “investment research upgrades”.
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Figure 2b: Visualization of Temporal Attention Weights. The
green heatmap denotes the significance of quantitative fea-
tures by different lagging days from T-1 to T-7; The blue
heatmap represents the significance of textual features. The
line charts represent normalized adjusted closing prices in
percentage. The anchor instance C and positive instance DIS
are in a downtrend, while the negative instance DUK is in an
uptrend on day T.

In Fig. 2b, the Pearson correlation of attention weights of quan-
titative features is 0.9654 for anchor and positive instances and
0.8368 for anchor and negative instances, and that of textual fea-
tures is 0.9957 for anchor and positive instances and 0.9480 for
anchor and negative instances. The anchor Citigroup (C) and the
positive instance the Walt Disney Company (DIS), both exhibiting a
downtrend, demonstrate a heightened emphasis on time periods T-1
and T-2 in relation to quantitative indicators, particularly a sharp
increase in significance from T-3 to T-1 after a downward trend.
Conversely, the negative instance Duke Energy Corporation (DUK)
does not emphasize particular days significantly, underscoring a
more distinctive contrast in quantitative information prioritization.
Notably, the distribution of attention weights to textual information
is nearly commensurate for the anchor and positive instance, with
a shared emphasis on T-1 and T-2, spreading gradually to T-6. In
this context, the model discerns the distinctions in quantitative
indicators and comprehends the nuances between positive and
negative instances. Upon analyzing the quantitative indicators of
the negative instance DUK, a notable plateau period is observed
in the price before subsequently increasing. A meticulous analy-
sis of the textual corpus pertaining to C unveils a shift from an
optimistic view to a pessimistic view from tweets such as “stocks
with greater movement” and “don’t miss the bounce and squeeze”
to “technical alert: nasdaq crosses below 8100” and “make money
even when the price is declining”. This pattern finds resonance in
the discourse surrounding DIS, evident in expressions from tweets
like “nice move so far as it heads out of the consolidation box on

Figure 2c: Visualization of Temporal Attention Weights. The
green heatmap denotes the significance of quantitative fea-
tures by different lagging days from T-1 to T-7; The blue
heatmap represents the significance of textual features. The
line charts represent normalized adjusted closing prices in
percentage. The anchor instance VZ and positive instance
JPM are in a uptrend, while the negative instance NEE is in
an downtrend on day T.

strong volume URL” and “closed up over 7% as the company’s new
streaming service” to “call destruction” and “new alert”.

In Fig. 2c, the correlation of attention weights of quantitative
features is 0.7855 for anchor and positive instances and -0.5198
for anchor and negative instances, and that of textual features is
0.9998 for anchor and positive instances and 0.9994 for anchor
and negative instances. This shows a notable consistency in the
treatment of textual features with respect to temporal attention.
However, a distinctive pattern emerges in the realm of quantitative
information. Specifically, Verizon Communications (VZ), serving
as the anchor, along with the positive instance JPMorgan Chase &
Co (JPM) exhibiting an uptrend, and the negative instance NextEra
Energy (NEE) with a downtrend, demonstrate a heightened focus
on time periods T-1, T-2, and T-3 in textual features. Nevertheless,
both the anchor and positive lines exhibit closely aligned down-
ward trends from T-7 to T-1, with notable rises on T-5 and T-3. In
contrast, the negative instance shows a stable price trend before
T-4, a sharp decrease on T-4, and then follows a similar pattern as
before T-4, evidenced by the heightened attention from T-4 to T-7.
Sentiments regarding T-1 exhibit positivity for anchor instance, as
evidenced by expressions such as “here is the list of stocks. beating
s&amp;p500 nicely.” and the positive instance encompasses phrases
like “buying opportunity keeps knocking” and “outperform”. In
the negative instance highlighting a downtrend, NextEra Energy’s
tweets on T-2 and T-3 revealed that “receives average recommen-
dation”. This collective decrease in stake by multiple brokerages
exerted a detrimental influence on NEE’s price movement.
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8 Conclusion
An explainable framework for stock price movement prediction
that strategically encodes textual information and quantitative in-
dicators is proposed in this study. The “anchor instances” explain
how predictions are made by leveraging positive and negative in-
stances. Unique to our methodology is the adoption of Attentive
LSTM combined with contrastive learning to discern the intrinsic
correlations within stock prices. This is achieved by reducing en-
tropy loss and to minimize the distance between anchor instances
and positive instances with shared identities. Concurrently, our
approach endeavors to increase the distance between the anchor
instance and negative instances, which represent disparate iden-
tities. Lastly, extensive experiments on a benchmark dataset for
stock movement prediction corroborate the improved accuracy and
MCC metrics by using our framework in comparison to several
established methodologies.
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