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A B S T R A C T
Due to the volume conduction effects in the brain, multi-channel electroencephalogram (EEG) contain
redundant information. Thus it is necessary to employ the channel selection method to ascertain vital
channel in the EEG emotion recognition task. Existing studies select channels by the correlation
analysis or the supervised learning. However, such methods are impacted by the inherent limitations
of the datasets, such as the limited numbers and unbalanced distribution, which tend to overfit high-
frequency emotions and underfit low-frequency ones. As a consequence, these selected channels are
highly related to certain emotions, but low related to the overall emotion. Hence, it is an essential
problem in current research to select an effective channel subset using unsupervised learning to fully
improve the universal adaptability in multi-label classification tasks. In this paper, we propose a
channel selection method named emotional lateralization-inspired spatiotemporal neural networks
(ELSTNN) for EEG emotion recognition. In ELSTNN, the neuroscience finding of emotional
lateralization is applied to guide channel selection with unsupervised learning, which could remove
redundant channels. Then, ELSTNN with three convolution layers and one long short-term memory
layer are applied to mine and integrate the deep spatiotemporal feature from the selected EEG signals.
To evaluate the effectiveness of ELSTNN, extensive experiments are carried out on two public
datasets, DEAP and DREAMER. Our proposed method achieves better performance compared with
various state-of-the-art methods, which obtains the mean accuracy 95.67% in valence and 94.97% in
arousal on DEAP, and 93.72% in valence and 93.57% in arousal on DREAMER.

1. Introduction
Electroencephalogram (EEG) is the bioelectrical signal

that is produced by the autonomic nervous system of hu-
mans, which directly reflects the neural activity of the brain
cortex [1, 2]. As EEG has some natural advantages in emo-
tion recognition, e.g. high temporal resolution, reliability,
and objectivity [3], EEG emotion recognition has received
a growing amount of attention in affective brain-computer
interface (BCI) [4, 5, 6]. In BCI, EEG acquisition is the
first step for EEG emotion recognition. Here the channel
is defined as the sensor used to record EEG signal from
the specific location in the cerebral cortex [7]. Recently, the
performance of EEG emotion methods has been improved,
which partly profited from that more and more neuronal
activity is uncovered using an ever-increasing number of
channels [8]. However, continuously increasing channels not
only increase the redundant information caused by inevitable
noise, but also lead to the exponential growth of EEG
representation dimension [9]. Due to the small sample size
of EEG dataset [10], the high-dimensional EEG representa-
tions will easily raise the overfitting in the problem solving.
In addition, the increasing density of channels reduces the
convenience and comfort of BCI, which may be the obstacle
to popularization and daily application [11]. Therefore, these
factors directly induce the urgency of finding a minimum-
number but task-related channels subset.
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To this end, various channel selection methods were
proposed [12], such as information gain [13] and maxi-
mum relevance minimum redundance [14]. According to
the way it is combined with the classifier, these channel
selection methods could be subdivided into three kinds:
filter-based method, iterative-based method, and learning-
based method [15]. The filter-based methods use the sort-
ing technique as the principal criterion of selection, and
the correlation between these features and corresponding
emotional labels will be ranked for the channel selection.
Since this method is separated with the learning process of
classifier, however, it may lead to the selected channel not
being the optimal channel subset [16]. The iterative-based
method solves the disadvantage of filter-based methods to
some extent, which adopts a two-step strategy [17]. The
first step is used to determine the subset of EEG channels
by an algorithm, and the second is employed to evaluate
the performance of subset using a specific classifier. The
iterative-based method method will repeat the above steps to
find the optimal subset [18]. However, the main weakness of
the iterative-based method is the computational cost, which
is higher than most of the filter-based methods [17]. The
learning-based method attempts to use the regularization
method to overcome the shortcoming of the above two
methods, in which Xu et al. [11] preserve the discriminant
information in the orthogonal subspace during the automat-
ically channel selection. Nevertheless, the defect of it is that
many highly related EEG features are preserved and depend
on the label information.
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Figure 1: The main idea of emotional lateralization-based channel cluster selection. According to the 10-20 system, the EEG 2D
representation before and after channel selection is visualized. Firstly, spectral clustering is used for the left and right hemispheres
of each sample. Then, merging all samples is applied to choose the channel that most frequently appeared in different groups.

From the point of neuroscience, one-channel EEG signal
is the linear combination of several underlying source signals
caused by the volume conduction effects of the brain [19].
This fact reveals that the EEG feature extracted from these
physically adjacent channels may be highly related but re-
dundant [20, 21]. Furthermore, it is proved that the re-
dundant EEG features provide less or even no useful extra
information for the task [15, 22], so only one channel of
these channels needs to be reserved. Since most channel
selection methods use the relationship between emotional
label and these channels to rank channels, the ranking of
highly related channels tends to be ordered equally [17]. As a
result, the channel subset obtained by these methods still has
the redundant information. More importantly, as the number
of channel increases, the dimension of EEG representation
increases correspondingly, which further exacerbates the
undesirable consequence mentioned above [23]. Therefore,
it is necessary to further investigate how to remove the highly
related but redundant channels to improve the convenience
and performance of BCI. In addition, the above channel
selection methods depend greatly on abundant emotional
labels. Specifically, the correlation between channel features
and specific emotional labels is used to rank and choose the
key channels [15], or specific emotional labels is employed
to filter the channels in the regularization method during the
supervised learning [11]. Due to the unbalanced distribu-
tion of emotion and the small number of samples in EEG
datasets [10], those methods tend to overfit high-frequency
emotions and underfit low-frequency ones. Consequently,
the richness of these selected channels is limited by par-
ticularly emotional state, and lacks universal adaptability to
overall emotional states. Hence, it is desired to investigate
channel selection method based on unsupervised learning,
which could enhance the universal adaptability of channel
subset in multi-label classification task.

To deal with the above-mentioned issues, we propose a
novel emotional lateralization-inspired spatiotemporal neu-
ral networks (ELSTNN) for channel selection method. The
basic idea of model is to apply the phenomenon of emo-
tional lateralization (the left and right hemispheres respond
differently to emotion stimuli [24, 25]) to guide the re-
moval of highly related but redundant channels, and then
to explore the deep spatiotemporal EEG feature for emotion
recognition. To remove the highly related but redundant
channels, spectral clustering is introduced to cluster channels
located the left and right hemisphere of every samples as
two groups. This way, the channels belonging to the same
group are considered to be highly related with each other
inherently. Then for the hemispheres, the clustering results
of all samples are merged to choose the channel that would
appear frequently in different groups. The main idea of this
process is shown in Fig. 1.

To get rid of the limitations of emotional labels, EL-
STNN separates the channel selection process from the
classifier and adopts unsupervised learning for the channel
selection. This way, the redundant channels are filtered out
without the emotional label information. To improve the
performance of classifier, the 2D EEG representation is
converted to 3D representation with spatiotemporal informa-
tion. After that, ELSTNN is used for EEG emotion recog-
nition with three convolutional layers and one long short-
term memory (LSTM) layer. To capture the emotional speci-
ficity and contribution at different times, three convolutional
layers are applied to mine the temporal and spatial features
of emotion per second. Then, one LSTM layer is used to
integrate these temporal and spatial features for exploiting
the continuity of emotion in time. Extensive experiments
are carried out on DEAP [26] and DREAMER [27], where
the label is set as high/low valence (HV/LV) and high/low
arousal (HA/LA).
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The experimental results show that ELSTNN achieve the
mean accuracy 95.67% and 94.97% in valence and arousal on
DEAP, while 93.72% and 93.57% in valence and arousal on
DREAMER. Compared with various state-of-the-art meth-
ods, our proposed method is effective and superior. To sum
up, the contribution of this paper can be summarized as
follows.

1. We design ELSTNN for EEG emotion recognition,
where the continuity and specificity of emotion in time
are considered. ELSTNN uses three convolutional
layers to explore the deep spatiotemporal information
of one second with the goal of learning the temporal
specificity. And one LSTM layer of ELSTNN is used
to integrate all deep feature to mine the continuity
information of emotion in time.

2. In the process of experiment, the effect of time on
channel stability is considered, where various of
different-length time windows are applied to conduct
experiments to evaluate the time stability of selected
channels. The channels selected by ELSTNN have
good time stability, which may provide a reference for
the design of portable BCI for long-term emotional
monitoring.

3. In this paper, the emotional lateralization finding is
used to achieve the channel selection combining with
the unsupervised learning. Though visualized analy-
sis, the 3D EEG representation formed by the selected
channel can preserve the information about emotional
lateralization. To our best knowledge, we are the first
to take advantage of the combination of neuroscience
phenomena and unsupervised learning for channel
selection method in EEG emotion recognition task.

The remainder of this paper is structured as follows:
Section 2 is the related work; the detailed operation of
ELSTNN is presented in Section 3; in Section 4, the detailed
description about dataset, model implementations, experi-
mental results, and visual analysis are given; finally, the
conclusion of this paper is shown in Section 5.

2. Related Work
2.1. Deep learning for EEG Emotion recognition

The goal of BCI is to render computers the power of
recognizing, understanding, and representing human emo-
tion for the concordant human-machine interaction [28]. As
the primary link of this goal, emotion recognition can be
realized via the objective methods (physiological signals)
and the subjective methods (face, voice and body action) [26,
29, 30]. Comparing with other medium, EEG is receiving
increasing attention in BCI due to the advantages of ob-
jectivity, reliability and uncontrollability by human will [3,
31]. Most EEG emotion recognition researches follow such
paradigm: from EEG acquisition and preprocessing, feature
extraction, to classifier design. In the early stage, various
handcraft features constructed by extracting emotion-related
information from multi-channel EEG signals were the focus

of research [32]. Petrantonakis et al. [33] proposed a higher
order crossings method based on the time domain to capture
the oscillatory pattern of EEG. Duan et al. [34] proposed
a differential entropy feature to explore energy distribution
in different frequency bands, which is still widely used at
present [35]. Liu et al. [36] applied the empirical mode
decomposition and multiple feature extraction methods to
explore the EEG representation.

However, the construction process of these handcraft
features is always uncertain to some extent and dependent
on human experience, which leads to the loss of emotional
information of EEG [37]. With the success of deep learning
in other fields [38, 39, 40, 41, 42, 43], automatic feature ex-
traction and classification using deep learning has gradually
become the mainstream method of EEG emotion recogni-
tion. Zhang et al. [44] use LSTM to explore spatiotemporal
information with the sequence of different channel traversal.
Song et al. [45] proposed a method based on graph convo-
lutional network (GNN) to learn the functional connection
of all channels. Smith et al. [46] used CNN with different
kernels to automatically extract time-frequency feature.

Liang et al. [47] proposed an EEG code method based on
autoencoder to learn the generalized representation. Among
various deep learning-based methods for EEG emotion
recognition, it has become the major trend to design the
model according to the characteristics of EEG signals to
explore the temporal and spatial feature.
2.2. EEG Channel selection

Due to the volume conduction effects of the brain [19],
each signal of multi-channel EEG is the result of linear
combination of several underlying source signals [48]. As
a result, the EEG features extracted from these physically
adjacent channels are highly related but redundant [22]. It
has been proven that these redundant features can’t provide
useful information in classification task [15]. And the EEG
dimension increases with the number of channels, which can
easily lead to the overfitting problem and poor performance
of classifier. In addition, the daily application of BCI de-
pends on the convenience and comfort of wearable devices,
but the dense channels hinder its popularization [15].

Hence, researchers pay increasing attention on exploring
the key channel related with task to implement the goal of
BCI in the view of theoretical study and practical applica-
tion [15]. According to the way combining with classifier,
the channel selection methods could be summarized into
three kinds: filter-based method, iterative-based method, and
learning-based method [49]. For the filter-based method, the
contribution of channel in emotion recognition would be
ranked according to certain criteria, the channel is selected
according to the ranking. Chen et al. [13] apply the gender-
related correlations between EEG channel features and
specific emotional states using information gain method
for channel selection. Zabihi et al. [50] use the conditional
mutual information maximization method and multi-domain
features to choose channel.
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Figure 2: The whole framework of ELSTNN. The first step is the data preprocessing, where the effect of calm state is removed
to ensure the pure of EEG. The second step is the channel selection using ELCCS to reserve the internal-external differences
between hemispheres. The last step is to build an emotion recognition model, in which the shallow and deep information of EEG
signals is used for emotion recognition.

However, these methods ignore the learning process of
classifier, which may make it difficult to achieve optimal
channel subset. In order to overcome the above shortcom-
ing, iterative-based methods use an iterative way to choose
channel. Channel subsets are firstly generated randomly, and
then the subset performance is evaluated by classifier [17].
Handiru et al. [51] search the most relevant channels using an
iterative method by exploiting the functional correlation of
channels. Nakisa et al. [52] automatically select the channels
by the evolutionary computation. Nevertheless, the calcula-
tion cost of these methods is always more expensive than
filter-based method [17].

As an alternative to solving the shortcoming of afore-
mentioned methods, learning-based methods attempt to se-
lect channels during model optimization [15]. Tao et al. [53]
introduced the attention mechanisms to automatically select
the critical channels. Xu et al. [11] preserved more dis-
criminative information in channel subset using orthogonal
regression. However, the specific emotion information is
applied to channel selection among these methods, which
may limit the comprehensiveness and the possibility of EEG
representation. Therefore, it should be further investigated to
adopt unsupervised learning method for exploring the EEG
channel subset with powerful generalization ability.

3. Method
In this section, ELSTNN is described in detail from

EEG preprocessing to channel selection, and finally to model
design. The whole framework is shown in Fig. 2. In the
first part, the emotional calm state is removed to ensure that
EEG is pure under the emotional stimulation. The key point
of second part is how spectral clustering is combined with
channel selection to model emotional lateralization. For the
last part, the model is designed by integrating the spatiotem-
poral emotional information for emotion recognition.
3.1. Data Preprocessing

During the process of EEG data acquisition, the baseline
signal B is collected as EEG signals collected without any
form of stimulation, which represents the calm state of a
subject. For the sake of description, the EEG signal collected
during emotional stimulation is marked as O. It has been
proven that removing EEG signals from the calm state is nec-
essary to improve the emotion recognition performance [54].
The operation of removing the effect of calm state is shown
in Fig. 3 and can be expressed by the following mathematical
formula.

𝐸𝑖 = 𝑂𝑖 − 𝑚(𝐵) (1)
where 𝑚(⋅) denotes the mean operation to obtain the mean
value of baseline signal, 𝑂𝑖 denotes the stimulated EEG
segment equal in length to the mean baseline signal, and 𝐸𝑖
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Figure 3: The operation of EEG preprocessing. Firstly, the
mean of baseline signal is calculated to represent the calm
state. Then, the EEG signals recorded under stimulation minus
the mean of baseline signal.

denotes the EEG segment removing the calm state. There-
fore, the EEG change value under emotional stimulation is
employed for the channel selection and the input of neural
network.
3.2. Emotional Lateralization-based Channel

Cluster Selection
Due to the brain volume conduction effects [19], there is

a large amount of highly related but redundant information
in channel features extracted from physically similar EEG
channels [22, 55]. However, the redundant information of
EEG feature not only does not have the ability to improve
the emotion recognition performance [56], but also tends to
cause overfitting of classifiers due to the small EEG dataset
and the high dimensional EEG vector [10]. Hence, the redun-
dant information of EEG feature should be removed. In this
paper, we propose a method called emotional lateralization-
based channel cluster selection (ELCCS), and its goal is to
remove the redundant channel using spectral clustering to
model the emotional lateralization phenomenon. In brief, all
channels are first roughly divided into left and right subsets
according to the channel distribution of the International
10–20 System. Then the spectral clustering is introduced
for every subset to cluster channels into different groups,
in which the channels of one group are highly related. In
the end, summary all training samples and select channels
which appear in different groups. The main idea of ELCCS
can be represented using Fig. 4, and the specific operation of
ELCCS is described as follows.

Suppose that one EEG sample of subject in dataset is
marked as 𝑆𝑖 = [𝑋𝑖, 𝑌𝑖], where 𝑋𝑖 and 𝑌𝑖 denote the i-th
preprocessed EEG signal and the corresponding emotional
label. Furthermore, 𝑋𝑖 contains multi-channel EEG signals,
which is marked as 𝑋𝑖 = [𝑐1, 𝑐2, ⋅ ⋅ ⋅, 𝑐𝑛] ∈ ℝ𝑛×𝑝. n and
p denote the number of channels and the sampling points.

Due to the frequency-domain analysis reflecting activity
differences among multiple brain regions, the spectral power
analysis is firstly carried out using the feature extracted
from 𝑋𝑖 in frequency domain. Among a large number of
spectral power analysis methods, it has been proven the ef-
fectiveness and excellence of differential entropy (DE) [34]
in the emotion recognition task. Therefore, the handcraft
feature is accomplished by applying DE for 𝑋𝑖, which can
be implemented by the following equation.

𝐷𝐸 = −∫
∞
−∞(

1
√

2𝜋𝜎2
exp

(

(𝑡 − 𝜇)2

2𝜎2

)

) log( 1
√

2𝜋𝜎2

× exp
(

(𝑡 − 𝜇)2

2𝜎2

)

)𝑑𝑡

= 1
2
log 2𝜋𝑒𝜎2

(2)

where t denotes the EEG signal. Through the above formula,
the EEG 𝑋𝑖 is translated into the handcraft feature 𝐻𝑖 =
[𝑐ℎ1 , 𝑐

ℎ
2 , ⋅ ⋅ ⋅, 𝑐

ℎ
𝑛 ] ∈ ℝ𝑐×𝑏, where n and b denote the number of

channels and bands. And 𝑐ℎ𝑖 denotes the DE feature of the i-
th channel. The frequency band is generally divided into five
sub-bands: 𝛿 (1–3 Hz), 𝜃 (4–7 Hz), 𝛼 (8–14 Hz), 𝛽 (14–30
Hz), and 𝛾 (31–45 Hz). These sub-bands play different roles
in the affective system of brain and contribute to emotion in
different degrees [31]. However, the 𝛿 band is more related
with the unconscious of deep sleep [31, 36]. Hence, the
frequency information of 𝜃, 𝛼, 𝛽 and 𝛾 bands are chosen in
our method, which means b is equal to 4. After that, channels
are roughly divided into subsets of channels in the left and
right hemispheres according to the relative physical location
of channels of international 10-20 system, which are marked
as 𝐻 𝑙

𝑖 and 𝐻𝑟
𝑖 .

After the above operation, the spectral clustering is ap-
plied for every frequency band of each subset to bring
together highly related channels using the handcraft feature
of left and right hemispheres. The goal of spectral clustering
is to split a complete spectrum G into different separate
subgraphs {𝐴1, 𝐴2, ⋅ ⋅ ⋅, 𝐴𝑘} with two conditions.

The first condition is to achieve the lowest possible
weighted sum of the edges between different subgraphs, and
the second is to achieve the highest possible weighted sum of
the edges within the subgraphs. In our task, 𝐻 𝑙

𝑖 and 𝐻𝑟
𝑖 are

considered as complete spectrum G. Firstly, the construction
of similar graphs is accomplished by the fully connected
method based on Gaussian-based similarity function, which
is a common approach in different spectral clustering appli-
cations. The Gaussian-based similarity function, measuring
the similarity between channels is defined as follows.

𝑠(𝑐ℎ𝑖 , 𝑐
ℎ
𝑗 ) = 𝑒−

‖

‖

‖

‖

𝑐ℎ𝑖 −𝑐
ℎ
𝑗
‖

‖

‖

‖

2

2𝜎2 (3)
where 𝑠(𝑐ℎ𝑖 , 𝑐ℎ𝑗 )means the similarity between the i-th and j-th
channel. The similarity between two pairs of all channels is
calculated using (3), and the similarity matrix is constructed.
Then, the Laplace matrix of the graph is calculated as
follows.

𝐿 = 𝐷 −𝑊 (4)
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Figure 4: The main idea of emotional lateralization-based channel cluster selection. In this method, a one-second long window
is used to slice the EEG of whole trial. Then the differential entropy (DE) of these segments is calculated in four bands. Next,
the spectral clustering is introduced for each band of each segment to obtain the clustering of channels in the current segment.
The above operations correspond to the top half of the figure. Last, by comparing the channel clustering of all the fragments,
the channels appearing in different clusters are selected, which corresponds to the lower part of the figure

where W denotes the similarity matrix, and D denotes the
degree matrix of G, in which {𝑑1, 𝑑2, ⋅ ⋅ ⋅, 𝑑𝑛}is the elements
of diagonal matrix D. These elements are referenced as
follows.

𝑑𝑖 =
𝑛
∑

𝑗=1
𝑠𝑖𝑗 (5)

where 𝑑𝑖 denotes the sum of similarity between the i-th
channel and other channels. In the end, the normalized cut
(Ncut) is used to cut G into different separate subgraphs,
which is proposed by Shi et al. [57]. The specific operation
of Ncut can be described as an optimization problem, which
is shown as follows.

min𝑁𝑐𝑢𝑡(𝐴1, 𝐴2, ⋅ ⋅ ⋅, 𝐴𝑘) =
1
2

𝑘
∑

𝑖=1

𝑊 (𝐴𝑖, 𝐴𝑖)
𝑣𝑜𝑙(𝐴𝑖)

𝑠.𝑡.𝐴𝑖 = {𝑐𝑟||𝑐𝑟 ∈ 𝑉𝑎𝑛𝑑 𝑐𝑟 ∉ 𝐴𝑖}

(6)

where 𝑣𝑜𝑙(𝐴𝑖) denotes the sum of similarity of all channels
in𝐴𝑖, and𝑊 (𝐴𝑖, 𝐴𝑖) denotes the tangent weight between the
subset and the remaining subset, which is shown as follows.

𝑊 (𝐴𝑖, 𝐴𝑖) =
∑

𝑖∈𝐴𝑖,𝑗∈𝐴𝑖

𝑠𝑖𝑗 (7)

Since the optimization formula (6) is difficult to calcu-
late, therefore, the indicator vectorℎ𝑗 ∈

{

ℎ1, ℎ2, ⋅ ⋅ ⋅, ℎ𝑛
}

, 𝑗 =

1, 2, ⋅⋅ ⋅, 𝑛 is introduced to simplify the optimization problem
using the Laplace matrix of graph 𝐿. Every ℎ𝑗 has 𝑛
dimensions that are equal to the number of channels in every
channel subset. The definition of ℎ𝑗 is as follows.

ℎ𝑖𝑗 =

{ 0 , 𝑐𝑖 ∉ 𝐴𝑗
1

√

𝑣𝑜𝑙(𝐴𝑗 )
, 𝑐𝑖 ∈ 𝐴𝑗

(8)

Then for ℎ𝑇𝑖 𝐿ℎ𝑖, the following identity transformation
exists:
ℎ𝑇𝑖 𝐿ℎ𝑖 =

1
2
∑

𝑚=1

∑

𝑛=1
𝑠𝑚𝑛(ℎ𝑖𝑚 − ℎ𝑖𝑛)

2

= 1
2
(

∑

𝑚∈𝐴𝑖,𝑛∉𝐴𝑖

𝑠𝑚𝑛(
1

√

𝑣𝑜𝑙(𝐴𝑗)
− 0)

2
+

∑

𝑚∉𝐴𝑖,𝑛∈𝐴𝑖

𝑠𝑚𝑛(0 −
1

√

𝑣𝑜𝑙(𝐴𝑗)
)
2
)

= 1
2
(

∑

𝑚∈𝐴𝑖,𝑛∉𝐴𝑖

𝑠𝑚𝑛
1

𝑣𝑜𝑙
(

𝐴𝑖
)+

∑

𝑚∉𝐴𝑖,𝑛∈𝐴𝑖

𝑠𝑚𝑛
1

𝑣𝑜𝑙
(

𝐴𝑖
) )

= 1
2
(

∑

𝑚∈𝐴𝑖,𝑛∉𝐴𝑖

𝑊 (𝐴𝑖, 𝐴𝑖)
𝑣𝑜𝑙

(

𝐴𝑖
) +

∑

𝑚∉𝐴𝑖,𝑛∈𝐴𝑖

𝑊 (𝐴𝑖, 𝐴𝑖)
𝑣𝑜𝑙

(

𝐴𝑖
) )

=
𝑘
∑

𝑖=1

𝑊 (𝐴𝑖, 𝐴𝑖)
𝑣𝑜𝑙(𝐴𝑖)

(9)
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Therefore, the optimization problem is transformed as fol-
lowing.

min𝑁𝑐𝑢𝑡(𝐴1, 𝐴2, ⋅ ⋅ ⋅, 𝐴𝑘)

=
𝑛
∑

𝑖=1
ℎ𝑇𝑖 𝐿ℎ𝑖 =

𝑛
∑

𝑖=1
(𝐻𝑇𝐿𝐻)𝑖𝑖 = 𝑡𝑟(𝐻𝑇𝐿𝐻)

𝑠.𝑡.𝐻𝑇𝐷𝐻 = 𝐼

(10)

Now, the indicator matrix is transformed as 𝐻 =
𝐷−1∕2𝐹 . Due to 𝐻𝑇𝐿𝐻 = 𝐹 𝑇𝐷−1∕2𝐿𝐷−1∕2𝐹 ,𝐻𝑇𝐷𝐻 =
𝐹 𝑇𝐹 = 𝐼 . The optimization problem will be changed as
follows.

min𝑁𝑐𝑢𝑡(𝐴1, 𝐴2, ⋅ ⋅ ⋅, 𝐴𝑘) = 𝑡𝑟(𝐻𝑇𝐿𝐻)

= 𝑡𝑟(𝐹 𝑇𝐷−1∕2𝐿𝐷−1∕2𝐹 )

𝑠.𝑡.𝐹 𝑇𝐹 = 𝐼

(11)

After the above operation, K-means is applied to feature
matrix 𝐹 to obtain the final clustering result of left and
right channel subsets of one sample. The selected channel
is referenced as the channels that appear in different clus-
ters in various emotional samples. In this method, spectral
clustering is applied to select the important channels in each
frequency band from the set of the left and right hemispheric
channels. During the processing, the highly related channels
of hemispheres are filtered down to just one. Furthermore,
the internal and external differences between the left and
right hemispheres are modelled using these channels to
construct the discriminative EEG features with small dimen-
sions.
3.3. Spatiotemporal Neural Network(STNN)

In ELSTNN, we propose a deep learning-based model
called spatiotemporal neural network (STNN) to mine the
temporal stability of the selected channel, in which the tem-
poral and spatial information of the emotional lateralization
is extracted by STNN for EEG emotion recognition. The
framework of STNN is shown in Fig. 2. Specifically, the
CNN layers are used to extract the spatiotemporal informa-
tion of emotional lateralization within one second. Then the
LSTM layer is employed to mine the deep spatiotemporal
information of emotional lateralization.

In the end, all shallow and deep spatiotemporal infor-
mation is applied to EEG emotion recognition. The specific
operation is described below. In previous studies of EEG
emotion recognition, the LSTM and CNN layers are applied
to structure the neural network to extract the spatiotemporal
information within one second, respectively. Li et al. [58] use
different channel traversal methods combined with LSTM
to ensure the completeness of spatial information among
channels for emotion recognition. He et al. [59] construct
a 2D EEG matrix based on the relative physical position of
the channel of the EEG acquisition device and use CNN for
emotion recognition. However, RNN always requires that the
EEG channels of samples to have a chain-like structure to
extract the deep feature. In the International 10-20 system

Figure 5: The international 10-20 system. It represents the
electrical channel layout of the brain, and is used to capture
multi-channels EEG signals at specific locations in the brain.

that is shown in Fig. 5, there are several physically adjacent
channels around each channel. As a result, the chain-like
structure of channels is relatively difficult to represent the
spatial information among channels. Therefore, the CNN
layers are chosen to extract the spatiotemporal information
within one second from EEG. One second of chain-like EEG
𝑋 ∈ ℝ𝑐𝑠×𝑝 is required to transform into the 2D EEG matrix
𝑋 ∈ ℝ𝑝×𝑟×𝑐 according to the channel layout of international
10-20 system, where 𝑐𝑠 denotes the number of the selected
channel using ELCCS. r and c denote the length and width
of the channel layout, which corresponding to the maximum
number of channels in the vertical and horizontal directions
in the acquisition device. The transformation matrix of the
above operation relating to 32-channels 10-20 system in
DEAP dataset can be represented by the following mathe-
matical formula.

𝑓𝑡 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 0 0 𝐹𝑝1 0 𝐹𝑝2 0 0 0
0 0 0 𝐴𝐹3 0 𝐴𝐹4 0 0 0
𝐹7 0 𝐹3 0 𝐹𝑧 0 𝐹4 0 𝐹8
0 𝐹𝐶5 0 𝐹𝐶1 0 𝐹𝐶2 0 𝐹𝐶6 0
𝑇 7 0 𝐶3 0 𝐶𝑍 0 𝐶4 0 𝑇 8
0 𝐶𝑃 5 0 𝐶𝑃 1 0 𝐶𝑃 2 0 𝐶𝑃 6 0
𝑃7 0 𝑃3 0 𝑃𝑧 0 𝑃4 0 𝑃8
0 0 0 𝑃𝑂3 0 𝑃𝑂4 0 0 0
0 0 0 𝑂1 𝑂𝑧 𝑂2 0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(12)
where the zero elements denote the blank position of col-

lecting EEG devices where the EEG signals could not be
collected. The non-zero elements denote the channels placed
on the human scalp. After ELCCS, the value of unselected
channels is also set to 0 to ensure the validity of channel
selection. After that, Z-score is used to remove the effect
of the values by normalizing each non-zero elements in the
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matrix, which is shown as follows.

𝑧𝑖 =
𝑓 𝑖 − 𝑓
𝜎𝑓

(13)

where 𝑓 and 𝜎𝑓 denote the mean value and standard devia-
tion of all selected elements, respectively.

After obtaining the 2D EEG representation of one sec-
ond, the EEG sample of one subject 𝑋 ∈ ℝ𝑠×𝑙×𝑝×𝑟×𝑐 is
formed with the observation period [𝑡, 𝑡 + 1, ⋅ ⋅ ⋅, 𝑡 + 𝑙],
where s, l and p denote the total number of samples, the
duration of observation period, and the sampling points.
Then, the spatiotemporal information of each second during
the observation period is extracted using three consecutive
CNN layers, as shown in Fig. 2. These layers have the same
setup, except that the first one has 32 filters, the second and
third have 64 and 128 filters. And in computer vision, the
3×3 kernel is often chosen to extract information. However,
the 4×4 kernel is chosen for three CNN because it can learn
more correlation among more channels than the 3×3 kernel.
And the set of padding models is the same to reserve the edge
information of each transformation matrix. The activation
function is relu. In addition, the batch normalization is used
after each CNN to prevent overfitting and speed up the
training process. After then, the full connection layer is used
to integrate and compress the spatiotemporal information of
every second.

Let 𝑋𝑖 = [𝑥1, 𝑥2, ⋅ ⋅ ⋅, 𝑥𝑙] ∈ ℝ𝑙×𝑝×𝑟×𝑐 , 𝑥𝑗 ∈ ℝ𝑝×𝑟×𝑐 , 𝑖 =
1, 2, ⋅ ⋅ ⋅, 𝑠, 𝑗 = 1, 2, ⋅ ⋅ ⋅, 𝑙 denote one of EEG samples. The
spatiotemporal information of every second after the above
operation can be formulated as follows.
ℎ𝑖 = (𝑥𝑖) = 𝑊2⋅(𝑅𝑒𝑙𝑢(𝐶𝑜𝑛𝑣2𝐷(𝑥𝑖,𝑊1)))+𝑏1, 𝑖 = 1, 2, ⋅⋅⋅, 𝑙

(14)
where (⋅) denotes the operation of using three CNN and
one FC to obtain the information. 𝑤1, 𝑤2, and 𝑏1 denote
the parameters that need to be learned through back prop-
agation. And the representation of one EEG sample can be
represented as follows.

𝐻𝑖 = (𝑋𝑖) = [ℎ1, ℎ2, ⋅ ⋅ ⋅, ℎ𝑖] ∈ ℝ𝑙×𝑠, 𝑖 = 1, 2, ⋅ ⋅ ⋅, 𝑙 (15)
where s denotes the number of hidden units of FC, which is
set as 128. After that, LSTM is introduced to extract the deep
spatiotemporal information from 𝐻𝑖 related to emotional
accumulation with the advantage of LSTM in extracting se-
quence data. Here, the output of above operation is set as the
last hidden units of LSTM, which is often considered as the
emotional state at the current moment. Then, the final EEG
emotional representation vector is formed by concatenating
the shallow and deep spatiotemporal information, 𝐻𝑖 and
(𝐻𝑖), where (⋅) denotes the LSTM operation. Last, FC
with softmax activation function is employed to output the
emotion label, which can be described as follows.

𝑡ℎ𝑒𝑓𝑖𝑛𝑎𝑙𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛 ∶ 𝑅 =
[

ℎ1, ℎ2, ⋅ ⋅ ⋅, ℎ𝑖,(𝐻𝑖)
]

(16)

Table 1
The detail of emotion recognition datasets. Here, V, A, D,
L and F denote valence, arousal, dominance, liking, and
familiarity.

Attribute DEAP DREAMER
Audio-visual stimuli

Videos 40 18
Duration 60 s 65 - 393s

Experiment information
Subjects 16 m, 16 f 14 m, 11 f
Age 19 – 37 22 – 33
Rating scales V, A, D, L, K V, A, D
Rating value 1 - 9 1 - 5

EEG format for each subject
Baseline 40 * 32 * 384 18 * 14 * 7808
Data 40 * 32 * 7680 23 * 18 * 25472
Label 40 * 5 (V, A, D, L, K) 40 * 3 (V, A, D)

𝑒𝑚𝑜𝑡𝑖𝑜𝑛𝑙𝑎𝑏𝑒𝑙 ∶ 𝑝 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑊3 ⋅ 𝑅 + 𝑏2) (17)
where R denotes the final EEG representation vector, and p
denotes the probability of predicted label. During training,
the cross entropy is set as the loss function and is defined as
follows.

𝐿 = 1
𝑠

𝑠
∑

𝑖=1
−[𝑦𝑖 ⋅ 𝑙𝑜𝑔(𝑝𝑖) + (1 − 𝑦𝑖)𝑙𝑜𝑔(1 − 𝑝𝑖)] (18)

where 𝑦𝑖 denotes the ground truth label. All weighting
parameters are learned by backpropagation. In this method,
ELSTNN is to mine spatiotemporal features among the
selected channel within one second from the 2D EEG feature
matrix, and then use LSTM to extract emotional information
accumulated over time. These shallow and deep information
extracted by ELSTNN is integrated for emotion recognition.

4. Experiments
In this section, the experiments will be described from

four aspects: the dataset of EEG emotion recognition, the
implementation of ELSTNN, the experimental results, and
the analysis of ELSTNN.
4.1. Datasets Introduction
4.1.1. DEAP Dataset

In EEG emotion recognition task, DEAP is widely used
as a benchmark dataset [26]. There are 32 healthy subjects
joining the experiment, half of whom are males. Every
subject is required to watch 40 music videos, while a variety
of physiological data of their are recorded, including 32-
channel EEG signals. Before the video is played, the first
three seconds of data are collected as the physiological state
in the calm state. When the video is over, their emotional
state is evaluated by themselves in five dimensions on a
scale of 1 to 9. There is a short break to restore the calm
emotional state. For 32-channel EEG signals, a sampling rate
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Table 2
The subject-dependent experimental results of DEAP using ELSTNN and the strategy of 5-fold cross-validation. Here, the channels
containing F3, C3, P7, PO3, Fp2, T8, CP6 and CP2 are used to construct 2D matrix EEG representation.

Accuracy of Valence (%) Accuracy of Arousal (%)
subject 3 second 4 second 5 second 3 second 4 second 5 second

1 98.62 98.00 98.95 97.75 97.66 96.66
2 94.50 94.33 93.12 92.49 93.99 92.70
3 97.99 98.16 98.12 96.62 96.66 97.08
4 93.12 91.99 90.95 93.12 93.49 92.91
5 96.25 96.16 96.87 97.00 98.33 97.91
6 89.62 87.99 90.91 95.00 94.33 94.58
7 93.25 93.83 92.91 98.12 95.16 94.37
8 96.12 97.16 96.25 98.87 98.66 97.70
9 96.49 95.99 95.00 95.75 93.83 94.70
10 98.04 98.50 98.12 97.75 97.83 97.08
11 89.87 89.50 89.79 90.25 88.33 89.16
12 95.24 95.49 94.58 89.62 88.69 89.72
13 90.49 91.33 90.83 86.87 85.49 87.33
14 92.50 93.16 91.87 93.99 92.83 93.00
15 97.12 98.16 96.25 98.75 98.83 98.33
16 97.74 98.33 97.49 98.75 98.33 98.75
17 91.49 91.16 90.83 88.37 89.50 88.54
18 96.49 94.66 93.33 94.49 96.33 95.83
19 97.99 96.83 97.91 94.75 94.99 94.33
20 98.49 98.16 98.12 96.87 94.16 91.45
21 97.62 96.16 97.08 90.62 91.82 91.25
22 97.74 98.83 98.33 97.62 97.99 98.12
23 96.25 96.66 97.08 97.25 96.66 98.54
24 99.12 97.16 98.12 94.87 95.33 94.62
25 94.00 95.99 93.33 90.74 94.16 91.25
26 96.37 95.83 95.20 94.74 95.33 95.08
27 97.99 96.66 96.24 97.12 97.83 97.91
28 94.49 93.66 92.50 93.87 93.99 93.54
29 98.99 98.99 98.75 98.05 97.66 98.12
30 98.37 96.33 96.04 98.37 98.83 98.12
31 93.12 93.99 94.79 95.25 95.49 94.58
32 95.99 97.33 96.45 95.37 95.49 92.91

Mean 95.67 95.52 95.19 94.97 94.94 94.57

of 512 Hz is first used to collect these signals, followed by
the sampling rate of 128Hz. To ensure the purity of EEG
and the maximum correlation with the emotion, the EOG
is removed and a bandpass frequency filter from 4.0–45.0
bands is used, because the neuroscience has discovered that
the information of this band is related to the emotional
activity. And more details of DEAP can be found in Ta-
ble 1. However, in this paper, we refer to the emotional
state as Russel’s emotion definition [60], which is a two
dimensions model assessing pleasure and activation. One is
from unpleasure to pleasure called valence, while the other
is from mild to intense called arousal. Hence, the five is
set as the threshold for these two dimensions [61, 62], the
low/high valence/arousal label (LV/HV, LA/HA) is defined
as emotional label.
4.1.2. DREAMER Dataset

In DREAMER dataset [27], 14 males and 9 females are
invited to participate in the emotion experiments. Each of

them is asked to watch 18 film clips. As they watch each
of clip, their ECG and 14-channel EEG are collected for
emotion recognition. Before and after the film clip is played,
the subject is asked to watch the same neutral film clip to
return the neutral emotional state. During the above period,
the multi-channel EEG signals are collected to represent
the calm state. At the end of each clips, they evaluate their
emotional state in three dimensions (arousal, valence and
dominance) on a scale from 1 to 5. And EEG signals are
recorded at the 128Hz sampling rate. And ECG is recorded at
256Hz sampling rate. The more detail of DREAMER is also
shown in Table. 1. However, we use emotional definition
proposed by Russel [60] as the final emotion definition
(LV/HV, LA/HA). The threshold for these dimensions is set
at 2.5 [63, 62].
4.2. Implementation

In process of data pre-processing, the EEG signal repre-
senting the calm emotional state is obtained by calculating
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Table 3
In DEAP, the comparison results between ELSTNN and other
works.

Method Valence (%) Arousal (%)
Luo et al [64] 78.17 73.89
Kim et al. [65] 78.72 79.03
Zheng et al. [66] 84.75 82.16
Liu et al. [36] 86.46 84.90
Piho et al. [67] 89.61 89.84
Yin et al [68] 90.45 90.60
Yang et al [54] 90.80 91.03
Ma et al. [69] 92.30 92.87
Tao et al. [53] 93.72 93.38
Huang et al. [37] 94.38 94.72
Xu et al. [70] 94.56 94.81
ELSTNN 95.67 94.97

the mean EEG signals in s seconds with a 1 second long
non-overlapping sliding window. For DEAP, s is equal to
the corresponding with the length of baseline signals. Then
the EEG signals under stimulation minus the EEG signal
representing the calm state using the sliding windows with
no overlap. The above operation has been proven to improve
emotional recognition performance [54]. Then, for the left
and right hemispheric channel sets, ELSTNN is applied to
channel selection by using the DE representation of pro-
cessed EEG signal of each band. In ELSTNN, the redundant
channels are eliminated to only one in each band by spectral
clustering and all of the subject’s train samples, while the
representation of the selected channel is more emotionally
discriminating. Since four emotion-related frequency bands
are chosen and there are left and right channel sets, 8
channels are finally selected: F3, C3, P7, PO3, Fp2, T8,
CP6, and CP2. Next, the 1D EEG signals are transformed
into a 2D matrix representation to better capture the spatial
relationship among EEG channels. Here, the effect of time
length is considered on the temporal stability of the selected
channels. Hence, the EEG signals are sliced using a non-
overlapping sliding window of length s. Hence, the final
EEG samples of one subject in DEAP can be marked as
𝑋 ∈ ℝ𝑛×𝑠×𝑝×𝑟×𝑐 , where r and c denote the length and width
of a 2D representation, respectively. s and p denote the length
of time and the sampling points of one second. And n denotes
the number of samples. In DEAP, r, c and p are equal to 9,
9, and 128. And in the experiment, s is set to different values
to mine the time stability of the channel, 3, 4, and 5. Hence,
the value of n is changed with s, which is equal to 40 (trail)
× 60 (length of one trail) / s.

For DREAMER, the same pre-processing operation is
carried out, in which s is the last 3 seconds of the neutral
film clip to ensure subject was in the calm state before
stimulation. For a fair and effective comparison with other
methods, the stimulus EEG signals of last 60 seconds of
film clip are used for emotional analysis. Then ELSTNN is
applied for channel selection using DE extracted from the
channel of each hemisphere. Since four frequency bands are
chosen, 8 channels are F3, FC5, T7, P7, T8, FC6, F4, and

F8. Next, the 1D EEG signal is translated into a 2D matrix
representation. Hence, the final EEG samples of one subject
in DREAMER could be marked as 𝑋 ∈ ℝ𝑛×𝑠×𝑝×𝑟×𝑐 , in
which r, c, and p are equal to 7, 7, and 128. And the value
of s is set as 3, 4, and 5 to keep it the consistent with DEAP.
Hence, n is equal to 18 (trail) × 60 (length of one trail) / s.
4.3. The Experimental Results

In this paper, we focus on the subject-dependent exper-
iments, where the data coming from one subject is applied
to train and test model. All the experiments use the 5-fold
cross-validation as the experimental result to evaluate the
performance of ELSTNN in LV/LH or LA/HA task, where
the Adawn optimizer was applied to train all models with
100 epoch, 64 batch size, and 1e-4 learning rate.

The experimental results carried out in DEAP are shown
in Table 2, which shows that for two different emotional
states, our proposed method achieves good performance in
different time windows. It also indicates the effectiveness of
ELSTNN in long-time emotion recognition, and the selected
channel has the time stability. Furthermore, to verify the
superiority of ELSTNN in DEAP, various state-of-the-art
methods [65, 64, 36, 54, 69, 68, 67, 53, 70, 66] are applied
to compare with our proposed method. Luo et al. [64] use
GAN-based data enhancement methods to augment EEG
samples in the form of DE representation. Kim et al. [65]
mine the complementation between electrocardiogram and
EEG by deep learning model for emotion recognition. Liu
et al. [36] use empirical mode decomposition to mine the
EEG fragments with the most emotional information. Piho
et al. [67] find out the EEG fragment containing the highest
emotional information by the mutual information method
for emotion recognition. Yin et al. [68] apply the graph
convolutional neural networks to extract the deep channel
correlation. Yang et al. [54] use the spatiotemporal informa-
tion extracted by LSTM. Ma et al. [69] proposed a residual-
based LSTM to learn the emotional information hidden in
multimodal data. Tao et al. [53] use a deep model based on
the attentional mechanism to mine the relationships among
channels. Huang et al. [37] use the neuroscience discovery
of emotional lateralization to build the new EEG representa-
tion. The detailed comparison result is shown in Table. 3. It
shows that the performance of ELSTNN is better than other
methods, which illustrates the effectiveness and superiority
of ELSTNN.

For DREAMER, the experimental result is shown in
Table 4. We find that ELSTNN obtains the excellent perfor-
mance in the valence and arousal classification task. Further-
more, to verify the superiority of ELSTNN in DREAMER,
our proposed method is compared with a large number of
various state-of-the-art methods [73, 74, 45, 71, 72, 75, 66,
76]. Zhang et al. [75] propose an attention-based model to
learn temporal dynamics of EEG. Yang et al. [72] use the
multi-layer perceptron and decision tree to explore the emo-
tional boundaries. Song et al. [45] use GCNN to learn the
functional correlation between channels. Cheng et al. [73]
mine the deep information from EEG signals by using the
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Table 4
The subject-dependent experimental results of DREAMER using ELSTNN and the strategy of 5-fold cross-validation. Here, the
channels containing F3, FC5, T7, P7, T8, FC6, F4, and F8 are used to construct 2D matrix EEG representation.

Accuracy of Valence (%) Accuracy of Arousal (%)
subject 3 second 4 second 5 second 3 second 4 second 5 second

1 91.88 92.81 91.65 92.88 91.44 91.67
2 94.16 97.40 94.89 91.16 93.14 92.82
3 93.88 92.22 93.76 91.88 91.59 92.23
4 92.16 92.59 93.29 93.16 92.96 93.76
5 95.49 95.18 95.82 93.49 94.18 94.89
6 90.83 92.59 88.43 90.83 92.96 91.95
7 96.38 96.29 95.83 96.38 96.29 95.47
8 91.50 90.00 92.61 92.50 89.99 93.53
9 93.33 93.70 92.12 93.33 94.81 91.65
10 88.44 90.11 88.32 89.44 90.00 87.95
11 97.49 97.77 97.70 97.49 97.40 96.78
12 93.61 94.81 94.01 91.61 92.81 92.46
13 94.49 95.92 95.82 97.49 96.29 96.28
14 95.55 94.07 94.43 95.55 94.07 90.73
15 88.17 89.62 92.11 87.67 88.88 91.67
16 97.22 96.66 97.23 97.22 96.29 94.90
17 96.22 97.03 95.36 97.22 97.03 97.67
18 96.66 96.66 95.38 94.66 96.14 95.67
19 95.55 93.33 93.67 93.55 94.07 92.16
20 94.66 94.92 94.06 96.66 96.66 95.38
21 92.61 92.70 92.96 91.61 92.33 90.26
22 93.05 92.22 92.24 91.05 92.18 92.46
23 92.27 92.18 92.83 95.27 94.07 95.83

Mean 93.72 93.95 93.67 93.57 93.72 93.40

Table 5
In DREAMER, the comparison results between ELSTNN and
other works.

Method Valence (%) Arousal (%)
Zheng et al. [71] 56.65 70.30
Zheng et al. [66] 81.55 80.23
Yang et al. [72] 84.54 84.84
Song et al. [45] 89.59 88.93
Cheng et al. [73] 89.03 90.41
Liu et al. [74] 90.57 88.99
Zhang et al. [75] 92.27 93.03
ELSTNN 93.72 93.57

deep forest. Liu et al. [74] use the deep canonical correlation
analysis for emotion recognition. Zheng et al. [71] automat-
ically select channels by canonical correlation analysis dur-
ing the supervised learning. The detailed comparison result
is shown in Table. 4.2, which shows that the superiority of
our proposed method in emotion recognition task. Through
the above experiments, we can find that ELSTNN could
achieve the excellent performance in the valence and arousal
task, and it has more outstanding performance.
4.4. Model Analysis

In this part, ELSTNN is analyzed comprehensively to
understand how the method models the phenomenon of
emotional lateralization and applies it to emotion recogni-
tion.

First, the 2D matrix EEG representations of DEAP be-
fore and after channel selection by ELCCS are visualized, in
which the first, the middle, and the last frames of the EEG
representation of different emotional states are chosen to
understand the channel changes in times. The visualization
result of subject 1 of DEAP is shown in Fig. 6. Here, the
8 channels containing F3, C3, P7, PO3, Fp2, T8, CP6, and
CP2 are selected by ELSTNN, while the 32 channels denote
all channels used to collect EEG signals in DEAP. It is easy
to observe the phenomenon that for the voltage change of
channels, most of the channels located on the left side are
higher than those on the right side in the state of LV and
LA, while most of the channels situated on the left side
are more passive than those on the right side in the state
of HV and HA. And this phenomenon has continuity in
time for participants receiving the same emotional stimulus.
The important thing is that this phenomenon can be well
represented by our proposed 2D matrix representation of 32
channels, which explains the reasons about the increasing
number of channels can improve the EEG recognition per-
formance to a certain extent. However, the selected channel
chosen by ELSTNN could still preserve the information
of the left and right differences. Furthermore, it should be
noted that most of these selected channels are located at the
boundary of the left and right difference and record EEG
signals from different brain regions, which means that the
emotional activities are associated with the inter-connect of
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Figure 6: The visualization of the input matrix representing multi-channel EEG signals. Each subgraph is the 2D matrix
representation consisting of 8, 32 channels. And the first, the middle, and the last frame of the sample is shown to indicate
the effect of stimulus duration on the channel.

boundaries between brain regions. Hence, it is necessary to
explore the functional connections between brain regions to
further improve the performance, which is also the basis
of recent research [77, 78]. In addition, the visualization is
consistent with the neuroscientific findings [79, 80] that the
left hemisphere is more dynamic in HV state and the right
hemisphere is higher in LV state. In summary, the 2D matrix
EEG representation with the channels selected by ELSTNN
could preserve the differential information between the left
and right hemispheres and eliminate redundant and highly
related EEG channels. As a result, it could be applied for
channel selection to provide more discriminative and low-
dimension features to recognize various emotional states
under the guidance of neuroscientific findings.

Furthermore, to explore the mutual effect between the
different number of channels and our proposed model, an
additional experiment is carried out on DEAP. In this experi-
ment, 32 channels (all EEG channels in DEAP), 16 channels,
12 channels, and 8 channels are used to convert multi-
channel 1D EEG signals into the 2D representation, respec-
tively, where all channel subsets of DEAP are structured
by ELSTNN. 16 channels are composed of two channels
selected from the clustering effect of each of four bands of
each hemisphere, in which these channels are in different
clusters of different emotion samples. And according to
the previous studies, high-frequency channel information is

more related to emotional activity, especially 𝛽 band, and
𝛾 band. Hence, the formation process of 12 channels is as
follows: one channel with the above effect is selected in the
clustering of each of the two low-frequency bands of each
hemisphere, and two channels are selected in each of the
two high-frequency bands of each hemisphere. After that,
the four-channel combinations are combined with STNN,
respectively, to mine the effect of different channel numbers
on the model performance by visualizing the relationship
between the loss and the accuracy of train and test. And
the window size is set as 3 seconds. As shown in in Fig. 7,
we can find that the performance of STNN could converge
to a relatively stable range with different numbers, which
means that a large number of repetitive or even redundant
EEG channel features cannot improve the emotion recogni-
tion performance. Furthermore, our proposed method could
eliminate redundant EEG information and improve the per-
formance of emotion recognition using less information of
channel when facing different emotional states.

Through all experiments and the above analysis, the
conclusions are summarized that our proposed method could
screen out various redundant EEG channels while preserv-
ing the differential boundary between the two hemispheres to
form emotionally discriminative representation for emotion
recognition. Furthermore, by comparing with other out-
standing methods, the ELSTNN is effective and superior
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Figure 7: The relationship between the accuracy of test data
and epoch under the emotional state of valence and arousal. 32
channel denotes all channels recording EEG signals in DEAP.
The rest is the subset of 32 channels using ELSTNN to
constitute.

for emotion recognition. The validity of ELSTNN can be
summarized as follows: (1) with the guidance of neuro-
science finding about emotional lateralization, ELSTNN
can remove the highly related channels while preserving
the lateralization information. (2) the 3D spatiotemporal
representation is constructed with characteristics of sparsity
and emotional discrimination. (3) ELSTNN explores the
deep spatiotemporal feature from 3D representation for EEG
emotion recognition.

However, there are some limitations in our work that
need to be addressed in future research. Firstly, our study
primarily focuses on binary emotion classification, failing
to consider the complexity of multi-dimensional emotional
states. Emotions are not simply high or low; they encompass
a range of categories, including happiness, sadness, anger,
and more. Future research should explore multi-class emo-
tion recognition to capture the diversity of human emotions
more comprehensively. Secondly, our experiment adopts
a subject-dependent design aimed at exploring the emo-
tional response characteristics of the selected channels, lay-
ing the foundation for the development of personalized mod-
els while also providing a priori feasibility analysis for

subsequent cross-participant validation. In the future, it will
be essential to expand our research to a subject-independent
setting to further validate the robustness of our findings.

5. Conclusion
In this paper, we propose a channel selection method

named ELSTNN for EEG emotion recognition, where the
highly related but redundant channels are removed in an
unsupervised learning method, and the neural phenomenon
of emotional lateralization is modelled to improve EEG emo-
tion recognition performance. The extensive experiments are
driven on two public dataset DEAP and DREAMER. Our
proposed method obtains a mean accuracy of 95.67% and
94.97% in valence and arousal on DEAP, while achieving
93.72% and 93.57% in valence and arousal on DREAMER.
The experimental results demonstrate that the performance
of ELSTNN has achieved a better performance than most
state-of-the-art methods, and the selected channels have the
time stability. With the visualization process and the com-
prehensive analysis, the good performance of our proposed
method can be attributed to three reasons: (1) Neurosci-
entific phenomena is applied in channel selection process
to remove the highly related and redundant channels while
retaining discriminative feature. To our best knowledge, this
is the first time that the combination of neuroscience phe-
nomena and unsupervised learning has been used for EEG
channel selection. (2) The sparse 3D EEG representation is
formed with more spatiotemporal information by converting
view of EEG according to the 10-20 system. (3) With the
respective advantages of CNN and LSTM, ELSTNN is
employed to explore and integrate the deep spatiotemporal
information for emotion recognition. This work is especially
useful for the channel design of BCI, as it reduces the
number of required EEG channels while maintaining high
recognition accuracy, thereby enhancing the practicality and
accessibility of EEG devices in real-world scenarios.
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