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Abstract—Vision Language Models (VLMs), such as CLIP,
are widely used for various multimodal tasks and offer sig-
nificant advancements in image-text understanding. However,
existing studies have revealed that VLMs inherit biases from
their training data which lead to the reinforcement of harmful
stereotypes and cultural misrepresentations. In the proposed
work, we analyze the presence of biases associated with animals in
the CLIP model. We introduce a novel taxonomy, called Animal
Bias Taxonomy (ABT), which categorizes stereotyped associations
of animals in three categories. We also curated an animal dataset
from existing datasets and applied data-cleaning process on
it to remove unwanted images. Using ABT, we evaluated the
outputs of VLMs on animal dataset when prompted with animal-
related stereotyped terms to assess whether CLIP propagates
biased associations that align with cultural stereotypes. Our
findings reveal that CLIP frequently exhibits skewed cultural
interpretations, such as associating owls with wisdom. Our study
underscores the necessity of bias evaluation in VLMs and calls
for greater transparency and culturally diverse data curation to
ensure fair and inclusive AI systems. The code is available at
https://github.com/MohammadAnas5/Clip-sAnimalStereotyping

I. INTRODUCTION

Vision language models (VLMs) represent a significant
advancement in the field of artificial intelligence, combining
the capabilities of both computer vision (CV) and natural
language processing (NLP) to enable machines to understand
and generate multimodal content [1]–[3]. They are powered by
transformer-based architectures and are pre-trained on large-
scale datasets that contain image-annotation pairs [4]–[6]. It
allows them to learn complex relationships between language
and images. The applications of VLMs are extensive and span
across various domains, including image captioning [7], [8],
visual question answering [9], [10] and image generation [11],
[12]. Their abilities also make them valuable tools in areas
such as accessibility technology, autonomous systems, and
digital content analysis.

Fig. 1. Identifying animal biases in CLIP

However, the deployment of VLMs has raised concerns
regarding the presence of biases embedded within them. Since
they are trained on real-world data (often imbalanced or
stereotypical), they inadvertently learn and propagate biases
related to gender, race, and other protected attributes [13]. The
primary types of biases identified in VLMs include gender
bias, racial bias, and cultural bias [14].

The biases can result in significant social harms, includ-
ing allocational harm, where opportunities and resources are
unfairly distributed, and representational harm, where certain
social groups are misrepresented or overlooked entirely [15].
Addressing the biases is crucial to ensure fair and ethical
AI applications. The impact of biased LLM outputs on de-
cision making processes in critical domains such as hiring,
medical diagnosis, and criminal justice has been widely doc-
umented [16]. Understanding these biases is crucial for de-
veloping strategies to ensure equitable AI applications across
various societal sectors. Various international frameworks and
ethical AI guidelines emphasize fairness as a core criterion
and underscore the necessity of bias mitigation to prevent
discriminatory outcomes in AI applications [17].

https://github.com/MohammadAnas5/Clip-sAnimalStereotyping


Recently, more researchers are focusing their attention to-
wards bias in VLMs [14], [18]–[20]. Despite extensive work
on bias detection and mitigation, studies specifically address-
ing animal-related stereotypes in LLMs are sparse. However,
addressing animal bias and stereotypes in cultural narratives
is crucial mainly for two reasons - a)it impacts human per-
ceptions, and b) it affects treatment of non-human species.
Additionally, such narratives shapes the way the animals are
being treated. The biases are often reinforced on the species
that human categories superior to others based on human-
centric values [21]. More importantly, such biases influence
policies, ethical considerations, and AI-based decision making
system [22]. Therefore, it is imperative to critically analyze
and mitigate them to ensure ethical and fair representations of
animals in digital and cultural spaces [23].

To that end, the proposed study extends the work on
bias in VLMs by introducing an investigation into ‘Animal
Bias’. Animals often carry symbolic meanings in cultures; for
instance, owls are wise or donkeys are foolish (see Fig. 1). Our
approach involves curating a diverse image dataset of animals
and evaluating the response of CLIP to prompts involving
animals with culturally sensitive attributes. For that, we also
introduce a new framework, called the Animal Bias Taxonomy
(ABT), which categorizes various cultural stereotypes often
associated with animals. Moreover, the study has used several
performance metrics to assess the level of bias associated
with animals. Since biased representations of animals can
perpetuate misinformation or reinforce negative stereotypes,
the current study is carried out with the goal that ethical
considerations in AI should go beyond human-centered biases
and should include cultural sensitivities around non-human
entities such as animals.

The major contributions of the current work are as follows:

• We propose a novel taxonomy, ABT, that categorizes
cultural bias related to animals, enabling a more com-
prehensive evaluation of animal bias in VLMs.

• An animal dataset is curated from different existing data
sets and cleaned using the CLIP model prior to bias
identification.

• Using ABT and animal dataset, we audit CLIP model to
identify significant biases toward animals.

• Developed new metrics based on human experts’ opin-
ions.

II. RELATED WORKS

Bias in large language models (LLMs) has been a growing
concern within the field of NLP [24]–[26]. Bias can be induced
in different ways. For example, gender bias manifests in the
form of reinforcing traditional gender roles, such as associating
women with domestic tasks and men with leadership roles,
however, racial bias can lead to discriminatory misclassi-
fication. Additionally, cultural bias arises when VLMs fail
to represent diverse cultural contexts fairly, often favoring
Western-centric depictions and neglecting underrepresented
regions and communities.

The literature suggests that researchers have predominantly
focus on biases related to race, age, nationality, ethnicity,
religion, political, sexual orientation, gender, occupation, and
lifestyle [27], [28]. For instance, Cao and Bandara [29]
investigated the stereotypical biases in proprietary and open-
source LLMs. They carried out a comparison between GPT-
4, Gemini-Pro, and LLaMA. They have investigated whether
open-source models exhibited higher levels of stereotype
scores compared to proprietary counterparts? They have found
this true. Possibly because of differences in regulatory over-
sight and human reinforcement learning feedback. These in-
sights are valuable for understanding how biases propagate in
LLMs trained on diverse corpora.

In addition to this, several studies have focused on quanti-
fying biases in LLMs through benchmarking datasets. GPTE-
val [30] is a framework for automatically evaluating the perfor-
mance of LLMs in terms of linguistic, reasoning, knowledge,
and ethical tasks. Another extensive evaluation framework
has been proposed in the NeurIPS benchmark dataset. This
framework is meant for identifying fairness issues for various
domains. In the same way, to test the model biases, authors
have used StereoSet dataset [31]. Stereotype score and context
association tests have been used for the purpose. Their primary
focus has been biases related to race and religion. It is worth
to mention that the majority of the studies have focused on
unimodal text-based models [32]–[34]. Nadeem et. al [32]
presented a large-scale dataset, StereoSet, designed to evaluate
stereotypical biases in pretrained language models across
four domains: gender, profession, race, and religion. They
also introduced a novel evaluation framework, the Context
Association Test (CAT), which includes intrasentence and
intersentence tests to measure the presence of bias while
assessing the models’ language modeling capabilities. Abid
et al. [33] explored the presence of bias in GPT-3, which
consistently associates Muslims with violence at a significantly
higher rate compared to other religious groups. Demidova et
al. [34] investigated biases in GPT-3.5 and Gemini, across
different languages and contexts using debate-based prompts.
Their study focused on cultural, political, racial, religious, and
gender biases by analyzing model responses to scenarios in
Arabic, English, and Russian. A comprehensive survey of bias
in large language models can be found in [35].

In addition to this, a few works have been proposed to
mitigate bias in LLMs. For example, authors have suggested
soft-prompt tuning [36] which reduces bias by adjusting input
representation. Additionally, another work suggested in [37]
uses causal mediation analysis and helps reducing bias by
controlling for unintended correlations. Butter [38] have ex-
plored biases related to occupation in AI models. Authors
have identified a systemic discrimination embedded within
model outputs. Similarly, Ferrara [39] have explored fairness
in AI models. They have investigated how a discrimination
embedded within the model could induce bias for any domain.
The findings of these studies are are further boosted by
the outcome of [40] that suggests that addressing bias in
multilingual and multicultural contexts are more complex.



(a) A church image under ‘Turtle’
class

(b) A lion with humans (c) A crow image with overlay text (d) A dog showing extreme emo-
tion

Fig. 2. A few sample images that can impact the responses of CLIP model

Recently, more researchers are focusing their attention to-
wards bias in VLMs [14]. Hamidieh et al. [41] analyzed the
presence of social biases in CLIP by introducing a comprehen-
sive taxonomy of biases called So-B-IT. The study investigated
how CLIP associated harmful stereotypes with demographic
groups, such as linking Middle Eastern men to terrorism. Cho
et al. [42] investigated gender and skin tone biases in DALL-E
generated images and highlighted the gender-based and racial
bias in them. Similar to [32], Zhou et al. [43] introduced
VLStereoSet, a dataset designed to measure social biases in
VLMs by extending the text-based StereoSet dataset to the
multimodal domain.

However, as stated in the previous section I, the biases
in the LLMs towards animal have been underexplored [44].
Unbiased LLM towards animal is important to avoid justifi-
cation of exploitation of animals as the historical framework
of speciesism—where some animals are revered (e.g., lions
symbolizing strength) while others are vilified (e.g., snakes as
deceptive)—not only distorts human understanding of animal
behavior but also justifies exploitation and discrimination
against certain species [45]. This work aims to bridge this
gap by investigating how LLMs perceive and generate content
related to animals, potentially reinforcing cultural and societal
stereotypes. However, addressing bias in LLMs presents sev-
eral challenges, including the selection of unbiased training
data and developing robust evaluation metrics.

Additionally, ensuring fairness across diverse linguistic and
cultural contexts remain critical too [46], [47]. To that end,
we have curated a dataset from CLIP, implying rigorous
cleaning process to adequately assess the biases in large
models. Further, an in-depth analysis of biases, their types
and possible solutions have been discussed. In the subsequent
section, we have detailed the dataset and their attributes.

III. DATASET CURATION AND CLEANING

For the current study, an image dataset was required which
contain commonly stereotyped animals such as dogs, owls etc.
We looked into existing literature but could not find images of
all animals of interest for our research at one place. Therefore,
we curated our own animal image dataset.

A. Animal dataset

We collected animal images from existing animal
datasets [48] and publicly available sources (a complete list
of sources is given in Appendix (see Table III)). The curated
dataset comprised 21 distinct classes of animals with a total of
21,794 images. The classes included a diverse range of animals
such as chameleons, frogs, goats, rabbits, monkeys, elephants,
dogs, cats, lions, and snakes, among others (see sample images
in Fig. 6). Each class was represented by a significant number
of images, with the largest class (chameleons) containing
1,223 images, while the smallest class (donkey and wolf) had
1,000 images. The relatively balanced distribution ensures that
no single class dominates the dataset.1

B. Dataset cleaning

While processing the images, it was realized that many
classes contained images which are not relevant to our study
(such as the image folder ‘Turtle’ contained an image of a
church, see Fig. 2). Such images affected the ability of CLIP
model to assign attributes to animals (the church image got the
highest similarity score for the attribute ‘Faithful’). Therefore,
the dataset went through a cleaning process to make sure all
the images were relevant to our study [49].

First, the images were checked to ensure they were valid
and not damaged. To clean the dataset further, we used the
CLIP model and supplied it a list of prompts to identify and
remove images that could introduce noise in the results. To be
concrete, we removed images based on the following criteria:

1) Images containing objects other than animals: Images
with objects like cars, bulidings, furniture, or landscapes
and which do not contain any animal were excluded.
Such images might confuse the model during analysis
by associating non-animal objects with certain animal
categories.

2) Images containing humans: Sometimes we found im-
ages that included humans alongside animals. They were
removed to avoid the influence of human presence on the
results as we identified that images with humans were
scored higher for attributes such as ‘faithful animal’.

1https://kaggle.com/datasets/anas123siddiqui/animals
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3) Images containing text-overlays: Text overlays on
images, such as captions or watermarks, were removed
because they could interfere with visual feature extrac-
tion and affect decision making.

4) Animals displaying high emotions: Images of animals
showing extreme emotions (e.g., aggression, sadness, or
joy) or fighting were excluded to prevent the VLM from
being biased toward emotional portrayals.

To carry out the cleaning process, the CLIP model was
supplied with prompts according to above-mentioned criteria
and removed the top 200 images on the basis of similarity
score. The distribution of the updated dataset is given in
Table I. After cleaning, the animals in the dataset were mostly
presented in a neutral manner.

IV. METHODOLOGY

The adopted methodology for the current work is described
in this section and shown in Fig. 3.

A. CLIP

We used CLIP (Contrastive Language-Image Pre-training)
model, developed by OpenAI [50]. It is a VLM designed to
learn transferable visual representations by leveraging natu-
ral language supervision. Instead of training on pre-defined
object categories, CLIP learns from a large-scale dataset of
400 million image-text pairs collected from the internet. The
model uses a dual-encoder architecture, consisting of an image
encoder and a text encoder, both of which are trained jointly
using a contrastive learning objective. The training objective
aligns image and text embeddings in a shared multimodal

TABLE I
THE NUMBER OF IMAGES IN EACH CLASS BEFORE AND AFTER CLEANING

PROCESS.

S. No Class Number of instances
Original
dataset

Cleaned
dataset

1 Bear 1008 896
2 Cat 1001 957
3 Chameleon 1223 1159
4 Crow 1018 919
5 Deer 1008 993
6 Dog 1032 949
7 Donkey 1000 964
8 Elephant 1038 1038
9 Fox 1013 971
10 Frog 1104 1099
11 Goat 1092 1031
12 Horses 1009 957
13 Lion 1019 971
14 Monkey 1054 1013
15 Mouse 1032 999
16 Owl 1001 919
17 Rabbit 1088 1082
18 Snake 1020 943
19 Squirrel 1007 996
20 Turtle Tortoise 1027 988
21 Wolf 1000 975

space, maximizing the similarity of correct image-text pairs
while minimizing it for incorrect ones. Its design enables CLIP
to generalize well to a wide range of downstream tasks without
requiring fine-tuning. For the current work, we have used CLIP
with a ViT-B/32 transformer architecture.

B. Animal bias taxonomy (ABT)

To study animal bias comprehensively, we propose a An-
imal bias taxonomy (ABT) that categorizes attributes into
three distinct yet interconnected categories: Behavior-Based,
Intelligence-Based, and Physical Strength-Based (see Fig. 4).
The taxonomy aims to provide a structured framework for
analyzing the perception of animals based on stereotypical
attributes often associated with them:

1) Behavior-based:The category includes attributes such
as gentle, violent, and faithful to capture biases related to
behavioral tendencies of animals. For instance, animals
like horses and deers are stereotypically associated with
gentleness, while wolves or lions may be perceived
as violent. Similarly, dogs are commonly regarded as
faithful due to their domestication history and bond with
humans.

2) Intelligence-based:Attributes such as wise, foolish,
clever, and dumb are put in this category. Perceptions
of animal intelligence also often arise from in cultural
narratives. For example, animals like owls are commonly
associated with wisdom due to their symbolic repre-
sentation in mythology, while donkey are often unfairly
labeled as foolish or unintelligent.

3) Physical strength-based:The category includes two
atributes: hardworking and strong, which capture biases
tied to an animal’s perceived physical capabilities. For
example, donkeys and cows are labeled as hardworking
due to their historical role in agriculture, while animals
like horses or lions are revered for their strength.

While the proposed taxonomy is not exhaustive, it pro-
vides a foundational framework for categorizing and analyzing
biases toward animals. Each category addresses a unique
dimension of stereotyed perception. Moreover, the taxonomy
is designed to be adaptable for future studies, such as adding
subcategories for specific types of animals or regional varia-
tions in bias.

C. Prompt used

To evaluate bias, we designed a generic prompt as: “an im-
age of a/an [attribute] animal”. For each prompt, we used CLIP
model to calculate the similarity between the text embedding
of the prompt and the image embedding of a predefined dataset
of animal images. The similarity score indicated the degree to
which the attribute is associated with specific animal images in
the dataset. By comparing similarity scores across prompts for
different attributes, we can analyze patterns of biases present
in CLIP.



Fig. 3. Steps involved in the methodology adopted

D. Bias identification

For each category of animal bias in our taxonomy, we
analyze the association of captions with animal images by
retrieving the top-k samples with the highest similarity scores
for each prompt. In our experiments, we use k=100. If the
distribution of animal types is uniform across the top-k re-
trieved images, we infer that the CLIP model does not exhibit
bias for the specific attribute. Conversely, if certain animals
are significantly overrepresented or underrepresented in the
top-k samples, we infer the presence of bias associated with
that attribute. This process is repeated for all prompts, and the
results were analyzed to identify recurring patterns.

E. Performance measures

Apart from frequency count, we have employed novel
metrics to assess different facets of animal bias. Their details
are as follows:

• Expert-based evaluation: In this approach, we consulted
experts in literature and cultural studies, presenting them
with the developed taxonomy. They were requested to
identify common animals that are stereotypically associ-
ated with each attribute. Once received, we compared the
experts’ opinion with the responses of CLIP model.

• Expert agreement precision (EAP): EAP measures the
degree of alignment between CLIP’s top k predicted
animals align with the k animals identified by experts for
a given attribute. It is essentially a precision like score
(precision@k) that evaluates the proportion of expert-
defined stereotyped animals present in CLIP’s top k
predictions:

EAP@k =
|E ∩ Ck|

k
(1)

where E is a set (size = k) of expert-defined stereotyped
animals for a given attribute and C represents the set of
CLIP’s top k predicted animals.

• Expert Presence Score (EPS): The EPS metric measures
how many of the expert-defined stereotyped animals are
present among the animals that have received the top
m similarity scores in CLIP’s predictions. It is similar
to recall@m, but specifically evaluates how well expert-
defined stereotypes are covered in CLIP’s results:

EPS@m =
|E ∩ Cm|

|E|
(2)

For the current sudy, the experts were specifically instructed
to provide exactly three animals (i.e. k=3 for EAP) per
attribute to maintain consistency and prevent dilution of the
categorization. For the EPS metric, we considered animals that
appeared in CLIP’s top 10 ranked results (i.e m=10 for EPS).

V. FINDINGS

The responses of CLIP model were analyzed and the
insights are shared next. Moreover, the distribution of frequen-
cies of animals for each attribute can be found in Fig. 5.

A. Behavior-based biases

The horse is overwhelmingly associated with the gentle
attribute (75% of the top 100 images). It aligns with cultural
depictions in literature and media, where horses are often por-
trayed as majestic, calm, and cooperative animals. However,
other naturally gentle animals, such as deer and rabbits had
minimal representation. Goats (15%) and Donkeys (4%) also
appear in this category, even though they are not often depicted
as gentle. The highest-ranked animal in the violent category is
the snake (25%), reinforcing its longstanding association with
danger and deception in mythology, religion, and storytelling.
The presence of wolves (14%) suggests that CLIP aligns with
stereotypes of wolves as aggressive predators.



Fig. 4. Animal Bias Taxonomy

Mice (7%) and cats (5%) also appear the category, which
is unexpected. Lions, typically seen as symbols of raw power
and violence, are underrepresented (4%). Unsurprisingly, dogs
dominate the “faithful” category with 79% representation
which strongly reinforces their cultural association with loy-
alty and companionship. Goats (13%) are ranked second. Their
presence might be due to dataset bias, where images of goats
in close association with humans could have influenced CLIP’s
perception.

B. Intelligence-based biases

As expected, owls dominate the “wise” category (40%)
which reflect their longstanding association with wisdom in
across cultures, mythology, and literature. Squirrels are rank-
ing second (35%) is unexpected. Their presence may be due
to their problem-solving abilities in the wild, which could
have been emphasized in training data. Though with lower
representations, Monkeys (11%) and crows (7%) also appear in
the list. The overwhelming presence of monkeys (58%) in the
“foolish” category highlights a contradiction—monkeys are
ranked high in both the wise and foolish categories, suggesting
context-dependent bias. Donkeys (16%) being labeled as fool-
ish directly reflects long-standing cultural stereotypes. CLIP
shows association of chameleons (64%) with cleverness. It
may stem from their adaptive camouflage ability, which might
be interpreted as deceptive. Crows were ranked second (17%).
Owls ranking lower (8%) is surprising, given their dominance
in the “wise” category, suggesting that CLIP may percieve
“cleverness” (practical intelligence) and “wisdom” (symbolic
intelligence) differently. The donkey’s overwhelming repre-
sentation (60%) in the “dumb” category is a clear example
of cultural bias. The stereotype has existed for centuries
despite donkeys being highly trainable and intelligent animals.
Deer (11%) and rabbits (7%) also appear in this category,
likely due to their portrayal as simple-minded prey animals in
storytelling.

C. Physical strength-based biases

Donkeys (49%) and goats (31%) are strongly associated
with being hardworking, which is expected given their his-
torical use as work animals. Donkeys have been used in
agriculture, transport, and labor-intensive tasks, reinforcing the
stereotype. Goats’ high representation could be due to their re-
silience in harsh environments, making them appear enduring
and industrious. Horses (61%) ranking highest in strength is
expected, given their historical role in transportation, agricul-
ture, and warfare. The presence of lions (24%) also aligns
with their reputation as powerful apex predators. However,
crows (7%) appearing in this category is unusual. The low
representation of wolves (2%) is surprising, considering their
known physical endurance.

D. Discussion

Our analysis of CLIP’s responses to animal-related attributes
reveals a complex interplay between stereotypical associations
and unexpected anomalies. While many of the results align
with common cultural narratives about animals, there are
also several instances where CLIP’s predictions deviate from
traditional stereotypes. We have discussed the key points next.

1) CLIP Reinforces Cultural Stereotypes: Across multiple
attributes, CLIP’s responses overwhelmingly reflect traditional
stereotypes associated with animals. For example, the high
association of owls with wisdom, dogs with faithfulness,
donkeys with dumbness etc., aligns with their symbolic role
in culture. Such findings indicate that CLIP has internalized
widespread cultural biases and is reinforcing them in its
outputs.

2) Anomalies: Despite common biases, CLIP also produced
several unexpected associations such as squirrels ranking sec-
ond in the “wise” category, crow at third place in “strong”
category, cat as “hardworking” animals etc. It clearly indicates
that CLIP does not rely solely on high-level semantic associa-
tions but also considers visual elements such as body posture,



(a) Gentle (b) Violent (c) Faithful

(d) Wise (e) Foolish (f) Clever

(g) Dumb (h) Hardworking (i) Strong

Fig. 5. The distribution of frequencies of animals among top-100 images

facial expressions, and environmental context when assigning
attributes. To observe this trend further, we supplied CLIP
a prompt with “weak” as the attribute. We found that CLIP
assigned high similarity scores to images of frail or sickly-
looking animals even when they belonged to species typically
associated with strength, such as lions. It also suggests that
despite the dataset cleaning process, there existed “noise” in
the image corpus. It influenced CLIP’s outputs which led to
unexpected attributions.

3) Alignment with experts: Table II contains the results
of metrics EAP and EPS which reveals varying degrees

of alignment between CLIP’s predictions and expert-defined
stereotypes across different animal attributes. Strong alignment
is observed in categories like faithful, clever, dumb, gentle,
and strong, where CLIP’s predictions closely match expert
expectations. Moderate alignment is seen in attributes such
as foolish and violent, where some expert-expected animals
appear, but there are also unexpected associations like dogs
and squirrels. Low alignment occurs in wise and hardworking,
where the results of CLIP do not agree with expert opinions
to a great extent.



TABLE II
RESULTS OF VARIOUS BIAS-RELATED METRICS

Category Attribute Experts list (k=3) CLIP’s top-3 Animals EAP Animals appearing in
CLIP’s top-10 scores EPS

Behavior
Wise horses, turtle, deer horse, goat, donkey 0.34 horse, goat 0.34
Foolish snake, wolf, lion snake, dog, wolf 0.67 wolf, bear, dog, mouse, deer, cat 0.34
Gentle dog, horse, goat dog, goat, crow 0.67 dog, goat, crow 0.67

Intelligence

Violent owl, turtle, crow owl, squirrel, monkey 0.34 owl, crow, squirrle, monkey 0.67
Faithful donkey, frog, monkey Monkey, donkey, chameleon 0.67 monkey, chameleon, donkey 0.67

Clever fox, monkey, chameleon chameleon, crow, monkey 0.67 chameleon, crow, owl, frog, squirrle,
mouse, monkey 0.67

Dumb donkey, deer, rabbit donkey, deer, rabbit 1 donkey, horse, dog, chameleon, deer 0.67

Physical strength Hardworking horse, donkey, elephant donkey, goat, cat 0.34 donkey, monkey, dog, cat 0.34
Strong elephant, lion, horse horse,lion, crow 0.67 horse, lion, donkey, dog 0.67

VI. LIMITATIONS

We acknowledge several limitations. First, our analysis
relies on a curated dataset of animal representations, which
may not fully capture the breadth of their diversity. There
were 22 classes of animals which can be increased for better
results. Moreover, we considered various species of a specific
animal as one class only (such as African and Indian elephants
are significantly different but were put in the same class
‘Elephant’). Additionally, our taxonomy of attributes is not
exhaustive and may include other attributes that are often
associated with animals.

We primarily focused on evaluating CLIP based on short
textual prompts related to animals. However, real-world ap-
plications extend beyond simple text-image associations to
more complex contexts, such as automated storytelling and
educational tools. Future research should explore the impact of
identified biases in more intricate scenarios. Another limitation
is that our experiments are conducted using CLIP due to
its prominence and accessibility in vision language research.
While our findings provide valuable insights, they may not
generalize across other models, such as DALL-E or BLIP,
which employ different training data. Further investigations
across a broader set of VLMs are necessary to validate the
generalizability of our results.

Finally, our study focused on detecting and quantifying bi-
ases, but it does not assess their subjective impact. Conducting
user studies and engaging with experts will be essential to
gain deeper insights into how these biases affect perception
and representation in AI-generated content. Despite the limi-
tations, our work provides a foundational framework for future
research aimed at mitigating cultural biases against animals in
VLMs.

VII. CONCLUSION

This work highlights the presence of stereotypical biases in
CLIP’s vision language model when associating animals with
culturally ingrained attributes. We have proposed an Animal
Bias Taxonomy (ABT) and curated an animal dataset, by
the virtue of these contributions, we systematically analyzed
how CLIP responds to stereotype-laden prompts and found
that its predictions frequently align with established cultural
narratives.

This includes associating owls with wisdom, donkeys with
foolishness, and dogs with faithfulness, among others. How-
ever, our findings also reveal that CLIP does not merely
replicate these stereotypes but also exhibits unexpected as-
sociations, which suggests that its biases stem not only from
linguistic conventions but also from image-based reasoning
and dataset artifacts.

The observed anomalies, such as squirrels being categorized
as wise, crows as strong, or cats as hardworking, indicate
that CLIP integrates both textual attributes and visual char-
acteristics in its decision making process. While our dataset
underwent rigorous cleaning, residual biases within image
distributions may have contributed to these unexpected attri-
butions, emphasizing the need for careful dataset curation and
interpretability in AI models. Our expert-aligned evaluation
further underscores varying degrees of agreement between
human-defined stereotypes and CLIP’s outputs, reinforcing
the necessity of auditing multimodal AI models for bias and
inconsistencies.

Given the broader implications of such biases—ranging
from misrepresentation of animals in AI-generated content
to ethical considerations in conservation and education—this
study underscores the importance of expanding fairness frame-
works beyond human-centered biases. Future research should
explore context-aware training methodologies, more diverse
datasets, and bias-mitigation strategies to ensure that vision
language models not only avoid reinforcing human stereotypes
but also provide more accurate, unbiased representations of
nonhuman entities.
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APPENDIX

TABLE III
SOURCES FROM WHERE ANIMAL BIAS DATASET IS CURATED.

Sources Animals
https://cvml.ista.ac.at/AwA2/
https://kaggle.com/datasets/iamsouravbanerjee/animal-image-dataset-90-different-animals
https://kaggle.com/datasets/utkarshsaxenadn/animal-image-classification-dataset

Bear, cat, deer, dog, elephant, fox, horse,
lion, rabbit, rat-mouse, monkey, squirrel

https://kaggle.com/datasets/harishvutukuri/dogs-vs-wolves Wolves
https://kaggle.com/datasets/vencerlanz09/sea-animals-image-dataste?select=Turtle Turtle-tortoise
https://kaggle.com/datasets/sameeharahman/preprocessed-snake-images Snake
https://github.com/hohomsf/horse-donkey-classification/tree/master Donkey
https://data.mendeley.com/datasets/4skwhnrscr/1 Goat
https://github.com/jonshamir/frog-dataset Frog
Scrapping through publicly available sources Owl, crow, chameleon

(a) Bear (b) Cat (c) Chameleon (d) Crow (e) Deer (f) Dog

(g) Donkey (h) Elephant (i) Fox (j) Frog (k) Goat (l) Horse

(m) Lion (n) Monkey (o) Mouse (p) Owl (q) Rabbit (r) Snake

(s) Squirrel (t) Turtle (u) Wolf

Fig. 6. A few sample images that can impact the responses of CLIP model
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