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ABSTRACT

Dialogue systems are becoming an ubiquitous presence in our everyday lives having a huge impact on business
and society. Spoken language understanding (SLU) is the critical component of every goal-oriented dialogue
system or any conversational system. The understanding of the user utterance is crucial for assisting the user
in achieving their desired objectives. Future-generation systems need to be able to handle the multilinguality
issue. Hence, the development of conversational agents becomes challenging as it needs to understand the
different languages along with the semantic meaning of the given utterance. In this work, we propose a
multilingual multitask approach to fuse the two primary SLU tasks, namely, intent detection and slot filling
for three different languages. While intent detection deals with identifying user’s goal or purpose, slot filling
captures the appropriate user utterance information in the form of slots. As both of these tasks are highly
correlated, we propose a multitask strategy to tackle these two tasks concurrently. We employ a transformer
as a shared sentence encoder for the three languages, i.e., English, Hindi, and Bengali. Experimental results
show that the proposed model achieves an improvement for all the languages for both the tasks of SLU. The
multi-lingual multi-task (MLMT) framework shows an improvement of more than 2% in case of intent accuracy
and 3% for slot F1 score in comparison to the single task models. Also, there is an increase of more than 1
point intent accuracy and 2 points slot F1 score in the MLMT model as opposed to the language specific

frameworks.

1. Introduction

Advancements in Artificial Intelligence (AI) have led to the devel-
opment of intelligent agents that can converse with humans and assist
them in their daily tasks. Thus, language understanding and generation
will be important for making the lives of people easier in the future.
An increase in availability of spoken language understanding (SLU)
technologies in smartphones and personal assistants like Apple’s Siri,
Amazon’s Alexa, Microsoft’s Cortana, etc., has inspired an in-depth
investigation on understanding the language of the user. With the
progress in technology, the forthcoming generations will be highly
dependent on virtual assistants hence it is imperative to make the
agent capable of understanding the user to assist them to achieve their
specified objectives [1,2]. For every dialogue system, the primary target
is to provide user satisfaction by helping users reach their desired goals
[3-6]. In this process, knowing the user’s purpose and supplying them
with insightful responses is essential [7]. The dialogue system is an
example of human-computer communication, and it includes various
modules focused on user comprehension and generating responses to
help the user achieve their intended goal.

* Corresponding author.

The primary modules of every conversational agent are identifying
the intents and slot filling. Understanding the utterance is itself a diffi-
cult task, as the system needs to understand the intended meaning and
extract the necessary information from the utterances of the user. The
task of identifying the meaning or objective (either implicit or explicit)
of the user utterance is defined as intent detection (ID). In contrast,
the task of extracting information in the form of slots is called slot
filling (SF). With the enhanced usage of personal assistants, the research
and development of human-machine interaction have increased rapidly
over the decade [8-10]. For the widespread application of chatbots,
personal assistant should be able to understand different languages
spoken by the user. It reduces the language barrier and assists the
users to achieve their cherished goals. Developing multilingual dialogue
systems is challenging, as the system needs to understand the syntax,
semantics, and patterns for each language. In order to deal with the
low-resource languages, the sharing of information across the languages
is essential as it captures intricate details among the related languages.
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Table 1
Intent examples in different languages.
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Utterance

Intent Language

Show me the flights arriving on Baltimore on June fourteenth.

Flight English

3T T o AT F S § e SRl & forg @i o vareed Se et €27

(Anya shehro ke madhyam se Boston se Washington D.C. ke liye kaun si airlines

udaan bharti hai?)

(Which airlines fly from Boston to Washington DC via other cities?)

Airlines Hindi

WA @B (AP AT 9 UE Bl (TS 51372
(Aami Boston theke Philadelphia kom kharcha bhada pete chai?)

(’d like to find the least expensive fare from Boston to Philadelphia?)

Airfare Bengali

I want to listen to seventies music

PlayMusic English

& v # Uhes e o forg e )
(Mujhe pados mein animated filmo ke liye samay dikhaye)
(Find me showtimes for animated movies in the neighborhood.)

SearchScreeningEvent Hindi

SIS 70T PR FCOT WIS a2,

(Venezuela desera Frewen $aharé abahaoya kémana? )

GetWeather Bengali

(What is the weather like in the city of Frewen in the country of Venezuela?)

Table 2
Examples of multiple slots for different languages.

Utterance

Slots

Language

Play a chant by MJ Cole

O O B-music_item O B-artist I-artist

English

3 ITAE A 5 WR
(Iss upanyaas ko 5 star den.)
(Give this novel 5 stars.)

O B-object_type O B-rating_value B-rating_unit O

Hindi

fSrcaa sttt eveda T |

(Cinema samaychuchi pradarshan karun.)
(Show movie schedules.)

B-object_type I-object_type O O

Bengali

Chicago to Milwaukee

B-fromloc.city_name O B-toloc.city name

English

TS SATY § ST 3 1e@Tg |
(Mujhe Dallas se Delta udaane dikhaye.)
(Show me Delta flights from Dallas.)

O B-fromloc.city_name O B-airline_name O O

Hindi

5 219 BTG IRT FE»

(Ki plena unaiteda byabahara kare?)
(What planes does United use?)

O O B-airline_.name O O

Bengali

Recent works on multilingual SLU for the task of utterance classi-
fication [11,12] have opened new frontiers for more in-depth inves-
tigation in multilinguality for the dialogue systems. In this work, we
focus on developing an end-to-end SLU module that can jointly identify
the intent and necessary slots for different languages. We investigate
developing a multitask model for intent detection and slot filling for
English, Hindi, and Bengali languages. We show examples of different
intents for the different languages in Table 1. The examples of multiple
slots in an utterance for different languages are presented in Table 2.
As both the tasks are related, hence in this work, we model intents
and slots together in a unified framework. Multitask learning has
shown improved performance for the various tasks [13-15]. Inspired
by these recent works, we propose a multitask SLU framework for
simultaneously modeling intent and slots present in an utterance for
different languages.

1.1. Problem definition

This paper addresses two vital and crucial tasks of any conversa-
tional agent, namely: identifying intents and slot filling.

1.1.1. Intent detection

In any goal-oriented dialogue system, the main objective is to auto-
matically identify the user’s intention represented in natural language.
This a difficult natural language processing (NLP) task called intent
detection or intention awareness [16], which goes beyond the explicit
content of the dialogue message.

300

The main goal is to label the user utterance x, comprising of a
sequence of words x = (x;, X,, ..., x7) into one of the N predetermined
set of intent classes, y;, depending upon the given utterance such that:

§; = argmax P(y;/x) (€8]
ieN

For better understanding, Table 1 displays a few instances of different

intents associated with diverse domains and varied languages.

1.1.2. Slot filling

Semantic constituent extraction from an input utterance is termed
as slot filling. It includes filling in the values in a semantic frame for
a predetermined set of slots. The purpose of slot filling is to allocate
semantic tags to each word in the utterance. Having a sentence x
consisting of a sequence of words x = (x;,x,,...,xy), the purpose of
a slot filling task is to find a set of semantic classes s = (s, s, ..., 1)
for each word in the sentence, such that:

(2)

§ = argmax P(s/x)
S

The slot labels for different utterances in varied languages are presented
in Table 2, according to the IOB representation.' Slot filling is viewed
as a sequence labeling task because a word’s slot relies on the previous
words. Therefore, it is necessary to capture the information present in
the entire sequence to identify the appropriate slots.

1 Here B, I, and O represents the beginning, intermediate, and outside
elements of a slot.
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1.2. Motivation and contribution

The motivation for taking up this task is to build an interactive
goal-oriented dialogue system that can handle user inputs in different
languages, thereby providing its application suitable for multilingual
information access. In our current study, we mainly focus on English,
Bengali, and Hindi. In Tables 1 and 2, we show the multilingual
examples of user utterances from the different datasets used in our task.

The motive for employing this setup was to provide the flexibility
of sharing the information between the languages and improve the
performance of the overall model by capturing the different informa-
tion simultaneously. Intent detection corresponds to classifying each
utterance in a dialogue. This is regarded as comparatively a less com-
plicated task than the other semantic analysis tasks. Still, the errors
made by the intent detector are more apparent because they lead to
incorrect system responses. Therefore, a reliable intent detection system
plays a vital role in developing an efficient dialogue system. Although
a chatbot usually follows a pipelined structure where a sentence’s
intention is detected, then the slots are obtained, but this method can
introduce errors if the intention is not correctly identified. These tasks
are strongly interrelated with each other, and one’s knowledge can
aid in solving another. This is the primary motivation for building a
consolidated architecture that can handle both tasks together. Hence,
we create an end-to-end SLU module for any task-oriented chatbot by
performing intent detection and slot filling together.

This paper develops a multilingual enabled multitask model that can
simultaneously identify the intents and capture the slots from any input
utterance belonging to any language. The capability of a machine to
handle multiple languages is essential for its widespread applications.
Users tend to communicate more in their preferred language, enabling
a system to understand different languages is essential and challenging.
One of the desired goals of Al is to build dialogue systems to establish
effective communication facilitating the agent to understand different
languages that humans choose to communicate.

The key contributions of this work are as follows:

» We propose a multilingual multitask framework? for intent detec-
tion and slot filling using an attentive BERT architecture.

» We construct a benchmark corpus® for the SLU tasks, i.e., for
intent detection and slot filling on ATIS, TRAINS, SNIPs, and
FRAMES datasets for Hindi and Bengali to capture more meaning-
ful and realistic statements spoken by the speakers in a human-
machine dialogue system.

The rest of this article is structured as follows: Section 2 presents
a brief study on the related works; Section 3 describes our proposed
approach; Section 4 briefly introduces the different datasets and dis-
cusses the data preparation for Hindi and Bengali languages; Section 5
presents the implementation details, while Section 6 provides a detailed
analysis of the experimental results; finally, Section 7 presents the
concluding comments and directions for future studies.

2. Related work

Understanding the user utterance is a significant and essential com-
ponent of every dialogue system [17]. Intent detection and slot filling
are the critical tasks of SLU that aim to extract semantic meanings from
the user utterances to assist users achieve their goals. The SLU research
has originated from the ATIS project [18], and the call classification
systems [19]. Detection of intent and slot filling was performed both in
isolation and together in the past. We provide a summary of the works
that have already been conducted on these SLU tasks.

2 https://github.com/senticnet/MLMT.
3 https://sentic.net/SLU.zip.
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2.1. Intent detection

Previously different traditional machine learning approaches such
as support vector machine (SVM) [20] and boosting techniques [21]
were employed for identifying intents in the user utterance. In [22],
syntactic and semantic graphs (SSG) representing the various properties
of an utterance were used for intent detection. The authors in [23]
used the ATIS corpus to detect intent with maximum entropy classifiers.
With advancements in artificial intelligence, deep learning techniques
have shown a promising direction in solving various NLP tasks. In
[16], computational analysis and tracking of semantic and affective
information associated with human actors’ intentions were applied
to minimize miscommunication and uncertainty in time-sensitive and
information-saturated situations. In [24], Convolutional Neural Net-
works (CNN) [25] was used to detect the intentions of a user search
query. Recurrent neural networks (RNN) [26] with long short term
memory [27] have also been employed for identifying the intents of
an utterance in [28,29]. An ensemble framework using CNN, Long
Short Term Memory (LSTM), and Gated Recurrent Unit (GRU) was
investigated for the task of intent detection on the ATIS dataset in
[30]. In [31], the authors suggested varying machine learning and deep
learning models for a code-mixed dataset in Hindi and English with
different vector representations of words. Capsule neural networks have
recently been used in [32] to identify intents on the SNIPs dataset.
The authors in [11,12] suggested a multitask adversarial structure for
English and Japanese datasets to detect the intents of a user utterance
in the form of domain-type, questions, and dialogue act. The authors
in [33] employed bidirectional LSTM with margin loss to identify the
unknown user intent. The authors in [34] devised a Gaussian mixture
model for handling unknown intents. For handling multiple intents in
a user utterance in a multilingual scenario, the authors [35] employed
a multilingual attention framework.

In [36], the authors proposed a novel acoustics-based intent recog-
nition system that uses discovered phonetic units for intent classifi-
cation. The authors in [37] leverage BERT-style pairwise encoding
to train a binary classifier that estimates the best-matched training
example for user input. Also, they propose to boost the discriminative
ability by transferring a natural language inference (NLI) model for
identifying the intents. For identifying multiple intents, [38] utilize
a universal thresholding experience on data-rich domains and then
adapt the thresholds to certain few-shot domains with a calibration
based on non-parametric learning. A novel semantic matching and
aggregation network where semantic components are distilled from
the utterances via multihead self-attention with additional dynamic
regularization constraints was proposed in [39] for identifying the
intents. A multiview clustering mechanism was employed for dialogue
intent induction in [40]. The authors in [41] proposed a SofterMax and
deep novelty detection (SMDN), a simple yet effective post-processing
method for detecting unknown intent in dialogue systems based on pre-
trained deep neural network classifiers. For faster intent classification
BranchyNet scheme [42] has been designed.

2.2. Slot filling

As mentioned above, slot filling is a sequence labeling problem
in which a tag is allocated to each word of the utterance. Factor-
ized probabilistic models such as Maximum Entropy Markov Model
(MEMM) [43] and Conditional Random Field (CRF) [44] were used
for slot filling to solve the label bias problem with locally normalized
models. In [45], SVM was used for slot filling together with syntactic
features captured by syntactic and semantic tree kernels. The authors
suggested a method in [46] that considered both parts of semantic
frame information and word understanding to improve the efficiency
of spoken dialogue systems.


https://github.com/senticnet/MLMT
https://sentic.net/SLU.zip
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Several deep learning architectures such as deep belief networks
(DBN) [47], deep convex networks (K-DCN) [48] and RNN using LSTM
[49-51] have also been employed for extracting essential information
in the form of slots from a given utterance. An attention mechanism in
the RNN framework was employed for slot filling on the ATIS dataset
in [52-54]. The authors in [55] presented the sequence-to-sequence
model-based generative network, including the pointer network for slot
filling. A pre-trained language model for identifying the slots was used
in [56]. The adversarial learning framework has also been investigated
for identifying the slots in [57,58]. The authors suggested the idea of
transfer learning for the task of slot filling in [59]. The authors in [60]
explored the usage of lexicons for slot tagging.

In [61], the authors introduced MultiATIS++ that extends the ATIS
dataset for 9 more languages for the task of slot filling. The authors in
[62] designed an Attention-Informed Mixed-Language Training (MLT),
a novel zero-shot adaptation method for cross-lingual task-oriented
dialogue systems. In [63], a Cluster-to-Cluster generation framework
for Data Augmentation was proposed for identifying the correct slots
on ATIS and SNIPS dataset.

2.3. Joint models for intent detection and slot filling

Intent detection and slot filling tasks are highly correlated, and pre-
viously some deep learning models have been constructed for modeling
both the SLU tasks together. Formerly, CNN-based triangular CRF [64]
and recursive neural network (RecNN) [65] have been proposed for
jointly modeling intent and slots. Several RNN frameworks employing
LSTM [66,67], and GRU [68] have been devised for both the tasks.
Step n-gram model, along with RNN and CNN, was used to formulate
both the tasks in [69]. Bi-directional attention-based RNNs have also
been implemented to collectively address the task of slot filling and
intent detection in [70]. In [71], word and character embeddings
were taken as input to the neural framework for jointly identifying
the domain, intent, and slots in a given utterance. In [72], sequential
context modeling using RNN for the SLU task has been explored.

For intent detection and slot filling in [73], the authors proposed a
bi-model network employing RNN. The authors in [74] implemented an
attention mechanism that focused on studying the connection between
the intents and slot vectors to model the tasks jointly. A multitask
ensemble model using combined word embeddings as input to the
neural models was presented in [75]. A zero-shot learning framework
for two new languages (Hindi and Turkish) was introduced in [76].
An attention mechanism with position information was considered in
[77]. Capsule neural networks for jointly modeling intent and slot were
investigated in [78]. For faster and efficient pre-training of the SLU
module, the ELMo-Light model was designed in [79]. The authors em-
ployed a stack-propagation framework for both the tasks in [80]. The
self-attention framework has been used in [81], and data augmentation
with data noising for both the tasks has been explored in [82]. The
identification of multiple intents along with slots has been proposed
in [83]. In recent times, the BERT framework has been investigated
for jointly identifying the intent and slots of an utterance [84,85].
In [86], direct connections between the two tasks were established
for mutually promoting the performance of both the SLU tasks. A
hierarchical framework for context modeling was employed in [35] for
the multitask learning of both tasks. A multitask framework for both
the SLU tasks and dialogue logistic inference was considered in [87].

The authors in [88] designed a novel two-pass iteration mechanism
to handle the problem of the uncoordinated slots caused by conditional
independence of non-autoregressive model based upon the Transformer
network on the widely used ATIS and Snip dataset. Lately, in [89], an
Adaptive Graph-Interactive Framework (AGIF) for joint multiple intent
detection and slot filling was proposed to introduce an intent-slot graph
interaction layer to model the strong correlation between the slot and
intents. For jointly performing both the tasks co-interactive transformer
network has been investigated in [90].
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In [91], the authors simultaneously identified the intents and slots
along with language identification and translation using m-BART. For
low-resource NLU, lightweight data augmentation was used in [92].
Recently, in [93], the authors proposed an intent pooling attention
mechanism and reinforced the slot filling task by fusing intent distri-
butions, word features, and token representations. In [94], the authors
present a new multilingual dataset named MTOP for both the NLU tasks
of intent detection and slot filling. In [95], an Attention-Informed MLT
framework is employed, i.e., a novel zero-shot adaptation method for
cross-lingual task-oriented dialogue systems.

In [96], the authors have proposed a novel Transformer encoder-
based architecture with syntactical knowledge encoded for intent detec-
tion and slot filling task. For zero-shot learning scenario [97], a novel
method was employed for intent detection and slot filling task to aug-
ment the monolingual source data using multilingual code-switching
via random translations to enhance a transformerd s language neu-
trality when fine-tuning it for a downstream task such as dialogue
generation. In [91], a multilingual BART framework was investigated
for jointly identifying the intents and slots. Continual Learning Inter-
related Model (CLIM) was proposed to consider semantic information
with different characteristics and balance the accuracy between intent
detection and slot filling in [98]. A transfer learning approach em-
ploying a Context Encoding Language Transformer (CELT) model to
facilitate exploiting various context information for SLU was explored
in [99]. The authors in [100] proposed a collaborative memory network
to capture slot-specific and intent-specific features from memories for
simultaneously identifying intent and slots in a given utterance. In
[101], a dual learning approach was investigated for the SLU task of
intent detection and slot filling on the ATIS and SNIPs dataset. Recently,
in [102] graph convolutional network was employed for multidomain
SLU. An adaptive graph interactive framework was proposed in [89],
for jointly identifying the intents and slots in a given utterance. In
[103], the authors have proposed a novel Parallel Interactive Network
(PIN) to model the mutual guidance between intent detection and slot
filling tasks. Lately, wheel graph attention network was investigated in
[104] for simultaneously identifying the intents and slots in a given
user utterance.

Our proposed model differs from the previous works in the sense
that we propose a multitask framework that can perform both intent
detection and slot filling together for three languages, viz. Bengali,
Hindi, and English. To the best of our knowledge, this is the very first
attempt to investigate the SLU tasks under a resource-scarce scenario
involving Indian languages like Hindi and Bengali. Hindi is the most
widely spoken language in India, and in terms of native speakers, it
ranks 5th all over the world. Bengali is a popularly spoken language in
India and also a national language in Bangladesh.

3. Methodology

This section describes the proposed MultiLingual MultiTask (MLMT)
Model to detect the intents and capture the semantic information as
slots for various languages. Our model comprises the embedding layer
having word embeddings of the utterance as input to the model. A
shared encoder for utterance representation that captures the contex-
tual information of the utterances, followed by two separate output
layers for performing intent detection and slot filling simultaneously.
The outputs of the proposed multilingual multitask models are fed to
two different multilayer perceptron (MLP) models for intent and slot
detection, respectively. The problem can be mathematically expressed
as follows: For a given utterance S in the jth language, having a se-
quence of words w{ w; ..., w!, with n being the length of the utterance,
the task is to predict the slot label sequence y, and intent label y;
simultaneously.
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3.1. Embeddings

Continuous distributional word embedding has become de-facto
input to the neural networks for solving various NLP tasks [30,35].
The word embedding is used to convert words into their continuous
vector representation. It has the interpretable property that words with
similar meanings in vector space are close together. Predominantly,
word embedding has been language-specific, where for every language,
word embeddings are trained separately, and they exist in entirely
different vector spaces. Recent research focuses on developing cross-
lingual word embeddings that use shared embedding space across two
(bilingual word embedding) or more languages (multilingual word
embedding). Using this method, embedding occurs in the same vector
space for each language and retains the property that terms with similar
meanings (regardless of the language) are close together in the vector
space. For example, in the embedding space, the terms “paani” in Hindi,
“jol” in Bengali, and “water” in English will appear very near because
they correspond to the same thing in different languages. We use the
word-level embedding to capture the latent semantic knowledge of the
words in a given utterance as input to our models.

Multilingual Embeddings: Multilingual Word Embeddings (MWEs)
represent the words in a single distributional vector space belonging
to different languages. Shared word representation across multiple
languages offers exciting opportunities. For example, in machine trans-
lation, translating a word in a given language not present in the training
data can be overcome by seeking its neighbors in the vector space. Also,
multilingual embeddings are beneficial for transfer learning, in which
models trained in a given language can be deployed for other languages
for a particular NLP task.

In this work, we learn a single multilingual embedding for all
three languages, i.e., English, Hindi, and Bengali. For learning multilin-
gual embeddings, we follow the work of [105,106]. For monolingual
embeddings of all the three languages, we use pre-trained FastText
embeddings [107]. The word embedding matrices of English, Hindi,
and Bengali are denoted by X, Y, Z such that the ith row of X,
Y; and Z; denote the embedding of the ith word in their respective
vocabularies. We learn the linear transformation matrices Wy, Wy, W,
so that the mapped embeddings X Wy, Y Wy, and ZW, are in the same
vector space.

3.2. Baseline MLMT models

The output of the embedding layer is passed to a sentence encoder to
obtain the sentence-level representation. We use CNN, LSTM, and GRU
as the sentence encoder for the baseline models, while in our proposed
approach, we employ BERT as the sentence encoder.

3.2.1. Recurrent neural network

In our task, we use Bi-directional LSTM (Bi-LSTM) [27] to model
features from both directions to provide additional context, as shown
in Fig. 1. At every time step, it looks at the current input and previous
hidden memory to generate its next output and hidden memory. LSTM
mainly uses its forget gate, input gate, and output gate to control its
output and next hidden memory. In our case, Bi-LSTM is used to obtain
the hidden representation of every word by processing multilingual
embeddings for the different languages at every time-step.

GRU [108] is also a special variant of RNN that deals with the
vanishing gradient problem to learn long-range dependencies. GRU
uses only two gates, reset and update, to control its output and hidden
memory. Thus GRU has fewer parameters to learn, which facilitates
efficient training. Similar to LSTM, GRU is used to get sentence rep-
resentation. The Bi-LSTM/GRU (both are used interchangeably in the
equations) hidden layers are represented as follows:

h, = LSTM (W], h,_,) 3)
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7, = LSTMw!, h,_)) 4

where - and -represent the forward and backward directions, respec-
tively. The concatenation of forward and backward hidden states yields
the final bidirectional hidden state &, at time 7.

(5)

The final hidden representation of a given utterance in a particular
language is fed as input to the softmax layer for identifying the intents
y' and slots y* simultaneously.

Ty = (hy, 1yl

¥ = softmax(W;h, + b;) (6)

()

Where, W, and W, are the transformation matrices and b; and b, are
the bias vectors for intent detection and slot filling, respectively.

y* = softmax(W,h, +b,)

3.2.2. Convolutional neural network

To perform text classification using CNN [25], a two-dimensional
matrix is created by stacking word embedding of the given sentence. L
dimensional convolution filters are applied to obtain a new represen-
tation of the given word. To compute the final hidden representation,
a max-pooling operation is performed across different filters as shown
in Fig. 2.

For the ith word in a given utterance, we consider x; € R? to be the
d-dimensional multilingual word vector. In the convolutional layer, we
feed x; having a filter k € R"?, which is applied to a window of h words
to produce a new feature for an utterance in a given language. From a
window of words x;.,,,_; we obtain a feature p; denoted by:

(8

where the bias term is represented by b. Similarly, the element-wise
multiplication and non-linear function are denoted by ® and f, respec-
tively. For the complete utterance, the feature map is represented as
p = [p1,P2s ..., Pp_ns1] Dy the application of the filter to every possible
window of words present in the utterance. To obtain the maximum
value for a particular filter, we apply a max-pooling operation p
max[p] for every utterance. In this study, to capture the features of a
given utterance, we utilize three different filters. Every convolutional
layer’s feature representation is concatenated and then fed as input
to the output layer with a softmax activation function to classify the
intents and slots in a given utterance in a similar manner as in the case
of Bi-LSTM/GRU.

pi = fkO®x;.ipp-1 +b)

3.3. Proposed MLMT model

In this section, we present our proposed methodology. In our current
work, we design the proposed network for three languages i.e., En-
glish, Hindi and Bengali. The proposed methodology can be extended
for multiple languages as well thereby making the model language-
invariant. As discussed earlier, the multilingual embeddings of different
languages can be computed as explained. In addition, the different
language information can be fed as input to the encoder followed by
task-specific layers to predict the corresponding intent and slots.

3.3.1. Bidirectional encoder representations from transformer

BERT [109] is an attention-based architecture to learn language
representations. It builds from the recent work in pre-training con-
textual representations d including semi-supervised sequence learning,
generative pre-training, ELMo, and ULMFit. Compared to these pre-
vious models, BERT is the first bidirectional, unsupervised language
representation, pre-trained using only a plain text corpus. Learned lan-
guage representations can be context-free or contextual and contextual
representation can be unidirectional or bidirectional.
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Fig. 1. Baseline multilingual RNN model with either LSTM or GRU as basic RNN units; here word embeddings of different language utterances are fed as input to the shared
RNN layer followed by the dense layer; finally, the task specific layer uses the dense representations for intent and slot predictions using MLP and CRF layer, respectively.
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Fig. 2. Baseline multilingual CNN Model, here the word embeddings are fed as input to the shared CNN layer followed by max pooling layer, the output of pooling layer is fed
as input to the dense layer and finally there are task-specific layers for intent and slot prediction.

In our baseline model, we use Fasttext context-free language repre-
sentation with a word having a single vector. For example, in context-
free representation the word “book” will have the same representation
in “book a cab” and “buy a book”. However, the contextual model will
generate a representation-based context formed by other words in the
given sentence. Hence, we propose our final model based on contex-
tual representation. BERT learns its contextual representations using
masked language modeling (MLM) and the next sentence prediction
(NSP) task.

The architecture of BERT is a bidirectional multilayer transformer
network, which is shown in Fig. 3. It takes wordpiece embeddings
[110], positional embeddings, and segment embedding as input. It is
composed of N identical transformer blocks. Every transformer can be
divided into two parts. The first part is multihead self-attention, and the
second is a position-wise feed-forward network. A residual connection
is used around each of the two sub-layers, followed by layer normaliza-
tion. After pre-training over a large corpus such as BooksCorpus [111]
and English Wikipedia, it is fine-tuned for different target tasks such as
intent detection and slot filling. Due to pre-training, the BERT model
achieves the capability of learning a powerful context-dependent rep-
resentation of sentences that is useful for many downstream utterance
level NLP tasks. Given a sequence of tokens in a given language x, ...,
x,, it computes a sequence of representations s = (h,, ..., h,) to capture
the contextual information for each token.

A special classification embedding ([CLS]) and a special token
([SEP]) is inserted as the first and final token, respectively. In [109], the
authors suggested using the [CLS] token’s final hidden state h for the
classification task, which should represent a fixed dimensional pooled
representation of the sequence. While in the sequence labeling task, for
every token x; in a given utterance sequence, its corresponding hidden
representation ; is used to classify into the target categories.

3.3.2. Multilingual BERT

To identify the intents and slots for multiple languages (in our case,
English, Hindi, Bengali), we employ Multilingual BERT (mBERT)* as
presented in Fig. 4 that has the similar architecture and training mecha-
nism as the BERT [109], with an exception that it has been trained from
Wikipedia in 104 languages. In mBERT, the training does not require
explicit cross-lingual or multilingual information such as the pair of
words, sentences, or documents linked across the languages (parallel
data). The modeling approach for WordPiece allows the system to
share the embedding across languages in mBERT. In distantly related
languages such as English and Bengali, the same word has a similar
meaning for both languages.

4 https://huggingface.co/bert-base-multilingual-cased.
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Fig. 3. The transformer block: takes wordpiece, positional and segment embeddings
as input; the transformer block consists of two parts: multi-head self-attention and the
feed-forward network.

The training uses a heuristic to sub-sample or over-sample words
when running WordPiece and sampling a training batch, random words
for cloze, and random sentences for next sentence classification to
account for varying sizes of Wikipedia training data in different lan-
guages. The mBERT described above has been extended to identify
intents and slots together for multiple languages simultaneously. Based
on the first special token ([CLS]) having hidden representation h,,
the intent of a given utterance U, for a particular language j can be
predicted as:

9

In the case of slot filling, the hidden representations of the other tokens
(hy, ..., hy) are fed as input to a softmax layer to identify the slot labels
for every word in a given utterance. To make soft filling suitable with
the WordPiece tokenization, every tokenized input word is fed to the
WordPiece tokenizer, and the corresponding hidden representation of
the first sub token is given as input to the softmax layer.

y = softmax(Wihl + b9,

y, =softmax(W°h,+b"),n€l...N (10)

where, the hidden representation corresponding to the first sub-token
word x, is denoted by h,,.

The objective function for simultaneously modeling the intent and
slots for a given utterance in a particular language is defined by:

PO,y /%) = pG! [OITY  p(ys /%)

In our case, the objective is to maximize the conditional probability
p(3',y*/x). The MLMT model is fine-tuned in an end-to-end fashion via
minimizing the cross-entropy loss.

1D

3.3.3. Conditional random field

Slot filling is a sequence labeling task where the slot label of a
particular word is dependent on the surrounding words. In the past
[35,84], structured prediction models such as CRF have been used for
improving the performance of the slot filling task.

305

Information Fusion 91 (2023) 299-315

Conditional Random Fields are undirected graphical models which,
given an observed sequence, help to achieve the conditional probability
of a label sequence. In our proposed model, we examine the effective-
ness of incorporating CRF for modeling the dependency among the slot
labels. This is done to increase the efficiency of prediction.

3.3.4. Attention

Generally, in mBERT, a linear layer is applied to the contextual
embedding to jointly classify intents and slots in a given utterance for
different languages. The different layers of BERT capture the syntactic
and semantic information of an utterance gradually. In the initial layer,
the BERT captures the syntactic information, while in the latter layers,
it acquires more semantic information [112]. For identifying the intents
and slots, we require a different amount of syntactic and semantic
information as it depends on the given utterance. Basically, BERT
generates L layers of hidden states for all the Byte Pair Encoding (BPE)
tokens for a given utterance.

Inspired by the work done in conversational question answering
[113] in which the weighted-sum approach between the hidden states
is employed to obtain contextualized embedding of the words assists in
improving the performance of the overall task, we also apply a similar
approach. Similarly, we employ a weighted sum of these hidden states
to obtain contextualized representation to incorporate the ability to
focus on the different features (syntactic or semantic) of a given utter-
ance. Suppose a word w is tokenized to s BPE tokens w = by, b,, ..., by,
and BERT generates L hidden states for each BPE token, hﬁ, 1<I<L,
1 <t < s. The contextual embedding BERT,, for word w is then
a per-layer weighted sum of average BERT embedding, with weights
@y, ..., a; as shown in Fig. 5.

3.4. Baseline models

We compare our proposed MLMT model with the following base-
lines and existing approaches, respectively:

3.4.1. Model variants

To demonstrate the effectiveness of each of the components in
the proposed model, we experiment with model variants having these
components.

1. CNN: This baseline utilizes the CNN framework to encode the
utterances described in Section 3.2.2 of the manuscript.

. LSTM: This baseline employs a bidirectional LSTM network for
encoding the utterances, as illustrated in Section 3.2.1 of the
manuscript.

. GRU: This baseline is similar to the previous baseline with
the difference being in the RNN cell, i.e., we use bidirectional
GRU for capturing the utterance representation as explained in
Section 3.2.1 of the paper.

. RoBERTa: In this baseline, instead of deep learning frameworks
such as CNN, LSTM, GRU, we utilize recent Transformer archi-
tecture RoBERTa [114] to encode the utterance for identifying
the intents and slots simultaneously.

. XLM: For capturing the utterance representation, in this baseline,
we employ the recently proposed XLM model [115] for the
detection of intents and slots.

. mBERT: In this baseline, we utilize multilingual BERT(mBERT)
architecture to encode the utterance for capturing the correct
intents and slots from different languages as explained in Sec-
tion 3.3.2 of the paper without having attention upon BERT
layers and CRF for slot filling.

. mBERT + Attn: In this baseline, we apply attention among
the different layers of the BERT architecture as discussed in
Section 3.3.4 of the manuscript without having the CRF layer.
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Fig. 5. BERT layer; here, weighted sum of the hidden states are calculated to obtain
contextualized representation in order to focus on the different features of an utterance.

3.4.2. Existing approaches

To demonstrate the effectiveness of our proposed model for the
English language (results in Table 7, we compare with the previous
State-of-the-Art (SoTA) models:

1. RNN-LSTM [67]: This existing framework utilizes a bi-direction
LSTM® network for jointly identifying the intents and slots from
a given user utterance.

2. Attention BiRNN [70]: In this framework, the authors employ an
attention-based bi-directional RNN model® for jointly detecting
intents and slots.

. Bi-Model with Decoder [73]: This framework uses a Bi-model
based RNN’ semantic frame parsing network structures designed
to perform the intent detection and slot filling tasks jointly by
considering their cross-impact to each other using two correlated
bidirectional LSTMs.

. Slot-Gated [74]: In this approach, a slot gate® focused on learn-
ing the relationship between intent and slot attention vectors to
obtain better semantic frame results by the global optimization
of both the tasks simultaneously is employed.

https://github.com/yvchen/JointSLU.
https://github.com/DSKSD/RNN-for-Joint-NLU.
https://github.com/ray075hl/Bi-Model-Intent-And-Slot.
https://github.com/MiuLab/SlotGated-SLU.
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5. Capsule-NLU [78]: In this framework, capsule network® via a dy-
namic routing-by-agreement schema was employed for capturing
the intents and slots jointly from the given user utterance.

6. BERT-Joint [85]: In this approach, the BERT framework was

utilized for joint intent detection and slot filling tasks.

. Hierarchical NLU [35]: This approach uses a hierarchical CNN-

RNN framework for concurrently detecting the intents and cap-
turing the slots from a given utterance.

To demonstrate the effectiveness of our proposed model for dif-
ferent languages (results in Table 9, we compare with the previous
State-of-the-Art models:

1. AIMT [62]: Attention-Informed MLT,' utilizing bi-directional
LSTM network was used as one of the baselines.

2. CoSDA-ML [95]: This existing approach utilizes mBERT'' along
with a data augmentation network to fine-tune the BERT archi-
tecture is also considered as one of the baselines.

4. Dataset

We conduct experiments on four datasets, namely ATIS [18], SNIPS
[74], FRAMES [116] and TRAINS [117].

4.1. ATIS dataset

An important by-product of the Defense Advanced Research Project
Agency (DARPA) program is the ATIS (Airline Travel Information
System) corpus. The ATIS corpus [18] is one of the most widely used
datasets for SLU tasks. ATIS corpus has a few variants, and in our
current work, we use the one as presented in [44]. The utterances in the
ATIS corpus are primarily about the people making flight reservations.
The dataset comprises of 17 distinct intent classes and 127 distinct slot
labels. The train set contains 4978 utterances, and the test set contains
893 utterances.

° https://github.com/czhang99/Capsule-NLU.
10 https://github.com/zliucr/mixed-language-training.
11 https://github.com/kodenii/CoSDA-ML.
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Table 3
Statistics of training and test sets and the total intent and slot distribution for all the datasets.
Language Dataset # Train # Test # Intent # Slot
ATIS 4978 893 17 127
Engish TRAINS 5355 1336 12 32
8 SNIPS 13084 700 7 72
FRAMES 20006 6598 24 136
ATIS 4221 780 16 108
Hindi TRAINS 3762 959 12 22
SNIPS 12152 700 7 72
FRAMES 9877 3841 24 119
ATIS 3956 741 16 100
Bengali TRAINS 3829 971 12 82
§ SNIPS 12762 700 7 72
FRAMES 6797 3852 24 104

4.2. TRAINS dataset

It is essential to capture the intent and slots present in a human con-
versation to create a robust spoken dialogue framework. The TRAINS
corpus is a set of problem-solving dialogues. The dataset has been
labeled with 32 slots and 12 intent classes. The training set contains
5355 utterances, and the test set contains 1336 utterances.

4.3. FRAMES dataset

The FRAMES corpus comprises of 1369 human-human dialogues.
The average length of dialogue is 15. The corpus is a series of con-
versations concerning multidomain hotel and trip reservations. The
training set contains 20 006 utterances, and the test set contains 6598
utterances. The corpus is labeled with 24 intents and 136 slots.

4.4. SNIPs dataset

This dataset is collected from Snips personal voice assistant, where
for each expressed intent, the number of samples is about the same. The
training set includes 13,084 utterances, and the test set includes 700
utterances. There are 7 labels of intent, while there are 72 labels of slots
in the dataset. Due to the diversity of intent labels and comprehensive
vocabulary, the SNIPs dataset is more complex.

4.5. Dataset creation

Due to the unavailability of Hindi and Bengali datasets for the
primary SLU tasks focusing on intent detection and slot filling, we
manually create the language-specific datasets. The existing English
datasets, such as ATIS, TRAINS, SNIPs, and FRAMES, have been manu-
ally translated using our in-house English to Indian Language Machine
Translation System.'? Human experts manually verified the translated
sentences for correctness. We assigned three Bengali and Hindi native
speakers with post-graduate experience for this particular task. Also,
for the translated utterances in Hindi and Bengali, the annotators
were assigned to annotate the utterances with their corresponding slot
values. As the word order changes in Hindi and Bengali as opposed to
English, we need to mark the slots for the translated utterances in both
languages to obtain the correct slot values. The inter-annotator score
of more than 90% was considered a valid agreement for the translation
in Hindi and Bengali. While annotating the translated utterances with
corresponding slot values, we observed the inter-annotator score with
more than 85%, which can be considered a reliable agreement. Table 3
shows the utterance, intent, and slot distribution for all the datasets for
various languages.

12 Currently, the MT systems show the BLEU scores in the range of 45-56
for English-Hindi and English-Bengali language pairs.
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5. Experiments

For implementation, we use the Python-based neural network pack-
age, Keras.!® Here, we define a baseline model based on CNN with two
convolutional layers having different filters (the filters used are 4,5,6)
followed by the max-pooling layer. We also use multilingual embedding
[118] as input to our CNN model, and we take it as a baseline for our
multilingual multitask model. The intermediate layers use the ReLU
activation function in our CNN method, whereas the last layer uses the
softmax activation function for intent detection and CRF for the slot
filling. We also use batch normalization after the activation function
to increase the stability of the neural network. In our LSTM/GRU
model, we use two layers of bidirectional LSTM/GRU. The first layer of
LSTM/GRU has 256 hidden units and the second layer of 128 hidden
units. For our BERT-based model, we use cased-multilingual BERT"*
for sentence-level as well as word-level representations. After getting
sentence representation (768 Dimension) from BERT, we fed it to the
next dense layer with 256 hidden neurons and finally to the softmax
for intent classification. We fed word representation (1024 dimension)
for slot prediction, which we took from BERT, into a fully connected
layer with 256 neurons and finally to the CRF layer for slot prediction.

6. Results and discussion

The results of various experiments, together with the analysis of
errors made by these approaches, are discussed in this section. The
detailed results of the baseline models, along with the proposed multi-
lingual multitask models, are analyzed. In comparison to the individual
task-specific methods, the usefulness of our proposed multitask sys-
tem is also demonstrated. Furthermore, the efficacy of our proposed
approach is exhibited in comparison to the language-specific multi-
task models. Besides, we provide a brief comparison of our proposed
framework with the state-of-the-art approaches for the English dataset.
As for the evaluation metrics in the case of intent detection and slot
filling tasks, we report accuracy and F1 score, respectively. We also
report template/overall accuracy for the sentence-level semantic frame
parsing. This metric ensures that the semantic information captured is
correct in a given utterance. This metric is evaluated similarly as [90].

6.1. Results

In Table 4, we provide the detailed results for both the SLU tasks
for all the languages, i.e., English, Hindi, and Bengali, for the different
baseline models followed by the results of the proposed model. From
the table, it can be seen that the CNN baseline models for all the
languages do not perform well in contrast to the other approaches for
either of the two tasks.

13 https://keras.io.
14 https://huggingface.co/bert-base-multilingual-cased.


https://keras.io
https://huggingface.co/bert-base-multilingual-cased

M. Firdaus et al.

Information Fusion 91 (2023) 299-315

Table 4
Results of multilingual multitask models. Here, MLMT: mBERT + Attn + CRF.
Dataset Models English Hindi Bengali
Intent Slot Template Intent Slot Template Intent Slot Template
(Accuracy) (F1 score) (Accuracy) (Accuracy) (F1 score) (Accuracy) (Accuracy) (F1 score) (Accuracy)

CNN 94.84 90.56 82.11 91.79 91.58 80.27 91.14 91.94 79.64
LSTM 95.18 91.78 82.89 92.89 92.47 76.89 92.33 92.62 75.89
GRU 95.98 92.94 82.19 93.97 93.38 77.43 92.96 93.01 76.27

ATIS RoBERTa 98.95 96.99 89.21 97.18 96.68 90.88 96.22 95.83 88.97
XLM 98.67 96.13 88.25 96.85 96.05 89.74 95.89 95.42 88.67
mBERT 98.15 96.85 88.78 96.18 95.12 89.95 95.37 95.14 88.93
mBERT + Attn 98.63 97.07 89.65 96.91 96.08 91.07 96.68 95.75 89.56
Proposed MLMT 99.18 97.93 90.05 97.59 97.24 91.33 96.91 96.31 90.14
CNN 82.01 94.12 81.05 81.88 93.76 81.78 81.76 94.78 81.95
LSTM 82.78 95.41 81.89 82.78 94.84 82.75 82.59 95.15 82.56
GRU 83.12 95.45 81.93 83.76 94.96 83.41 82.78 95.87 82.61

TRAINS RoBERTa 85.93 97.85 88.98 85.63 97.33 90.89 86.23 98.03 90.07
XLM 85.22 96.98 88.12 85.32 96.80 89.95 85.67 97.43 89.65
mBERT 85.16 97.95 88.78 85.52 97.27 90.34 85.51 97.08 89.85
mBERT + Attn 86.27 98.64 89.18 86.33 97.95 90.41 86.77 98.12 90.01
Proposed MLMT 86.45 99.01 89.56 86.76 98.99 91.34 86.94 99.05 90.56
CNN 73.87 83.05 71.56 70.19 79.23 67.42 69.24 80.96 69.87
LSTM 75.13 86.17 72.88 71.72 82.71 69.06 70.51 83.95 70.76
GRU 76.29 85.98 72.97 73.85 83.15 71.67 72.81 83.92 71.99

FRAMES RoBERTa 80.53 90.71 83.09 76.23 87.05 79.21 76.11 87.45 79.43
XLM 79.66 89.91 82.65 75.34 86.25 78.44 75.49 87.23 79.10
mBERT 79.15 89.82 83.15 75.37 86.02 79.21 75.51 86.95 79.35
mBERT + Attn 80.34 90.65 83.22 76.16 86.54 79.52 76.28 87.57 79.63
Proposed MLMT 80.91 91.67 83.56 76.32 87.39 79.67 76.43 88.29 79.98
CNN 93.37 88.95 83.22 90.19 82.67 78.90 89.94 81.92 76.54
LSTM 94.51 91.17 84.65 92.67 84.15 80.17 91.51 83.25 79.59
GRU 94.29 91.19 84.54 92.05 84.44 80.19 91.81 83.97 79.63

SNIPS RoBERTa 98.57 96.68 90.15 96.15 88.72 84.71 95.07 87.51 86.34
XLM 98.18 95.44 89.87 96.02 87.95 84.21 94.86 86.79 85.45
mBERT 98.25 95.85 90.43 95.59 88.12 84.33 94.51 86.85 86.72
mBERT + Attn 98.93 96.54 90.75 96.13 88.87 85.14 95.03 87.42 86.89
Proposed MLMT 99.11 97.08 91.20 96.42 89.79 85.60 95.19 88.23 87.21

This could be due to the inability of CNN to capture sequential
information. Though LSTM and GRU are similar, we still find GRU to
outperform LSTM by 1 point or more for both intent detection and
slot filling tasks, especially for Hindi in the case of all four datasets.
The GRU-based approach outperforms LSTM by 2% for the task of
intent detection in the case of the FRAMES dataset for both Bengali
and Hindi languages. From the experimental results, it is evident that
the baseline models employing CNN, LSTM, and GRU demonstrate
satisfactory performance for both the tasks for all the three languages,
still are not robust enough, and hence we employ the BERT framework.
The evaluation shows that the multilingual BERT approach outperforms
the previous baseline models with an improvement of at least 3%
or more for both the SLU tasks of intent detection and slot filling.
The performance of both the tasks increases when they are modeled
together; thereby, the shared representation of the sentence encoders
helps to collect intricate information about the language and task by
adding more knowledge to a particular utterance that helps in respect
of intent detection and slot filling.

By using attention among the different mBERT layers, we achieve
an improvement of almost 1% in the case of all the datasets for all
three languages. Hence, it can be concluded that the attention between
the mBERT layers enhances the accuracy and F1 score of the intent
detection and slot filling tasks, respectively. As already discussed in the
methodology section, we employ CRF to capture the label dependency
for the task of slot filling. Hence, our proposed model employs an
attentive mBERT with CRF for identifying the intents and slots in a
given utterance. For the slot filling task, it is noticeable that CRF
gives an increase of almost 1% hence enriching the performance of the
model. While we do not employ CRF for intents in the proposed frame-
work, we still see performance improvement for intent detection in
our final proposed model. This is because CRF implicitly improves the
performance of the intent detection task by enhancing the performance
of the slot filling task.
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Since both the tasks are interrelated, improvement in the task of
slot filling also helps to improve the performance of intent detection
and vice versa. Experimental results in Table 4 verify the fact that
improvements are made using an attentive mBERT as the sentence
encoder along with CRF with a gain of at least 5% from the baseline
models (CNN) for both the tasks. As opposed to deep learning frame-
works such as CNN, LSTM, GRU, recent Transformer architectures (such
as RoBERTa, XLM) have performed remarkably better, showcasing the
effectiveness of these networks. With attentive BERT and CRF, our
proposed architecture performs better than RoOBERTa and XLM models
validating the significance of attention and CRF for both tasks. As it
is evident from the Table, the overall accuracy of our proposed MLMT
framework is higher than all the baselines indicating that the proposed
architecture is capable of identifying the correct semantic information
in a given utterance. In comparison to the CNN, LSTM, GRU models,
we see an improvement of more than 4 points in the case of all the
languages for different datasets. In comparison to RoBERTa and XLM
frameworks, our proposed MLMT network performs better for both
tasks. This is mainly because we have applied attention to BERT’s
different layers to focus on different semantic information captured
by the different layers. Also, using CRF at the final layer boosts the
performance of our proposed framework in comparison to RoBERTa
and XLM models. It can be concluded that the ability to identify the
correct intents and slot information from different languages belonging
to different domains is performed well by our proposed framework.

6.2. Multilingual multitask models vs. multilingual single-task models

For a complete analysis of our work, we compare the multilingual
individual frameworks to examine the efficacy of the proposed multi-
lingual multitask model. We implement the task-specific models using
identical settings and parameters which detect intents and slots for all
the languages individually.
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Table 5
Proposed MLMT model vs. Multilingual individual model (For all the languages). Here, MLMT: mBERT + Attn + CRF.
Dataset Task English Hindi Bengali
Intent Slot Intent Slot Intent Slot
(Accuracy) (F1 score) (Accuracy) (F1 score) (Accuracy) (F1 score)
mBERT (Only ID) 97.70 - 95.97 - 93.85 -
ATIS mBERT (Only SF) - 94.35 - 93.17 - 93.23
Proposed MLMT 99.18 97.93 97.59 97.24 96.91 96.31
mBERT (Only ID) 83.19 - 83.50 - 84.14 -
TRAINS mBERT (Only SF) - 97.76 - 96.22 - 95.36
Proposed MLMT 86.45 99.01 86.76 98.99 86.94 99.05
mBERT (Only ID) 76.89 - 74.56 - 73.84 -
FRAMES mBERT (Only SF) - 88.89 - 83.56 - 87.91
Proposed MLMT 80.91 91.67 76.32 87.39 76.43 88.29
mBERT (Only ID) 96.83 - 93.15 - 93.85 -
SNIPS mBERT (Only SF) - 93.39 - 84.66 - 84.98
Proposed MLMT 99.11 97.08 96.42 89.79 95.19 88.23
Table 6
Multilingual multitask BERT model vs. Language-specific multitask BERT model.
Dataset English Hindi Bengali
Intent Slot Intent Slot Intent Slot
(Accuracy) (F1 score) (Accuracy) (F1 score) (Accuracy) (F1 score)
98.18 95.91 - - - -
- - 94.79 94.19 - -
ATIS - - - - 93.87 94.88
99.18 97.93 97.59 97.24 96.91 96.31
84.41 96.89 - - - -
- - 83.39 95.80 - -
TRAINS - - - - 83.14 96.66
86.45 99.01 86.76 98.99 86.94 99.05
78.73 89.49 - - - -
- - 73.19 85.87 - -
FRAMES - - - - 74.89 86.85
80.91 91.67 76.32 87.39 76.43 88.29
96.89 95.73 - - - -
- - 94.02 87.22 - -
SNIPS - - - - 92.98 85.11
99.11 97.08 96.42 89.79 95.19 88.23

Evaluation results of the multitask model and individual models
for all the languages are presented in Table 5. Contrary to the single-
task models, it is quite clear from the table that the multitask system
performs better. For intent detection tasks on the ATIS dataset, there is
an increase of approximately 2% for English, more than 2% for Hindi,
and more than 3% for Bengali, respectively, compared to the individual
intent detection model. There is more than 3 points improvement for
the slot filling task for English, Bengali, and Hindi languages in our
proposed MLMT approach that performs both the task simultaneously
compared to the slot filling model(single task).

Similarly, for the TRAINS dataset, there is an increase of at least
2% for both the tasks in all the languages compared to the individual
intent and slot models. Also, for the FRAMES dataset and SNIPS dataset,
the multitask model performs better for all the languages for both
tasks. It is visible from the evaluation results presented in Table 5
that information sharing between the SLU tasks helps enhance the
performance of both the tasks simultaneously in the MLMT model.
Hence, it can be concluded that the MLMT model outperforms the
individual slot filling and intent detection models for all the languages.

6.3. Multilingual multitask models vs. language specific multitask models:

Furthermore, to validate the efficacy of our proposed multilingual
multitask framework, we compare it to the language-specific multi-
task models. Using the same parameter settings, we implement the
language-specific multitask models that detect intent and extract the
slots simultaneously for every language.
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In Table 6, we display the results of the proposed multilingual mul-
titask model and language-specific multitask models. From the table, it
is evident that the MLMT model shows better performance as opposed
to the language-specific multitask models. The fact that the information
between the languages is shared can be seen from the results as there is
marked improvement in the MLMT models. Also, information sharing
among the related languages is visible in the case of Hindi and Bengali,
as performance improvements for these languages in the MLMT models
are more significant than the language-specific models in comparison
to English. For all the datasets and for both the tasks of SLU, the MLMT
models outperform the language-specific models.

6.4. Comparison of the proposed MLMT model with the existing approaches

We compare the proposed MLMT model with the existing ap-
proaches for both intent detection and slot filling tasks in addition to
the task-specific and language-specific models. In Table 7, we present
the results for all the datasets in the case of the English language. MLMT
outperforms existing approaches for both tasks on all the datasets.
There is a marked improvement of more than 1 point for both the
tasks in the case of the SNIPS and FRAMES dataset in comparison
to [35]. There is an increase in accuracy and F1 score for ATIS and
TRAINS dataset compared to the previous approaches. Hence, it can
be established that the proposed MLMT model is better than all the
existing models. The improvement of MLMT compared to the existing
baselines is primarily because jointly training for different language
sharing of information between languages facilitates boosting the per-
formance for every language as opposed to language-specific models.
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Table 7
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Comparative results of the existing approaches with the proposed MLMT model (For English only);RNN-LSTM: employs a Bi-directional LSTM
network, Attention BiRNN: uses attention based bi-directional LSTM network, Bi-Model with Decoder: employs two correlated BiLSTMs, Slot-
Gated: slot-gated attention using BiLSTM, Capsule-NLU: employs capsule networks, BERT-Joint: Uses BERT architecture for both the task,

Hierarchical NLU: Uses Hierarchical CNN + CRF.

Models ATIS SNIPS TRAINS FRAMES

Intent Slot Intent Slot Intent Slot Intent Slot
RNN-LSTM [67] 94.2 92.6 96.9 87.3 62.35 82.66 60.20 85.84
[Hakkani-Tur et al. 2016]
Attention BiRNN [70] 98.43 95.87 97.29 90.14 80.61 94.41 63.30 88.63
[Liu et al. 2016]
Bi-Model with Decoder [73] 98.99 96.89 97.65 92.46 81.41 95.29 64.17 88.36
[Wang et al. 2018]
Slot-Gated [74] 94.10 95.20 97.00 88.80 75.66 81.44 59.42 78.36
[Goo et al. 2018]
Capsule-NLU [78] 95.0 95.2 97.7 91.8 76.28 80.56 60.74 79.12
[Zhang et al. 2018]
Bert-Joint [85] 97.8 95.7 99.0 96.2 80.58 93.84 65.29 87.34
[Castellucci et al. 2019]
Hierachical NLU [35] 99.09 97.32 98.24 94.38 83.99 98.93 79.64 89.94
[Firdaus et al. 2019]
Proposed MLMT 99.18 97.93 99.11 97.08 86.45 99.01 80.91 91.67

Table 8
Analysis of multi-lingual multi-task model vs. Individual model (For all the languages).

Utterance Proposed Multilingual Multi-task Model Multilingual Intent Multilingual Slot
Model Model
Intent Slot
What is MCO? abbreviation B-airport_code airport B-airport_code
Fraer Segiiea watferee & waden aert i1 AddToPlaylist B-artist I-artist AddToPlaylist B-artist I-artist O O
(Gribal instrooments plelist mein sabareena saalerno B-playlist I-playlist
joden.)
(Add Sabrina Salerno to the grime instrumentals playlist.)
AR QD RIS Wy PTrpIfE eIe =12 AR RS | City B-city_name Flight B-from.loc_city.name
(Apani bostana theke anya kachakachi prasthana sahara
suparisa korte pare.)
(Could you suggest another nearby departure city from
Boston.)
Music from Clark Kent in the year 1987 PlayMusic B-artist I-artist O AddToPlaylist B-artist O O
TSt retrel 7 g 1 fepaeft SgH et 29 Quantity B-airline_code Flight O B-class_type O
(Bijanes klass mein TWA ki kitanee udaanen hotee hain?) B-class_type O
(How many flights does TWA have in business class?)
AT 15 2 Weeq) WA @It frems w1 Sfoo! book_hotel B-hotel_name book_hotel O O B-city_name
(Amara senta lui madhye mahimanbita hotela rijarbha B-city_name
kara ucita.) I-city_name

(Should we reserve Glorious hotel in St Louis.)

The attention among different layers of BERT helps capture relevant
semantic and syntactic information for correctly identifying the intents
and slots simultaneously from a given user utterance.

6.5. Comparison of our proposed MLMT model with multilingual ap-
proaches

To better understand the effectiveness of our proposed Multilin-
gual Multitask framework, we compare our proposed method with
the recent multilingual approaches reported in [62,95]. Both of these
existing frameworks are built upon the BERT architecture. In Table 9,
we present results of the different existing approaches for different
languages compared to our proposed MLMT network. From the table,
it is evident that our proposed framework performs better than the
existing multilingual networks. This is mainly due to the fact that our
proposed network is capable of focusing on different layers of the BERT
with the help of attention. The CRF layer also further improves the
performance of the slot and implicitly of the intent tasks due to the
inherent capacity of CRF that captures the dependency between the slot
labels. Also, existing approaches utilize a zero-shot learning paradigm.
In contrast, our approach uses a joint training mechanism for different
languages (having annotated data for every language) simultaneously,
enhancing the performance of our proposed work.
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6.6. Result analysis

We perform a detailed analysis of the results obtained from the
proposed MLMT model to gain better insights. In comparison to the
individual models, multitask models show improved performance as
both the tasks are highly correlated. Table 8 shows a few examples
of the identified intents and slots from both the multitask model and
the individual models. As it is evident from the table, the multitask
model has been able to identify the correct intents and slots due
to information sharing between the tasks. In contrast, the individual
models (for intent and slot) encountered a few errors in identifying the
correct slots and intents in an utterance for all three languages. We
see that the predicted intents and slots are correctly identified in the
multitask model compared to the individual models for all the datasets
and languages.

Table 11 presents the predicted intent examples from the multilin-
gual multitask models and the language-specific multitask models. It
is evident from the table that the proposed model can predict correct
intents instead of the language-specific models. This is mainly because
the information across different languages is shared in the proposed
model, and this provides more evidence in comparison to the language-
specific models. Hence, the proposed model can learn the different
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Table 9

Comparative results of the existing multilingual approaches with the proposed MLMT model.

Information Fusion 91 (2023) 299-315

Model description English

Hindi

Bengali

Intent (Accuracy) Slot (F1 score)

Intent (Accuracy)

Slot (F1 score) Intent (Accuracy) Slot (F1 score)

AIMT [62] 99.05 97.65 96.65 97.20 95.86 96.21
ATIS CoSDA-ML [95] 99.13 97.78 97.17 97.22 96.64 96.25
Proposed MLMT 99.18 97.93 97.59 97.24 96.91 96.31
AIMT [62] 85.46 98.73 86.27 98.14 86.73 98.43
TRAINS CoSDA-ML [95] 86.12 98.95 86.58 98.64 86.81 98.77
Proposed MLMT 86.45 99.01 86.76 98.99 86.94 99.05
AIMT [62] 79.14 90.98 75.87 86.56 75.89 87.64
FRAMES CoSDA-ML [95] 80.55 91.23 76.09 87.12 76.21 88.05
Proposed MLMT 80.91 91.67 76.32 87.39 76.43 88.29
AIMT [62] 98.67 96.54 95.78 89.32 94.37 87.86
SNIPS CoSDA-ML [95] 99.02 96.83 96.32 89.54 94.80 88.11
Proposed MLMT 99.11 97.08 96.42 89.79 95.19 88.23

Table 10

Results of the existing multilingual approaches with the proposed MLMT model on Spanish-Thai dataset [62].

Model description Spanish

Intent (Accuracy)

Slot (F1-Score)

Thai

Intent (Accuracy) Slot (F1-Score)

AIMT [62] 87.88 73.89
Multi-CoVe [119] 85.39 72.87
CoSDA-ML [95] 94.80 80.40
Proposed MLMT 95.11 82.23

73.46 27.12
70.70 35.62
76.80 37.30
77.50 39.04

patterns and information in all three languages, showcasing improved
performance compared to the other language-specific multitask models.

In Table 10, we present the results of our proposed framework along
with the existing baselines on the Spanish-Thai dataset [62,119]. From
the results, it is evident that the proposed framework in comparison
to the existing baselines shows improvement on the recently proposed
Spanish-Thai [62,119] dataset having 12 intents and 11 slots in total.
The existing baselines AIMT [62], Multi-CoVe [119] and CoSDA-ML
[95] achieve the intent accuracy of 87.88, 85.39 and 94.80, respec-
tively, for the Spanish while our proposed MLMT framework yields
an intent accuracy of 95.11 showcasing the efficacy of our proposed
network. Similarly for the Thai dataset, the MLMT network outperforms
the existing baselines for both the tasks. The attentive BERT framework
along with CRF improves the performance of both the tasks, thereby
giving better scores for both the languages.

From Table 11, it is evident that intents are correctly identified
in a multilingual setting, proving the efficacy of our proposed MLMT
framework. As intents and slots are closely related, therefore identify-
ing the correct intents is crucial for predicting the necessary slots in a
particular utterance. By jointly training for all the three languages, we
see that for the Hindi language, the proposed framework has correctly
identified the intent “AddtoPlaylist” compared to the monolingual
model that wrongly predicts the intent of the given utterance. Since
the intent is wrongly identified the corresponding slot information is
also incorrect as “kraibafish” is labeled as “restaurant-name” instead of
“B-playlist”. Similarly, in the case of the Bengali language, we see that
identifying correct intents through multitask training for both the tasks
has improved the performance of the model.

6.7. Error analysis

In this section, we highlight the major sources of errors, and discuss
them. The key errors committed by the proposed model are listed
below:

+ Long utterances: Utterances, which are longer in length and hav-
ing their intents present at the end are not correctly recognized.
For example, “put playa fly onto my 2010 decade playlist” is
wrongly labeled as “PlayMusic”, while the correct label is “Ad-

dToPlaylist”. In case of Bengali,
gt S 3 e (S wsfrreR Y IR a3 W SR TS WG Zibro S 51317
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(Hyald ami 3 sundara chota sbargadiitéra khusi baba ébam ami
tadéra samastaké ajlbana chutité anaté cai.) (“Hello I am the
happy father of 3 beautiful little angels and I would like to bring
them all on the vacation of a lifetime.”) is wrongly labeled as
“Other” while the correct intent is “Provide_info”.

Ambiguity in utterances: These types of errors occur when the
utterances themselves are unclear. For the example, “Excellent!
Can you see what is available in Athens?”, the predicted intent is
“City”, but according to the context the correct intent is “Trip”.
Also in case of Hindi, the utterance “@= f&& tesw f@m”(Teen kisse
elbam dikhaen.)(“Show the three tales album.”) is wrongly identi-
fied as “SearchScreeningEvent” while the correct intent is
“SearchCreativeEvent”.

Unseen phrases: This type of error occurs when the words and
phrases are not present during training. Example: In case of
slots, the utterance “Maybe milan” is predicted with the slot
label “O” while the correct label is “B — city_name”. For Bengali,
the words (“¥%< 31§”) (Oyailda kantri) (“Wild Country”) in
the utterance “9% - 5 wrwia caifSiob waas I @ S (Fi ganati
amara plélisteéoyailda kantri yukta karuna.)(“Add this song to my
playlist named Wild Country.”) is wrongly labeled as (“O O”)
while the correct tags are (B — playlist I — playlist).

Insufficient instances: These kind of errors occur when a partic-
ular class is under-represented. For example, the utterance “How
many Canadian airlines international flights use J31?” is pre-
dicted as “Airlines” while the correct intent is “Quantity”. Simi-
larly for Hindi,
e srifea - g6 W T we Tt o e g & T e dedt & sfter SR aw o £

(Amerikan eyaralains par mujhe udaanen dikhaen jo sent luis
ke raaste sent peetarsabarg se ontaariyo kailiphorniya tak jaatee
hain.) (“Show me the flights on American Airlines which go from
St. Petersburg to Ontario California by way of St. Louis.”) the
word &f-wiffr (California) is wrongly labeled as “I — city_name”
while the correct slot label is “B — state_name”. Also the word
«HggE” (St. Louis) is incorrectly tagged as “B — city_name I —
city_name” while the correct tags are “B — stoploc.city_name I —
stoploc.city_name”.
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Table 11

Analysis of multi-lingual multi-task model vs. Monolingual multi-task models (For Intent).

Information Fusion 91 (2023) 299-315

Utterance
multi-task Model

Proposed multilingual

Monolingual
English model

Monolingual
Hindi model

Monolingual
Bengali model

Find now and forever SearchScreeningEvent PlayMusic - -

B weiferee § chatther S| AddtoPlaylist - BookRestaurant -

(Meree plelist mein kraibafish joden.)

(add the crabfish to my playlist.)

A AP TIART A AL BT 136 27rfa T00 AR Flight - - Airfare

(Apani amake dalasa theke arthaniti bhara phlaita

pradarsana karate parena?)

(Can you show me the economy fares flights from dallas.)

would like to know the aircraft on a flight from cleveland to Aircraft Flight - -

dallas

T ot # o TafafREt e 822 Amenity - Package_info -

(Is paikej mein kya gatividhiyaan shaamil hain?)

(What activities are included in this package?)

oA ety e =2 | City - - Trip

(Apani kyaligari agrahi habe.)

(Would you be interested in Calgary.)

Table 12
Statistical significance results.
Datasets Models English Hindi Bengali
Intent Slot Intent Slot Intent Slot

CNN 1.09E-065 2.55E-074 1.46E-070 1.83E-062 6.48E—066 1.52E-054
LSTM 2.43E-064 2.61E-071 4.14E-067 9.99E-058 1.04E-060 1.79E-048

ATIS GRU 1.17E-060 7.94E-068 7.91E-063 7.07E-051 4.24E-057 1.27E-043
mBERT 2.01E-042 3.51E-043 1.79E-047 4.35E-054 6.73E-049 9.73E-045
mBERT + Attn 1.52E-032 1.51E-039 7.65E-036 2.50E-044 7.17E-020 8.03E-033
CNN 1.32E-060 3.21E-052 8.66E—065 2.86E-045 2.83E-063 1.19E-046
LSTM 4.84E-056 2.86E-040 1.04E-060 3.44E-044 3.83E-059 1.83E-041

TRAINS GRU 1.53E-053 8.03E-033 1.08E-054 7.16E—020 1.68E-050 5.42E-021
mBERT 4.89E-046 6.98E-043 2.12E-045 1.09E-050 1.06E-047 6.80E-053
mBERT + Attn 9.71E-017 1.47E-026 8.55E-029 1.41E-042 4.76E-016 8.60E-041
CNN 9.56E-074 5.33E-077 6.31E-071 4.47E-078 6.58E-073 1.03E-077
LSTM 1.66E—070 1.43E-069 5.01E-066 3.22E-070 1.89E-069 4.90E-071

FRAMES GRU 7.93E-067 3.93E-070 3.34E-055 5.17E-061 2.14E-060 9.39E-060
mBERT 4.61E-051 7.15E-052 3.94E-041 5.24E-047 1.28E-040 1.19E-046
mBERT + Attn 4.28E-033 2.88E-042 2.47E-015 2.32E-039 1.36E-014 9.70E-037
CNN 2.16E-070 2.29E-074 9.76E-072 5.56E-073 6.32E-069 2.18E-069

SNIPS LSTM 2.04E-057 2.03E-068 2.48E-058 2.02E-065 6.54E-058 9.51E-065
GRU 9.64E-059 9.51E-065 1.17E-061 1.76E-059 1.05E-061 1.47E-061
mBERT 1.51E-039 2.86E-045 5.52E-039 3.28E-050 7.66E-036 3.99E-047
mBERT + Attn 9.71E-017 2.92E-032 4.77E-023 1.28E-040 2.47E-015 1.34E-038

6.8. Statistical significance test

A statistical hypothesis test called Welch’s t-test [120] is performed
at a significance rate of 5% (0.05) to confirm whether the performance
improvement in our proposed model is statistically significant. This is
intended to prove that the best accuracy of our proposed method is
statistically significant and has not happened by chance. The perfor-
mance metric (accuracy) is obtained by 20 consecutive runs of each
algorithm for the statistical test on all the datasets. We measure the p-
values provided by Welch’s t-test to compare two groups to assess the
statistical significance of our approach as shown in Table 12. Hence,
from the table, it can be concluded that the results are statistically
significant.

7. Conclusion and future work

Conversational systems are an important application that is sup-
posed to assist people in leading their lives comfortably in the up-
coming years. With the advancement in technology, understanding the
user for providing the correct answers to their queries is essential for
building efficient dialogue agents. In this paper, we have proposed a
multilingual multitask model for the two primary SLU tasks, i.e., slot
filling and intent detection.
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We have used a CNN and recurrent neural network with LSTM
and GRU as basic cells for sentence representation as to the baseline
models. We have used BERT in our final proposed model to encode
the utterances that all languages share in order to learn the intricate
details among the languages. Both the intent and the slot filling tasks
share the representations learned from these models. We have captured
the language and task information in our proposed methodology, which
helps to model the utterance of different languages and share the
information among the tasks through a common sentence encoder.
Experiments on four datasets are performed to evaluate our proposed
MLMT model. Empirical results show that the proposed multilingual
multitask model exhibits superiority over the individual models for a
particular task and language. It also outperforms state-of-the-art slot
filling and intent detection tasks on all the datasets regardless of the
domain or nature of the English language datasets. It also allows our
model to correctly identify the intents and slots for different languages
using multilingual word embedding. With the help of CRF, we can learn
the dependency among labels for the slot filling task.

As future work, we plan to integrate semantic knowledge in or-
der to model these SLU tasks as well. In addition, we would like to
use different deep learning techniques such as memory networks and
auto-encoders to capture contextual information for dialogue datasets.
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