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A B S T R A C T

Community structures within attributed heterogeneous information networks (AHINs) serve as valuable tools
for comprehending the functional properties inherent in the real-world systems they mirror. The diverse
semantics embedded in AHINs play a pivotal role in shaping distinct community formations. Many existing
methods detect communities in AHINs based on the same-type nodes without specifying semantic meanings,
resulting in unclear and potentially ambiguous outcomes. Additionally, by adopting a simple strategy that
focuses solely on either graph structures or node attributes, they fail to sufficiently integrate heterogeneous
information and maintain semantic consistency throughout the entire detection process. In this paper, we
propose IDCD, a user-interest-driven community detection framework on AHINs, which groups heterogeneous
nodes following specified user guidance for semantics-clear results. Firstly, we map heterogeneous nodes into
one unified representation space by neatly integrating user-interest-related heterogeneous information. Then
we assign pseudo community labels to nodes and refine them in a self-training way. These two processes are
iteratively optimized and enhanced mutually in a unified framework. Extensive experiments demonstrate the
superiority of IDCD.
. Introduction

A community or modular structure is generally defined as a group
f nodes that have dense connections to each other and probably
hare common properties [1]. Such structure widely exists in real-
orld networks and accounts for their functionality [2]. Community
etection, aiming at partitioning a network into multiple subgraphs
2–5], provides direct insight into how the network is organized. It has
any interesting applications in various practical domains [6–8].

Heterogeneous Information Networks (HINs) (in which there are
ultiple type nodes/edges) are effective in modeling real-world net-
orks because they are much more expressive than homogeneous

nformation networks (in which all nodes/edges are of one single
ype) in capturing complex graph-structured knowledge [9–11]. HINs
ith node attributes are called attributed HINs or AHINs for short.
he multiple types of nodes are connected via different relations, re-
erred to as meta-paths, implying diverse semantic meanings1 [12]. The
ealth of information in AHINs provides great potential for community
etection [11,13] while complicating the community detection task.

∗ Corresponding author.
E-mail addresses: liumengyue@stu.xjtu.edu.cn (M. Liu), liukeen@xjtu.edu.cn (J. Liu), dyx1102@stu.xjtu.edu.cn (Y. Dong), rui.mao@ntu.edu.sg (R. Mao),

ambria@ntu.edu.sg (E. Cambria).
1 We employ the term ‘‘semantic meaning’’ for differentiation from ‘‘pragmatic meanings’’ in our analytical framework, where ‘‘pragmatic meanings’’ are not

he focus of this work.

Firstly, multi-typed nodes with similar characteristics are often
densely connected, sharing the same topic [14]. Secondly, various
semantics implied by meta-paths can be irrelevant or even opposite for
a community detection task, leading to completely different detecting
processes of communities. As shown in Fig. 1, we use a toy-attributed
heterogeneous bibliographic network as an example to demonstrate
community detection processes in an AHIN. The toy bibliographic
network contains three types of nodes: author (A), paper (P), and
venue (V), and two types of edges: write and accept. Two abstracted
meta-paths, A-P-A and A-P-V-P-A, indicate semantic meanings of the
co-author relationship and research area, respectively.

Detecting communities via each of them will generate different
results: three communities in orange (Group A, B, C) via A-P-A, or
two communities in green (Group 1, 2) via A-P-V-P-A. In each result,
heterogeneous nodes cohere with the same semantic meaning, forming
a complete semantic unit. For example, Group 1 (2) includes a set
of research area-related authors, papers, and venues. Obviously, via
each meta-path, the detected communities are reasonable, but via a
combination of them, the result will be meaningless.
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Fig. 1. A toy heterogeneous bibliographic network, and the detected communities are
enclosed by several dash circles in two different colors (green and orange). The results
of community detection vary with the selection of meta-path. Following A-P-A path,
three orange communities Group A, B, C are detected, indicating scholar cooperation.
Following A-P-V-P-A path, two green communities Group 1, 2 are detected, indicating
research areas.

The unique characteristics inherent in AHINs necessitate the de-
velopment of a novel paradigm for community detection. Within this
framework, users play a pivotal role by offering guidance to tailor
the identification of communities to their specific areas of interest.
Following the new paradigm, community detection of AHINs presents
richer and more meaningful community information. However, it faces
two main challenges, i.e., how to exploit heterogeneous information
related to user interest; how to capture community information.

Interest-related heterogeneous information utilization. Hetero-
geneous information in AHINs consists of heterogeneous network struc-
tures, multiple semantic meanings, and node attributes, which are
important sources when measuring the similarity between nodes.

Firstly, it is difficult for users to capture their interest-related hetero-
geneous information or provide clear guidance for a certain community
detection task. Most existing methods detect communities on AHINs
without any user supervision, obtaining inaccurate communities of
which the physical formation mechanism is inexplicable [15,16]. A few
community detection methods for HINs (AHINs) adopt label constraints
such as anchor nodes [17] or a ‘‘must-link’’ set [18,19] to determine
a weighted combination of meta-paths for their desired community
detection task. However, label constraints can be invalid and unreliable
when they appear in more than one community detection process.
Besides, it is difficult for users to provide explicit label constraints and
exhaustive meta-paths.

Secondly, the challenge lies in the simultaneous integration and
utilization of heterogeneous information due to their disparate data
structures. Certain earlier methods [16,17] characterized by a link-
based approach, tend to overlook the incorporation of node attributes,
which are instrumental in elucidating the formation of communities;
Some recent methods [15,18,20] intend to leverage all information
to make themselves more general whereas have the same information
missing problem [21] as homogeneous methods: multiple homogeneous
sub-networks projected from original AHINs are fed to them. Then, the
information of other types of nodes is not utilized essentially.

Community information capture. Traditional community detection
methods for HINs design various community division metrics for dis-
tinct topology characteristics, which cannot be generalized to all kinds
of real-world HINs [22,23]. In recent years, heterogeneous network
embedding techniques have become a potent tool for the community
detection task because they are not limited to specific heterogeneous
network structures. They leverage heterogeneous information to embed
2

nodes within AHINs, subsequently identifying community structures
through the application of various clustering algorithms, such as 𝑘-
eans. The subsequent community detection process can be indepen-
ent of the embedding process [24–26] or unified with it [15,16].
onetheless, an independent optimization approach is susceptible to
rror propagation, given the typically independent assumptions be-
ween network embedding techniques and clustering techniques. On
he other hand, methods employing a unified optimization approach
end to neglect aligning the semantics of the network embedding
rocess with the community detection process. This oversight allows for
he introduction of noisy semantic meanings, disrupting the semantic
onsistency throughout the entire community detection task.

In this work, we propose IDCD (Interest-Driven Community
etection) to address the above challenges and detect meaningful

communities for heterogeneous nodes in AHINs. To address the first
challenge, IDCD follows a simple yet efficient user guidance, i.e., a
meta-path related to user interest, to guarantee a unique and accurate
community detection process. A heterogeneous information encoder is
proposed to leverage user interest-related heterogeneous information
and map heterogeneous nodes into one lower-dimensional represen-
tation space. Specifically, meta-path-based random walks capture the
network structures of heterogeneous nodes, and an attributes aggrega-
tor utilizes similarities measured by attributes of heterogeneous nodes
to select more informative nodes for the community detection task.
To address the second challenge, we assign pseudo community labels
to the obtained embeddings via a Gaussian mixture model and adopt
a variant self-training clustering objective to make the assumptions
between the network embedding process and community detection
process coherent. During this process, heterogeneous node representa-
tions and community assignments are jointly optimized and mutually
improved in a unified framework.

The main contributions of our work are as follows:

• We elaborate and refine the community detection task in AHINs
by introducing a user-interest-driven approach, allowing for the
customization of community detection according to specific se-
mantic meanings within the network. The detected communi-
ties are not only heterogeneous in composition but also aligned
with user-specified semantics, leading to more meaningful and
targeted communities.

• We propose a simple but efficient network embedding-based com-
munity detection model, termed IDCD. It contains an efficient
two-step sampling strategy that first leverages meta-path-based
random walks to capture network structure, succeeded by an
attribute-based selection to identify informative nodes. By fa-
voring Gaussian Mixture Models over the common reliance on
Student’s t-distribution, IDCD provides novel perspectives for se-
lecting distributions in community detection.

• We extract four real-world datasets for applying to the new
paradigm of community detection on AHINs. Extensive experi-
ments on these datasets demonstrate that IDCD consistently and
significantly outperforms the state-of-the-art baselines (3.68% on
ACC, 5.91% on NMI, 4.06% on ARI).

2. Related work

Traditional community detection methods. Early community detec-
tion methods for HINs adopt graph partition algorithms to divide
HINs [22,23]. The most used graph partition algorithm is modularity
maximization, and the definitions of modularity vary from HIN struc-
tures. For example, Barber [22] developed a modularity matrix for
bipartite networks, and Zhang and Chen [23] defined a heterogeneous
modularity function for general HINs. However, the modularity max-
imization problem is NP-hard and requires an unreasonable amount
of time [27]. Spectral clustering is another prevalent graph parti-
tion algorithm. SClump [16] adopts spectral clustering and performs

eigen-decomposition on heterogeneous similarity matrix, then applies
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standard clustering techniques, such as 𝑘-means to partition nodes in
HINs. However, spectral clustering can be unreliable when the network
is very sparse [2]. Another class of community detection methods
adopts statistical inference such as fitting a generative network model
on the data. For example, PathSelClus [17] proposes a probabilistic ap-
proach and integrates meta-path selection with user guidance, aiming
to detect communities that are semantically consistent with the user
demands. Significantly, however, all of the algorithms presented so far
are link-based clustering algorithms that cannot take advantage of node
attributes. Meanwhile, they can only cluster same-type nodes in HINs
and are uneasy to generalize to cluster heterogeneous nodes.

Network embedding-based methods. In recent years, network embed-
ding as an important technique to learn low-dimensional representa-
tions for nodes in networks presents us with a potent tool for commu-
nity detection. Network embedding can effectively capture highly non-
linear network structures and preserve the global and local structure,
providing deep representations for networks. The general community
detection process is: firstly, researchers adopt some HIN embedding
methods to obtain node latent representations, and then apply some
traditional clustering algorithms to the obtained embeddings to learn
their community assignments. These two steps can be optimized in a
separate way or a unified way.

For a separate optimization strategy, many outstanding HIN embed-
ding methods can be replaced freely in the first step and can be divided
into two categories. (1) Random walk-based methods: Metapath2vec [28]
defines meta-path based random walks to capture network structures
and leverages Skip-gram [29] to learn node embeddings. HIN2Vec [30]
carries out multiple prediction training tasks jointly based on a target
set of relationships to learn latent vectors of nodes and meta-paths.
However, they are limited in capturing node attributes. (2) Hetero-
eneous Graph Neural Networks (HGNNs)-based methods: They obtain
ore powerful embeddings via employing deep neural networks to

he aggregate information of neighboring nodes [18,24–26,31]. For
xample, HAN [24] and HGT [25] are extensions of GAT [24] and they
esign node-type and semantic/edge-type attention neural networks
o embed nodes in HINs or dynamic HINs. HeCo [26] proposes a
ovel co-contrastive learning mechanism to embed nodes. HGNN-based
mbedding methods have shown superior ability to embed nodes, but
hey may achieve sub-optimal results on community detection, since
heir representation learning process is independent of the community
etection task.

For a unified optimization strategy, a few methods are designed
o make the network embedding process aligned with the community
etection task. O2MAC [15] employs one informative graph view to
econstruct multiple graph views and integrates the reconstruction
rocess with a self-training clustering process to cluster nodes and
earn community-aware node embeddings. VACA-HINE [20] employs a
ariational approach to preserve pairwise proximity in a cluster-aware
anner and utilizes a contrastive approach to preserve high-order
IN semantics. However, O2MAC and VACA-HINE do not provide
ny user guidance for the community detection task and use multiple
eta-paths, which can be opposite to each other or irrelevant to a

lustering task, preventing meaningful community detection results.
CHAIN-IRAM [18] notices this problem and uses a ‘‘must-link’’ set
nd a ‘‘cannot-link’’ set to supervise the clustering process. However, in
eality, such supervision signal is possible to exist in different clustering
esults, and the semantic information in obtained communities can still
e ambiguous.

. Preliminaries and problem definition

.1. Preliminaries

efinition 1 (Attributed Heterogeneous Information Network (AHIN)
32]). An AHIN is defined as 𝐺 = (𝑉 ,𝐸, ) with a node-type mapping
unction 𝜙 ∶ 𝑉 → , an edge-type mapping function 𝜑 ∶ 𝐸 →, and
| + || > 2.  =

⋃

O𝑗∈ 𝐹O𝑗
and 𝐹O𝑗

= {𝑓1, 𝑓2,…} is an attribute set
3

orresponding to nodes of type 𝑂𝑗 ∈ .
Table 1
Notation description.

Notation Description

𝐺 Attributed heterogeneous information network
𝑉 , 𝐸,  Node/edge/attribute set of 𝐺
,  Node/edge type set
F Heterogeneous attribute matrix
 Meta-path
𝑇 Target type
 Semantic-related node corpus
𝐳𝑖 Latent representation of node 𝑣𝑖 ∈ 𝑉
 Cover (set of detected communities)
𝐾 The numbers of communities
𝐶𝑘 A set of nodes belonging to 𝑘th community
𝐪𝑖 Community assignment of node 𝑣𝑖
𝑞𝑖𝑘 Strength of association between node 𝑖 and community 𝑘
𝜋𝑘 Mixing coefficient of community 𝑘

Example 1. In Fig. 1, an AHIN 𝐺 = (𝑉 ,𝐸, ) contains three types
of nodes  = {A, P, V} (A for author, P for paper, V for venue), and
wo types of edges  = {𝑟1, 𝑟2} (𝑟1 for write, 𝑟2 for accept), and node

attributes set  = {𝐹A, 𝐹P, 𝐹V}, and 𝐹A = {𝑓1, 𝑓2}, 𝐹P = {𝑓3, 𝑓4}, 𝐹V =
𝑓5, 𝑓6} denote attribute set of author, paper and venue, respectively.

efinition 2 (Meta-path [12]). A meta-path  ∶ 𝑂1
𝑅1
⟶ 𝑂2

𝑅2
⟶⋯

𝑅𝑙
⟶

𝑙+1 defines a composite relation 𝑅 = 𝑅1◦𝑅2◦… ◦𝑅𝑙 between 𝑂1 and
𝑂𝑙+1, where ◦ denotes the composition operator on edges. 𝑙 is the length
of  . Subscripts (1, 2,… , 𝑙) represent their positions in  .

Example 2. As shown in Fig. 1, meta-paths A
r1
⟶ P

r−11
⟶ A and

A
r1
⟶ P

r−12
⟶ V

r2
⟶ P

r−11
⟶ A denote the semantic meanings of co-author

relationship and research area, respectively.

Definition 3 (Overlapping Community [33]). A group of overlapping
communities can be defined as a cover  = {𝐶1, 𝐶2,… , 𝐶K} [34]. In
this cover, node 𝑣𝑖 is associated with a community by a belonging factor
(also referred to as community assignment) 𝐪𝑖 = [𝑞𝑖1,… , 𝑞𝑖𝑘,… , 𝑞𝑖K],
where 0 ≤ 𝑞𝑖𝑘 ≤ 1 and ∑K

𝑘=1 𝑞𝑖𝑘 = 1 [35].

Example 3. In Fig. 1, Group 1 and Group 2 are two overlapping
communities. 𝐪7 is the community assignment of node 𝑎7, and 𝐪7 =
[0.49, 0.51] denotes the probabilities of 𝑎7 belonging to Group 1 and
Group 2 are 0.49 and 0.51, respectively.

More details about the notations used in this paper are listed in
Table 1.

3.2. Problem definition

As we discussed before, detecting communities in AHINs requires
user guidance to avoid the ambiguous semantic information hiding in
multiple meta-paths. Moreover, the heterogeneous nodes are clustered
because of their inherent semantic consistency.

The problem of community detection in an AHIN is formulated as
follows:

Problem 1 (Interest-Driven Community Detection on AHINs). Given an
AHIN 𝐺 = {𝑉 ,𝐸,}, an interest-driven community detection needs
user guidance on specifying: (1) the number of communities K, and (2)
a meta-path  implying one semantic meaning which user is interested
in.

The output includes two parts:

(1) Community-aware heterogeneous node embeddings.
(2) A cover  = {1,2,… ,K} consists of detected communities on

𝐺, and the semantic information behind the generation of  is
consistent with the meta-path  .
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Fig. 2. The framework of IDCD.
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4. The proposed methodology

The framework of the proposed model IDCD is shown in Fig. 2. IDCD
consists of two main components: heterogeneous information encoder
and community detector. (1) With a semantic-specific meta-path and
node attributes, the most informative nodes are selected to guide the
heterogeneous information encoder to embed heterogeneous nodes
into one representation space. (2) Community detector assigns pseudo
community labels to the learned node representations and refines them
with an auxiliary distribution in a self-training way. The embedding
process and community detection process are jointly optimized and
mutually enhanced in a unified way.

4.1. Heterogeneous information encoder

Given an AHIN 𝐺 = {𝑉 ,𝐸,}, and specified meta-path  , we adopt
a two-layer fully connected neural network 𝑔 to encode heterogeneous
nodes into one representation space. As meta-path  may not involve
all types of nodes, we denote the set of involved types as  =
{O1,… ,Om}, 𝑚 ≤ ||. We construct a heterogeneous attribute matrix 𝐅
as follow:

𝐅 =

⎡

⎢

⎢

⎢

⎢

⎣

𝐅O1
𝟎 ⋯ 𝟎

𝟎 𝐅O2
⋯ 𝟎

⋮ ⋮ ⋱ ⋮
𝟎 𝟎 ⋯ 𝐅Om

⎤

⎥

⎥

⎥

⎥

⎦

where 𝐅O𝑗
∈ R|𝑉O𝑗 |×|𝐹O𝑗 | denotes attribute matrix of O𝑗 -type nodes

(𝑗 = 1,… , 𝑚), and 𝑉O𝑗
is the set of nodes belonging to type O𝑗 . The

heterogeneous attribute matrix 𝐅 is fed to embed heterogeneous nodes
into one 𝑑-dimensional embedding space:
{

𝐡𝑖 = relu
(

𝐟𝑖𝐖1 + 𝐛1
)

𝐳𝑖 = 𝐡𝑖𝐖2 + 𝐛2
(1)

where 𝐟𝑖 is the i-row of 𝐅, and 𝐖1,𝐖2 is the weight matrix of layer 1
and 2 of 𝑔, respectively.

We apply a graph-based loss function, a variant of negative sam-
pling [29], to the output representations. This loss function encourages
nearby nodes to have similar representations, while enforcing that the
representations of disparate nodes are highly distinct:

𝑒𝑚𝑏 = − log 𝜎(𝐳𝑖 ⋅ 𝐳𝑡𝑗 ) −
M
∑

𝑚=1
E𝑣𝑡𝑚∼𝑃𝚗𝚎𝚐(𝑣𝑡)

(

log 𝜎(−𝐳𝑖 ⋅ 𝐳𝑡𝑚)
)

, (2)

where 𝜎(𝑥) is the sigmoid function, 𝑃𝚗𝚎𝚐 is a negative sampling distri-
bution, and M defines the number of negative samples. The superscript
𝑡 of 𝐳𝑡𝑗 indicates node 𝑣𝑗 belonging to type 𝑡. 𝐳𝑡𝑗 is the representation of
a 𝑡-type positive samples of 𝐳𝑖, and 𝐳𝑡𝑚 is the representation of a 𝑡-type
negative samples. Eq. (2) indicates that for one node 𝑣𝑖, its negative
sample and positive sample should belong to the same type, so as to
make the contrasting pairs potent. For instance, in Fig. 2, 𝑎3’s A-type
neighborhood is 𝑁A(𝑎3) = {𝑎2, 𝑎4}, P-type neighborhood is 𝑁P(𝑎3) =
4

{𝑝3}, and the corresponding negative sample is 𝑎1 and 𝑝1, respectively.
Generally, the positive and negative samples can be selected from
random walks [36,37]. However, such a process has two limitations.
First, the whole process ignores integrating node attributes. Secondly,
they pay less attention to sampling informative positive and negative
samples [38]. On the one hand, positive samples contribute differently
to the training. For example, an expert in the neural network field is
the last coauthor of a paper in the software engineering field, thus this
paper contributes little to the embedding process of the expert. On the
other hand, negative samples should not exist in a positive sample set,
while negative sampling has no limitation on this.

To address above mentioned problem, we design a two-step sam-
pling strategy. First, we sample the semantic-related network structures
based on the specified meta-path. Then we further sample informative
nodes based on node attributes.

Step1. Semantic-related Structure Sampling: We adopt a meta-path-
based random walker [28] to traverse the AHIN 𝐺, based on a specified
meta-path  . The set of traversed nodes is denoted as 𝑉𝑠 = {𝑣1,… , 𝑣𝑛},
𝑛 ≤ |𝑉 |, referred to as node corpus. For instance, given a meta-path
 ′ ∶ A1

R1
⟶ A2

R2
⟶ A3, we start from a node 𝑣𝑖 (𝜙(𝑣𝑖) = A1), and

the next step we will arrive at node 𝑣𝑗 , which is satisfied with: (i)
𝜑(𝑣𝑖, 𝑣𝑗 ) = R1 and (ii) 𝜙(𝑣𝑗 ) = A2. If H nodes are satisfied with the
above two conditions, we will randomly select one with a probability
1∕H. By simulating a number of random walks of a fixed length starting
from every node belonging to type A1, 𝐺 is extracted as lots of random
walks. For each walk, a window 𝑤 is given to demarcate the region
of positive samples. For a central node 𝑣𝑖, heterogeneous neighbors
within the window 𝑤 (𝑤-hop) are regarded as its positive samples, i.e.,
(𝑣𝑖) = {𝑣𝑗 |𝑑(𝑣𝑖, 𝑣𝑗 ) ≤ 𝑤}, and 𝑑(𝑣𝑖, 𝑣𝑗 ) denotes the geometric distance

etween 𝑣𝑖 and 𝑣𝑗 . The negative samples are drawn according to their
nigram distribution raised to the 3/4 power.

tep2. Node Attribute-based Sampling: In order to sample more in-
ormative positive and negative pairs, we further select heterogeneous
odes based on their attributes. For a central node 𝑣𝑖, we collect all
ts 𝑡-type neighbors 𝑁𝑡(𝑣𝑖) and select informative ones. The sampling
robability for each 𝑣𝑡𝑗 is defined as:

(𝑣𝑡𝑗 |𝑣𝑖) =

⎧

⎪

⎨

⎪

⎩

exp(𝑠𝑖𝑚(𝐟𝑖 ,𝐟𝑗 )∕𝜏)
∑

𝑣𝑗′ ∈𝑁𝑡 (𝑣𝑖 ) exp(𝑠𝑖𝑚(𝐟𝑖 ,𝐟𝑗′ )∕𝜏)
𝜙(𝑣𝑖) = 𝑡

exp(𝑠𝑖𝑚(𝐟aggr
𝑖 ,𝐟𝑗 )∕𝜏)

∑

𝑣𝑗′ ∈𝑁𝑡 (𝑣𝑖 ) exp(𝑠𝑖𝑚(𝐟
aggr
𝑖 ,𝐟𝑗′ )∕𝜏)

𝜙(𝑣𝑖) ≠ 𝑡
, (3)

where 𝑠𝑖𝑚(⋅, ⋅) is based on cosine similarity, and 𝜏 is a hyper-parameter
tuned to the distinction of positives. When the positive sample belongs
to the same type as the central node, we can directly calculate the
similarity based on their attributes 𝐟𝑖, 𝐟𝑗 . When they belong to different
types, we use an aggregator function to assign a new attribute 𝐟aggr

𝑖 for
the central node 𝑣𝑖 with all its 𝑡-type neighbors:

𝐟aggr
𝑖 ← MEAN

{

𝐟𝑗 ,∀𝑣𝑗 ∈ 𝑁𝑡(𝑣𝑖)
}

. (4)

In practice, we set a sampling ratio 𝜂 for positive node selection, and
the value of 𝜂 varies from different datasets, empirically set to 0.8.
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Negative samples are filtered from the obtained negative pair set
by eliminating those that exist in 𝑣𝑖’s neighborhood. The sampling
probability formula for negative samples resembles Eq. (3). However,
the distinction lies in the fact that the softmax function operates on
the reciprocal of the similarity between a central node and a negative
sample. The informative nodes sampling strategy is off-line without
much extra consumption.

4.2. Community detector

Aim to align node representation learning to the community detec-
tion task, the community detector attaches some community informa-
tion to the obtained embeddings for guidance, learning community-
aware node embeddings. The whole process consists of two parts:
community assignment and self-training.

Community assignment . Mixture models are widely used in clustering.
hey assume that the observations to be clustered are drawn from
ne of several components [39]. Under this assumption, the problem
f community detection undergoes a transformation into an inference
roblem involving the parameters of components, specifically focusing
n identifying the memberships of nodes within these components.
s community detection is an unsupervised task, the primary role of
ommunity assignment is to assign pseudo-community labels for nodes
ith the characteristics behind their embeddings.

We adopt Gaussian Mixture Model (GMM) to depict the distribu-
ions of node embeddings in the latent space. Suppose that there are K
ommunities in an AHIN 𝐺 = {𝑉 ,𝐸,}. With the node representation
𝐳𝑖 ∈ R𝑑 learned from heterogeneous node encoder, the marginal
distribution of 𝐳𝑖 is formulated as:

𝑝(𝐳𝑖) =
K
∑

𝑘=1
𝜋𝑘 (𝐳𝑖|𝝁𝑘,𝜮𝑘), (5)

where 𝜋1,… , 𝜋K are the mixing coefficients corresponding to K com-
ponents, satisfying ∑K

𝑘=1 𝜋𝑘 = 1 (𝜋𝑘 ∈ [0, 1]). The density function of a
multivariate Gaussian distribution  (𝐳𝑖|𝝁𝑘,𝜮𝑘) is given by:

 (𝐳𝑖|𝝁𝑘,𝜮𝑘)=
1

(2𝜋)𝑑∕2
1

|𝜮𝑘|
1∕2

⋅ exp{−1
2
(𝐳𝑖− 𝝁𝑘)⊤𝜮−1

𝑘 (𝐳𝑖− 𝝁𝑘)}, (6)

where 𝝁𝑘 ∈ R𝑑 and 𝜮𝑘 ∈ R𝑑×𝑑 is the mean vector and covariance matrix
of the 𝑘th Gaussian component 𝐶𝑘. |𝜮𝑘| denotes the determinant of 𝜮𝑘.

From Bayes rule, the probability that a data point 𝐳𝑖 comes from 𝑘th
Gaussian model is calculated as:

𝑞𝑖𝑘 =
𝑝(𝐶𝑘 = 1)𝑝(𝒛𝑖|𝐶𝑘 = 1)

∑K
𝑗=1 𝑝(𝐶𝑗 = 1)𝑝(𝒛𝑖|𝐶𝑗 = 1)

=
𝜋𝑘 (𝐳𝑖|𝝁𝑘,𝜮𝑘)

∑K
𝑗=1 𝜋𝑗 (𝐳𝑖|𝝁𝑗 ,𝜮𝑗 )

=
𝜋𝑘 exp(‖𝐳𝑖 − 𝝁𝑘‖

2∕2𝜮2
𝑘)

∑K
𝑗=1 𝜋𝑗 exp(‖𝐳𝑖 − 𝝁𝑗‖

2∕2𝜮2
𝑗 )
.

(7)

𝑞𝑖𝑘 measures the similarity between embedded point 𝐳𝑖 and 𝑘-centroid
(𝝁𝑘,𝜮𝑘), and is interpreted as the probability of assigning node 𝑣𝑖 to
cluster 𝐶𝑘. Therefore, the soft community assignment of 𝑣𝑖 is defined
as 𝐪𝑖 = [𝑞𝑖1,… , 𝑞𝑖K].

Self-training . According to the soft assignment vector q𝑖, we obtain a
pseudo community label of node 𝑣𝑖. Aim to enhance the ‘‘credibility’’
of the pseudo label, inspired by [40,41], we introduce an auxiliary
target distribution to refine the process of community assignment. The
auxiliary target distribution is defined as:

𝑝𝑖𝑘 =
𝑞2𝑖𝑘∕

∑

𝑖 𝑞𝑖𝑘
∑ 2 ∑

. (8)
5

𝑘′ (𝑞𝑖𝑘′∕ 𝑖 𝑞𝑖𝑘′ )
ere, we first raise 𝐪𝑖 to the second power, strengthening the confi-
ence of the higher community assignments. Then we normalize it with
luster frequencies ∑

𝑖 𝑞𝑖𝑘.
Then, we approximate auxiliary distribution 𝑃 with the obtained

Gaussian mixture distribution 𝑄 to refine the community assignments.
The difference between 𝑃 and 𝑄 is measured with Kullback–Leibler(KL)
ivergence, and the community detection loss is defined as:

𝑐𝑙𝑢 = KL(𝑃 ∥ 𝑄) =
∑

𝑖

∑

𝑘
𝑝𝑖𝑘 log

𝑝𝑖𝑘
𝑞𝑖𝑘

. (9)

Note that KL divergence is asymmetric and the positions of 𝑃 and 𝑄 in
Eq. (9) are important.

By minimizing 𝑐𝑙𝑢, nodes with higher ‘‘credibility’’ will supervise
the rest nodes gathering towards the right communities.

4.3. Jointly optimization

We jointly optimize these two components and define an overall loss
function of IDCD as:

 = 𝑒𝑚𝑏 + 𝛼𝑐𝑙𝑢. (10)

where 𝛼 > 0 is a coefficient that balances the heterogeneous node learn-
ing and clustering optimization. 𝑐𝑙𝑢 not only enhances the cohesive-
ness of nodes within communities but also introduces community-level
knowledge into the heterogeneous node embedding process. However,
before we learned effective node representations, approximating the
target distribution 𝑃 with posterior distribution 𝑄 would mislead the
training direction. To tackle the problem, we only train the hetero-
geneous node embedding loss at the initial stage, and then gradually
increase the weight of clustering loss. The pseudocode for IDCD, is
given in Algorithm 1.
Algorithm 1: The proposed IDCD

Input: an AHIN: 𝐺 = {𝑉 ,𝐸,}, semantic-related meta-path  ,
window size 𝑤, walk length len, number of walks 𝑤𝑘, number
of communities K, coefficient 𝛼, update interval 𝐼 , sampling
probability of positive samples 𝑝pos, sampling probability of
negative samples 𝑝neg, the number of pre-train epoch 𝐿.

Output: node embeddings 𝐙, community detection result .
1 Initialize an node corpus  = ∅.
2 for iter = 1 : wk do
3 for each 𝑣𝑖 ∈ 𝑉𝑠 do
4 𝑊𝑣𝑖 = metapathBasedRandomWalker(𝐺, T,  , len),
5 Append 𝑊𝑣𝑖 to  .
6 end
7 end
8 Select informative positive pair set 𝑝 ← 𝑝pos().
9 Select informative negative pair set 𝑛 ← 𝑝neg().
10 for epoch = 0 : L do
11 Pre-train 𝑔 and updated its parameters by minimizing 𝑒𝑚𝑏
12 end
13 repeat
14 𝐙 = 𝑔(𝐅,𝑝,𝑛).
15 if 𝑒𝑝𝑜𝑐ℎ%𝐼 == 0 then
16 Update 𝝁,𝜮,𝝅 of clustering layer with GMM(𝐙).
17 end
18 Calculate soft assignment 𝑄 by Eq.(7);
19 Calculate target distribution 𝑃 by Eq.(8);
20 Calculate  according to Eq.(2), Eq.(9);
21 Update parameters of IDCD by minimizing .
22 Update community assignments in  according to 𝑄.
23 until Early Stopping or Convergence;
24 return node embeddings 𝐙, community detection result .

4.4. Complexity analysis

IDCD first generates semantically related random walks using one or
more assigned meta-paths. This step involves a variable 𝑆 representing
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Table 2
Dataset statistics.

Dataset Node types # Nodes Relations
(As-At)

# Relations Avg.Degree
of As

Avg.Degree
of At

Meta-path
used

#
clusters

# attribute
dimension

% of largest
cluster

% of smallest
cluster

DBLP ⋆Author (A)
Paper (P)
Venue (V)
Term (T)

14,475
14,376

20
8,920

AP
PV
PT

41,794
14,376

114,624

2.89
1.00
7.97

2.91
718.80
12.85

APA
APTPA
⋆APVPA

4 61 33.54% 15.40%

MovieLens ⋆User (U)
Movie (M)

1,631
5,526

UM 128,926 79.04 23.33 ⋆UMU 4 14 35.87% 16.72%

Yelp ⋆User (U)
Restaurant (R)
City (C)
Description (D)
Style (S)

15,883
13,064

10
11

511

UR
RC
UU
UD
RS

198,397
14,284

158,590
76,875
40,009

12.49
1.09
9.98
4.84
3.06

15.18
1428.40
9.98
6988.63
78.30

UU
URU
⋆URCRU

10 1603 44.00% 0.65%

AMiner ⋆Author (A)
Paper (P)
Venue (V)

41,274
18,243

12

AP
PV

106,026
18,235

2.57
1.00

5.81
911.75

APA
⋆APVPA

4 512 35.37% 15.25%
5
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the number of meta-paths, the number of walks 𝑤𝑘, and the walk
length 𝐿. The time complexity for traversing a graph with |𝑉 | nodes
using meta-path-based random walks is 𝑟𝑤(|𝑉 | ∗ 𝑆 ∗ 𝐿 ∗ 𝑤𝑘). How-
ver, this step is executed only once before training begins and hence
oes not contribute to the per-epoch time complexity. Then, IDCD
esigns a heterogeneous information encoder to warm up the model
nd transforms 𝐷-dimensional input attributes into 𝑑-dimensional node
mbeddings with time complexity 𝑒𝑛𝑐 (|𝑉 | ∗ 𝐷 ∗ 𝑑), which is part of
he per-epoch complexity. The embedding loss (a negative sampling-
ased loss function), which includes M negatives, is computed with

time complexity of 𝑒𝑚𝑏(|𝑉 | ∗ (M + 1) ∗ 𝑑). The community detector
ssesses the discrepancy between each of the |𝑉 | node embeddings and

the 𝑘 central embeddings, with a time complexity of 𝑐𝑙𝑢 = 𝑐𝑙𝑢(|𝑉 | ∗
𝑘 ∗ 𝑑). Combining these complexities, the per-epoch time complexity
of IDCD is derived as IDCD = 𝑒𝑛𝑐 (|𝑉 | ∗ 𝐷 ∗ 𝑑) + 𝑒𝑚𝑏(|𝑉 | ∗ (M + 1) ∗
𝑑) + 𝑐𝑙𝑢(|𝑉 | ∗ 𝑘 ∗ 𝑑), which simplifies to (|𝑉 | ∗ (𝐷 +M + 1 + 𝑘) ∗ 𝑑).

5. Experiments

We evaluate IDCD with the following research questions:

• RQ1: How effective is our IDCD compared to the state-of-the-art
baselines?

• RQ2: How different soft assignment distribution 𝑄 affects the perfor-
mance?

• RQ3 (Sensitivity Analysis): How the runtime parameters of IDCD
affect the overall performance?

• RQ4 (Case Study): How different meta-paths influence the process
of community detection in AHINs?

5.1. Experiments setup

5.1.1. Datasets
As the existing datasets do not provide labels for heterogeneous

nodes in AHINs. We construct four AHINs from four widely used net-
works, including AMiner,2 DBLP,3 MovieLens4 and Yelp,5 ranging from
academic networks to social networks. Table 2 shows their statistics.

• AMiner and DBLP are academic networks which contain biblio-
graphic entities. AMiner contains three different types of nodes:
venue (V), author (A), and paper (P), and DBLP contains one
more type: Term (T). We collect nodes from four research areas
including Database, Data Mining, Computer Vision and Machine

2 https://www.aminer.cn/citation.
3 https://dblp.uni-trier.de.
4 https://grouplens.org/datasets/movielens/25m/.
5

6

https://www.yelp.com/dataset.
Learning,6 and leverage the statistical of user publications and the
paper abstract to generate node attributes.

• MovieLens is a social network collecting data of users interacting
on the MovieLens7 online recommender system. We collect users
(U), and movies (M) from 16 sub-classes which are categorized
into four movie genres: Drama, Comedy, Horror, and Fantasy. The
attributes consist of user ratings and watching history.

• Yelp is a rating website where users can write reviews and rate
various businesses. We select users (U), restaurants (R), 10 cities
(C), and attribute information of users and businesses such as
tags, ratings and food preferences to construct our attributed
heterogeneous Yelp dataset.

.1.2. Baselines
To demonstrate the superiority of our approach, we compare IDCD

ith 17 popular or state-of-the-art methods in two classes: traditional
ommunity detection methods, and embedding based community de-
ection methods.

1) Traditional Community Detection Methods.

• Louvain [42] is a heuristic method based on modularity opti-
mization for homogeneous information networks, and is widely
used because of its speed.

• CNM [43] is a hierarchical agglomeration algorithm for homo-
geneous networks which greedily optimizes the modularity with
linear running time.

• FluidC [44] is the first propagation-based algorithm which is able
to identify a variable number of communities in homogeneous
networks.

• SClump [16] is a spectral clustering method which constructs a
similarity matrix with different meta-paths to detect communities
in HINs.

2) Embedding based Community Detection Methods. The former
ine methods are network embedding methods, and we apply 𝑘-means
o their obtained embeddings for community detection tasks. The latter
ive methods embed nodes and detect communities in a unified way.

• Node2vec [37] is a representative random walk-based embed-
ding model in homogeneous networks and embeds nodes via a
biased random walk procedure.

• VGAE [45] is a variational inference-based model which pro-
poses a variational auto-encoder to embed nodes in homogeneous
information networks in an unsupervised way.

6 https://scholar.google.com/citations?viewop=topvenues.
7 http://movielens.org/.

https://www.aminer.cn/citation
https://dblp.uni-trier.de
https://grouplens.org/datasets/movielens/25m/
https://www.yelp.com/dataset
https://scholar.google.com/citations?viewop=topvenues
http://movielens.org/
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• Metapath2vec [28] is a representative random walk-based em-
bedding algorithms in HINs. It exploits meta-paths and proposes
a heterogeneous skip-gram model to learn node embeddings.

• HIN2Vec [30] learns embeddings of both nodes and meta-paths
in the HIN by predicting relationships between nodes.

• HHNE [46] employs meta-path guided random walk and embeds
nodes in HINs into a hyperbolic space.

• HDGI [47] disassembles HINs into homogeneous graphs with
meta-paths and obtains node embeddings by maximizing local–
global mutual information.

• HAN [24] is a HGNN-based method which adopts hierarchical
attention (node-level and semantic-level attentions) to embed
nodes in AHINs.

• HeCo [26] contrasts network schema view and meta-path view
to embed nodes in AHINs in a self-supervised way.

• ComE [48] designs a closed loop among community embedding,
community detection and node embedding, and jointly optimizes
them to embed nodes in homogeneous information networks.

• DEC [40] learns node embeddings and cluster assignments by
designing a self-training clustering objective.

• SDCN [49] introduces a dual self-supervised mechanism to unify
GCN and DNN models to cluster nodes in homogeneous informa-
tion networks.

• GUCD [50] combines Markov Random Fields with a GCN layer
as an encoder, and introduces a community-centric dual decoder
to detect communities in homogeneous information networks.

• O2MAC [15] reconstructs multiple graph views with one in-
formative graph view to learn node embeddings, and utilizes a
self-training clustering objective to detect communities in AHINs.

.1.3. Implementation details
arameter settings. For a fair comparison, we run each algorithm 20
imes and report the best results. For methods designed for homoge-
eous information networks, we map the original AHINs into homoge-
eous ones by following the semantic-related meta-path (marked by ⋆

in Table 2). For methods designed for HINs that require multiple meta-
paths to detect communities, we feed them with all meta-paths listed
in Table 2. For the semi-supervised method HAN, the split ratios of the
training set, validation set and test set are as same as the original paper.
For random walk-based methods including node2vec, metapath2vec,
HIN2vec, and HHNE, we set the window size, walk length, number
of walks, and the number of negative samples following their original
papers or tune to get their best experimental results. For self-training
based methods SDCN, O2MAC and IDCD, we train node representation
learning process individually at the first 30 epochs to initialize the
embedding weight parameters. Embedding dimensions of embedding-
based baselines are tuned to be optimal. For the proposed IDCD, we set
the number of walks wk to 5, walk length len to 10, negative sample to 2
and window size w to 5. The parameter 𝛼 is tuned in the range of [0, 1].
The sizes of hidden layer dimensions are set to 64, 32, 4 and 10 with
respect to AMiner, DBLP, MovieLens, and Yelp datasets, respectively.
All baselines are conducted on a Tesla V100-PCIE-32 GB GPU.

Evaluation metrics. We adopt three commonly used metrics to evalu-
ate the community detection performance: Clustering Accuracy (ACC),
Normalized Mutual Information (NMI) and Adjusted Rand Index (ARI)
[51]. ACC finds the best matching between the community assignment
taken from a community detection method and a ground truth assign-
ment. NMI is a normalization of the Mutual Information score ranging
from 0 (no mutual information) to 1 (perfect correlation). The value of
ARI is in the interval [−1.0, 1.0], where negative numbers indicate poor
clustering results, 0.0 stands for random labeling, and 1.0 for perfect
matching. The higher these metric values are, the better the community
7

detection performance is.
5.2. Results (RQ1): The effectiveness

Since most baselines are designed to detect communities for the
same-type nodes, and a few baselines embed heterogeneous nodes,
we set two scenarios: (1) detecting communities for same-type nodes
(marked with ⋆ in Table 2); (2) detecting communities for multiple-
type nodes.

(1) Detecting communities for same-type nodes. We make the
following observations from Table 3:

• Generally, network embedding-based methods perform better than
most traditional methods. Unified community detection strategies
are better than two-stage strategies. Note that SClump achieves sat-
isfying results because it utilizes eigen-decomposition to obtain 𝑘
most important eigenvectors, which shares similar ideas with net-
work embedding-based methods to represent nodes with key latent
features. In addition, not as expected, the performances of O2MAC are
poor and do not conform with the above observations. That might be
because the most informative view selected via modularity in O2MAC
is not consistent with the community detection task, presumably
providing harmful signals.

• We can observe that IDCD achieves the best community detection
result for a single type of nodes in AHINs, indicating its effective-
ness. In particular, IDCD improves the best baselines by relatively
0.56% to 3.68% in ACC scores, 0.92% to 5.91% in NMI scores and
0.86% to 4.06% in ARI scores over the four datasets. It can be
attributed to that IDCD avoids noisy information and captures all
kinds of related heterogeneous information for the task. Furthermore,
by learning node representation and identifying communities simul-
taneously, IDCD enables a community-aware node representation for
community detection.

(2) Detecting communities for multiple-type nodes.
From Table 4, we observe that IDCD outperforms the other baselines

across different evaluation metrics except for ARI on DBLP. Note that
HHNE also performs well and has the same setting as ours: following
one meta-path to reconstruct network structures, free from noisy infor-
mation. However, HHNE is an embedding method and is independent
of the community detection task. Such a pipeline way is prone to error
propagation and results in suboptimal performances.

Furthermore, we utilize t-SNE [52] to visualize the community
structure information within the learned node embeddings. We show
representative visualization results on the DBLP network in Fig. 3.
Points in HeCo are mixed together, and in SClump gather into a bunch
of little clusters, but they have no clear community structures. The
results of O2MAC are a little better but the red cluster, cyan cluster
and blueviolet cluster are tightly close to each other. HHNE is much
better but fails to cluster points in red. Our IDCD performs the best,
and the boundaries of each community are clear.

5.3. Result (RQ2): Effects of different soft assignment distribution Q

Inspired by the most trending clustering model DEC [40], most
network embedding-based clustering methods [15,49,53] adopt Stu-
dent’s t-distribution as the soft assignment distribution 𝑄 (referred
to as kernel function) to measure similarities among embeddings and
community centroids. However, we find that Student’s t-distribution
is not a suitable and optimal choice for depicting the membership
between nodes and communities.

To understand that, we conduct several experiments (shown in
Fig. 4) and give theoretical discussions (shown in Fig. 5).

Experimental Verification. To examine the effects of the different
kernel functions for the community detection task, we select three
commonly used distributions as the kernel distribution: Gaussian mix-

ture distribution (GMD), Gaussian distribution (GD), and Student’s
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Table 3
Community detection results (%) of same-type node. The best results are shown in bold, and the second-best results are underlined. ‘‘–’’ indicates the datasets are too large for
algorithms to execute.

Method Dataset

DBLP MovieLens Yelp AMiner

ACC NMI ARI ACC NMI ARI ACC NMI ARI ACC NMI ARI

Louvain 51.84 44.98 34.77 62.78 46.57 44.65 48.86 33.24 38.85 82.42 62.22 61.48
CNM 57.60 49.53 31.09 55.97 36.98 31.57 53.31 39.48 46.17 – – –
FluidC 48.91 26.71 20.88 65.97 39.04 40.40 a a a 68.23 53.02 57.60
SClump 82.08 60.69 62.85 87.92 73.13 69.05 56.65 40.51 33.89 – – –

Node2vec 54.12 39.53 30.23 50.95 36.17 27.03 47.20 43.01 23.72 83.55 67.32 59.69
VGAE 59.21 45.75 41.34 47.08 37.44 25.13 37.44 34.64 31.85 84.14 64.32 62.84
Metapath2vec 63.72 43.72 42.82 50.04 30.26 20.09 24.70 15.83 15.42 81.33 65.38 68.02
HIN2Vec 62.53 42.31 41.41 55.07 32.76 22.98 35.64 15.19 13.10 86.86 68.11 70.20
HHNE 95.27 83.28 88.83 75.48 57.99 56.12 49.01 45.81 27.30 87.07 67.55 68.36
HDGI 80.26 58.88 60.48 75.10 63.02 49.97 27.52 28.14 14.80 85.82 66.22 67.13
HAN 58.14 35.96 28.51 71.48 56.61 46.10 – – – – – –
HeCo 85.06 65.95 67.42 63.03 52.12 44.22 29.26 20.82 15.17 – – –

ComE 65.72 31.95 25.96 38.67 41.15 65.17 59.31 51.32 34.07 – – –
SDCN 60.08 45.96 34.75 56.59 31.96 25.66 52.36 19.66 19.31 – – –
GUCD 63.47 31.90 30.20 66.40 45.33 45.14 – – – – – –
DEC 56.03 28.86 28.58 74.23 63.05 59.39 31.23 18.65 12.81 47.53 12.26 10.34
O2MAC 63.12 39.14 32.97 49.17 28.09 21.08 24.65 0.26 0.55 – – –

IDCD 96.39 84.20 89.69 88.60 78.92 73.11 59.87 52.74 48.20 90.75 74.02 72.51

a Indicates the dataset is not fully connected, so the propagation-based algorithm FluidC cannot run on it.
Table 4
Community detection results (%) of multiple-type nodes on four datasets.

Method Dataset

DBLP MovieLens Yelp AMiner

ACC NMI ARI ACC NMI ARI ACC NMI ARI ACC NMI ARI

Metapath2vec 55.85 41.72 30.21 49.85 30.27 20.10 24.97 15.06 15.00 81.32 69.95 65.37
HIN2Vec 60.97 40.29 30.30 54.93 32.70 22.86 28.46 22.20 11.85 86.31 66.64 69.08
HHNE 97.22 89.21 93.66 75.78 58.06 56.39 55.05 56.62 34.33 89.00 71.90 73.24

IDCD 97.32 89.46 92.14 93.06 86.55 80.45 64.29 67.13 54.80 91.37 78.08 82.33
ig. 3. Visualization of the learned representations on DBLP. Each point indicates one paper. Different colors indicate different communities: cyan for Machine Learning, red for
ata Mining, lime green for Database, and blueviolet for Computer Vision.
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-distribution (SD). For a fair comparison, the initial values of com-
unity centroids, parameters of neural networks, and embeddings are

ll the same. We sequentially use GMD, GD, and SD as IDCD’s kernel
unction to perform community detection tasks.

From Fig. 4, we observe that adopting GMD as kernel function
chieves the best performance over three metrics on four datasets, and
ts superiority is extremely obvious on AMiner, MovieLens, and Yelp.
8

eanwhile, GD is a better choice than SD. The kernel function is more c
onducive to community detection. This is because most of the real-
orld objects in the same group follow the Gaussian distribution and
ultiple groups of objects follow the Gaussian mixture distribution
aturally, while the Student’s t-distribution is not that suitable for
lustering.

heoretical Discussion. Since the Gaussian mixture model is a more

ommon model for clustering, we would like to investigate why most
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Fig. 4. The performance of community detection on four datasets with Gaussian
ixture Distribution (GMD), Gaussian Distribution (GD) and Student’s t-Distribution

SD) as soft assignment distribution (kernel function) of IDCD, respectively.

Fig. 5. Distance of a node to a community centroid vs. Probability of the node belongs
to the community. The t-dist and normal-dist is short for Student’s t-distribution and
normal distribution, respectively.

of the existing methods choose SD but not GMD to depict community
assignments. The first method adopting Student’s t-distribution to mea-
sure the similarities, DEC, [40] takes inspiration from t-SNE [52]. t-SNE
is a dimension reduction method that uses a Student’s t-distribution
to compute the similarity between two points in the low-dimensional
space and a Gaussian distribution in the original space. In this way,
minimizing the KL divergence between these two distributions can
alleviate the crowding problem, showing aggregation.

However, these self-training-based deep clustering models do not
compare similarities of embeddings from two spaces as t-SNE does,
they compare similarities measured by two different distributions in
one space. In other words, 𝑘-means and self-training strategy contribute
to the clustering process, instead of kernel function. 𝑘-means provide
nice centroids and self-training improves them. As shown in Fig. 5(a),
the blue solid line represents a part of the probability density function
of a node that obeys the Student’s t-distribution and belongs to one
cluster, and the blue dash-dot line indicates its corresponding auxiliary
distribution. When a node belongs to a cluster with a high probability
𝑞𝑖𝑗 , its corresponding auxiliary function will provide a higher belonging
probability 𝑝𝑖𝑗 . By approximating the auxiliary function, this node will
be given higher credibility in this cluster which helps to optimize the
clustering and node representation and makes these methods perform
well.

Moreover, for clustering, it is better to choose the distribution which
can depict the community assignments of nodes, i.e., Gaussian mixture
distribution. As shown in Fig. 5(b), 𝑎 and 𝑏 are the intersections of
9

two distributions (Student’s t-distribution and Gaussian distribution)
and their corresponding auxiliary distributions. Gaussian distribution is
more restrictive (𝑥1 < 𝑥2 and 𝑦1 > 𝑦2) than Student’s t-distribution for a
node belonging to a cluster, reducing false pseudo labels and improving
the performance of the self-training process.

5.4. Results (RQ3): Parameter sensitivity

We perform sensitivity analysis on four critical hyper-parameters in
IDCD: the number of window sizes 𝑤 for selecting negative samples,
the walk length 𝑙𝑒𝑛 denotes the maximum number of steps in each
random walk, the number of walks 𝑤𝑘 determines the number of
instances of random walks starting from each node, and the dimension
of node representation 𝑑𝑒 to embed the information. The former three
arameters are important to meta-path-based random walks. Fig. 6
hows how these parameters of IDCD affect the performance on all four
atasets. We have the following observations:

• For the window size 𝑤, increasing the number of negative sam-
ples generally enhances the performance of our proposed IDCD
across most datasets, but this improvement plateaus at a cer-
tain saturation point. For example, on the MovieLens and Yelp
datasets, as depicted in the first column of the last two lines in
Fig. 6, an excessive number of negative samples can potentially
lead to diminished performance.

• Prolonging the walk length 𝑙𝑒𝑛 typically results in better per-
formance across all datasets, indicating the importance of walk
length in the quality of network representation. However, the
existence of an optimal walk length implies that beyond this
point, additional network structural information may begin to
hinder the learning process due to redundancy.

• For the number of walks 𝑤𝑘, IDCD can achieve commend-
able results with a relatively small value, such as 𝑤𝑘 = 5 on
the Aminer dataset, which is more efficient than other meta-
path-based random walk methods. For comparison, metapath2vec
achieves satisfactory results when 𝑤𝑘 = 600, highlighting that the
performance benefit of IDCD may be attributed to the usage of
node attributes.

• The choice of the representation dimension 𝑑𝑒 is crucial and
can significantly affect the performance of the model. It neces-
sitates careful adjustment based on the specific characteristics
of the dataset and the requirements of the algorithm. For ex-
ample, on the MovieLens dataset, there is a marked decline in
IDCD performance as 𝑑𝑒 increases, which may be attributed to
higher embedding dimensions that could capture excessive noise,
adversely affecting community detection. In contrast, the Yelp
dataset, with its high dimensionality of node attributes in the
original space, necessitates a higher 𝑑𝑒 to ensure these attributes
are well represented in the embedding space.

.5. Results (RQ4): Case study

IDCD holds significant value in the domains of pattern recognition
nd explainable AI [54]. We select two different meta-paths on a mini
ovieLens dataset to show (1) how they lead to different community

etection results, (2) how they make community detection results
xplainable. The mini MovieLens dataset is extracted from the original
ovieLens dataset but only contains four genres (comedy, action, horror,
hildren) of movies released before 2008, and corresponding actors and
irectors. The statistics of the dataset are shown in Table 5.

We conduct two different community detection tasks:

• TASK 1. Cluster directors according to the type of movies they
directed:
– Specify semantic-related meta-path: D-M-G-M-D.

• TASK 2. Cluster actors according to the type of movies they
starred in:

– Specify semantic-related meta-path: A-M-G-M-A.
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Table 5
MovieLens dataset used in the case study.

Node types # Nodes Relation # Relations

Movie (M)
Actor (A)
Director (D)
Genre (G)

2175
389
159
4

AM
DM
MG

7986
1096
2844

We use t-SNE [52] to visualize the representations of nodes in
two-dimensional space. As shown in Fig. 7, there are four color

odes, corresponding to four genres. In Fig. 7(a), we observe that the
mbeddings of comedy directors are close to those of children movies,
ecause children movies always have comedy elements. And it is the
ame as the embeddings of horror and action directors. The situation is
little different in Actor communities. As shown in Fig. 7(b), comedy,
orror, and action actors are located close to each other. While the
ctors in children movies are usually voice actors, thus far away from
hem.

For clearly understand node community assignments, we further
elect a few representative nodes and enlarge them. The selected nodes
re re-marked with big dots, and the proportions of multiple colors
ndicate their memberships to different communities. The posters of
heir representative works are listed. Specifically, Lucio Fulci and Addie
Bloustein are painted only in one color, because they just directed or
participated in one genre of movie in this dataset; Both Lucio Fulci
and Addie Bloustein have participated in various kinds of movies, but
their representative movies are mostly horror and action, so one color
occupies most of the area. Jackie Chan, the most well-known action
star, can be considered belonging to the Action and Comedy community
simultaneously. It can be ascribed to the movies he participated in are
10

mostly action comedies. We conclude that if a node is located in the n
middle of the area where the same-color nodes are located, then this
node has a high degree of membership in this community; Conversely,
if a node is located at the junction of different colors, then this node
may belong to multiple communities.

Moreover, as shown in Table 6, directors and actors are gathered
into four communities: Comedy, Horror, Children, and Action. We enu-

erate some representative samples from each of the four communities
nd sort them according to their membership of the community (shown
n the bracket). It could be found that actors and directors are assigned
o the communities they are famous for. For example, Woody Allen
irected and participated in a large number of drama and linear comedy
ovies, and he is assigned to the community Comedy no matter being

n actor or director; Kung-Fu star Jet Li is naturally assigned to the
ction community; Desmond Llewelyn is assigned to community Action
ith a high score because his most well-known masterpiece is the role
f Mr. Q, who specializes in developing weapons and props for Bond
n the James Bond series.

. Conclusion

In this work, we propose IDCD, an interest-driven community
etection method to cluster heterogeneous nodes. With a user-specified
eta-path, IDCD leverages all kinds of heterogeneous information

ources and aligns the community detection process to the network em-
edding process which is optimized in a unified way. Specifically, (1)
e propose a sampling strategy via aggregating heterogeneous node at-

ributes and topological structures to select informative nodes for better
mbeddings. (2) We find that replacing the Student’s t-distribution with
aussian mixture distribution improves the performance. Experiments
onducted on four real-world datasets reveal the effectiveness of IDCD,
nd the case study provides reasonable explanations of the obtained
esults. Future work can be concentrated on automatically inferring the

umber of communities and detecting communities simultaneously.
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Fig. 7. Visualization of community detection results and node community assignments under two different meta-paths guidance.
Table 6
Representative samples in four communities discovered by IDCD.

Meta-path Community Samples

AMGMA

Comedy Jack Lemmon (1), Woody Allen (0.971), Adam Sandler (0.962), Tom Hanks (0.818)
Horror Dwight Frye (1), Michael Mark (0.889), Bela Lugosi (0.833), Tom Savini (0.636)
Children Addie Blaustein (1), Kath Soucie (0.684), Jim Cummings (0.606), Danny Mann (0.603)
Action Desmond Llewelyn (0.889), Jet Li (0.751), Samuel L. Jackson (0.553), Tom Cruise (0.524)

DMGMD

Comedy Woody Allen (0.912), Brian Robbins (0.802), Brian Levant (0.615), Tim Burton (0.601)
Horror Tod Browning (1), George A. Romero (0.889), Tobe Hooper (0.875), Rob Zombie (0.812)
Children Wolfgang Reitherman (0.712), Robert Stevenson (0.653), Don Bluth (0.753), Clyde Geronimi (0.571)
Action Paul W.S. Anderson (0.7), Renny Harlin (0.642), William Friedkin (0.625), Steven Spielberg (0.609)
CRediT authorship contribution statement

Mengyue Liu: Writing – original draft, Visualization, Validation,
Software, Methodology, Investigation, Formal analysis, Data curation,
Conceptualization. Jun Liu: Writing – review & editing, Supervision,
Resources, Project administration, Funding acquisition. Yixiang Dong:
Writing – review & editing, Validation, Methodology, Formal analysis.
Rui Mao: Writing – review & editing, Visualization. Erik Cambria:
Writing – review & editing, Supervision, Resources.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

The data that has been used is confidential.

Acknowledgments

This work was supported by National Key Research and Develop-
ment Program of China (2020AAA0108800), National Natural Science
Foundation of China (62137002, 61937001, 62176209, 62176207,
62106190, 62192781, 61877050 and 62050194), Innovative Research
Group of the National Natural Science Foundation of China
(61721002), Innovation Research Team of Ministry of Education
(IRT_17R86), The National Social Science Fund of China (18XXW005),
Consulting research project of Chinese academy of engineering ‘‘The
Online and Offline Mixed Educational Service System for ‘The Belt
and Road’ Training in MOOC China’’, China Postdoctoral Science
Foundation (2020M683493), Project of China Knowledge Centre for
Engineering Science and Technology, ‘‘LENOVO-XJTU’’ Intelligent In-
dustry Joint Laboratory Project, and the Fundamental Research Funds
11
for the Central Universities, China (xzy022021048, xpt012021005,
xhj032021013-02).

References

[1] S. Fortunato, Community detection in graphs, Phys. Rep. 486 (3–5) (2010)
75–174.

[2] S. Fortunato, D. Hric, Community detection in networks: A user guide, Phys.
Rep. 659 (2016) 1–44.

[3] Q. Chen, Y. Qiao, F. Hu, Y. Li, K. Tan, M. Zhu, C. Zhang, Community detection
in complex network based on APT method, Pattern Recognit. Lett. 138 (2020)
193–200.

[4] A. Clauset, Finding local community structure in networks, Phys. Rev. E 72 (2)
(2005) 026132.

[5] S. Cavallari, E. Cambria, H. Cai, K.C.-C. Chang, V.W. Zheng, Embedding both
finite and infinite communities on graphs [application notes], IEEE Comput.
Intell. Mag. 14 (3) (2019) 39–50.

[6] H. Yin, Q. Wang, K. Zheng, Z. Li, J. Yang, X. Zhou, Social influence-based
group representation learning for group recommendation, in: 2019 IEEE 35th
International Conference on Data Engineering, ICDE, IEEE, 2019, pp. 566–577.

[7] S.S. Bhowmick, B.S. Seah, Clustering and summarizing protein-protein interaction
networks: A survey, IEEE Trans. Knowl. Data Eng. 28 (3) (2015) 638–658.

[8] P. Chen, S. Redner, Community structure of the physical review citation network,
J. Informetr. 4 (3) (2010) 278–290.

[9] Y. Sun, Y. Yu, J. Han, Ranking-based clustering of heterogeneous information
networks with star network schema, in: Proceedings of the 15th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, 2009, pp.
797–806.

[10] C. Shi, Y. Li, J. Zhang, Y. Sun, S.Y. Philip, A survey of heterogeneous information
network analysis, IEEE Trans. Knowl. Data Eng. 29 (1) (2016) 17–37.

[11] Y. Xie, B. Yu, S. Lv, C. Zhang, G. Wang, M. Gong, A survey on heterogeneous
network representation learning, Pattern Recognit. 116 (2021) 107936.

[12] Y. Sun, J. Han, X. Yan, P.S. Yu, T. Wu, Pathsim: Meta path-based top-k similarity
search in heterogeneous information networks, Proc. VLDB Endow. 4 (11) (2011)
992–1003.

[13] Y. Fang, Y. Yang, W. Zhang, X. Lin, X. Cao, Effective and efficient community
search over large heterogeneous information networks, Proc. VLDB Endow. 13
(6) (2020) 854–867.

[14] H. Gui, J. Liu, F. Tao, M. Jiang, B. Norick, L. Kaplan, J. Han, Embedding learning
with events in heterogeneous information networks, IEEE Trans. Knowl. Data
Eng. 29 (11) (2017) 2428–2441.

http://refhub.elsevier.com/S1566-2535(24)00303-8/sb1
http://refhub.elsevier.com/S1566-2535(24)00303-8/sb1
http://refhub.elsevier.com/S1566-2535(24)00303-8/sb1
http://refhub.elsevier.com/S1566-2535(24)00303-8/sb2
http://refhub.elsevier.com/S1566-2535(24)00303-8/sb2
http://refhub.elsevier.com/S1566-2535(24)00303-8/sb2
http://refhub.elsevier.com/S1566-2535(24)00303-8/sb3
http://refhub.elsevier.com/S1566-2535(24)00303-8/sb3
http://refhub.elsevier.com/S1566-2535(24)00303-8/sb3
http://refhub.elsevier.com/S1566-2535(24)00303-8/sb3
http://refhub.elsevier.com/S1566-2535(24)00303-8/sb3
http://refhub.elsevier.com/S1566-2535(24)00303-8/sb4
http://refhub.elsevier.com/S1566-2535(24)00303-8/sb4
http://refhub.elsevier.com/S1566-2535(24)00303-8/sb4
http://refhub.elsevier.com/S1566-2535(24)00303-8/sb5
http://refhub.elsevier.com/S1566-2535(24)00303-8/sb5
http://refhub.elsevier.com/S1566-2535(24)00303-8/sb5
http://refhub.elsevier.com/S1566-2535(24)00303-8/sb5
http://refhub.elsevier.com/S1566-2535(24)00303-8/sb5
http://refhub.elsevier.com/S1566-2535(24)00303-8/sb6
http://refhub.elsevier.com/S1566-2535(24)00303-8/sb6
http://refhub.elsevier.com/S1566-2535(24)00303-8/sb6
http://refhub.elsevier.com/S1566-2535(24)00303-8/sb6
http://refhub.elsevier.com/S1566-2535(24)00303-8/sb6
http://refhub.elsevier.com/S1566-2535(24)00303-8/sb7
http://refhub.elsevier.com/S1566-2535(24)00303-8/sb7
http://refhub.elsevier.com/S1566-2535(24)00303-8/sb7
http://refhub.elsevier.com/S1566-2535(24)00303-8/sb8
http://refhub.elsevier.com/S1566-2535(24)00303-8/sb8
http://refhub.elsevier.com/S1566-2535(24)00303-8/sb8
http://refhub.elsevier.com/S1566-2535(24)00303-8/sb9
http://refhub.elsevier.com/S1566-2535(24)00303-8/sb9
http://refhub.elsevier.com/S1566-2535(24)00303-8/sb9
http://refhub.elsevier.com/S1566-2535(24)00303-8/sb9
http://refhub.elsevier.com/S1566-2535(24)00303-8/sb9
http://refhub.elsevier.com/S1566-2535(24)00303-8/sb9
http://refhub.elsevier.com/S1566-2535(24)00303-8/sb9
http://refhub.elsevier.com/S1566-2535(24)00303-8/sb10
http://refhub.elsevier.com/S1566-2535(24)00303-8/sb10
http://refhub.elsevier.com/S1566-2535(24)00303-8/sb10
http://refhub.elsevier.com/S1566-2535(24)00303-8/sb11
http://refhub.elsevier.com/S1566-2535(24)00303-8/sb11
http://refhub.elsevier.com/S1566-2535(24)00303-8/sb11
http://refhub.elsevier.com/S1566-2535(24)00303-8/sb12
http://refhub.elsevier.com/S1566-2535(24)00303-8/sb12
http://refhub.elsevier.com/S1566-2535(24)00303-8/sb12
http://refhub.elsevier.com/S1566-2535(24)00303-8/sb12
http://refhub.elsevier.com/S1566-2535(24)00303-8/sb12
http://refhub.elsevier.com/S1566-2535(24)00303-8/sb13
http://refhub.elsevier.com/S1566-2535(24)00303-8/sb13
http://refhub.elsevier.com/S1566-2535(24)00303-8/sb13
http://refhub.elsevier.com/S1566-2535(24)00303-8/sb13
http://refhub.elsevier.com/S1566-2535(24)00303-8/sb13
http://refhub.elsevier.com/S1566-2535(24)00303-8/sb14
http://refhub.elsevier.com/S1566-2535(24)00303-8/sb14
http://refhub.elsevier.com/S1566-2535(24)00303-8/sb14
http://refhub.elsevier.com/S1566-2535(24)00303-8/sb14
http://refhub.elsevier.com/S1566-2535(24)00303-8/sb14


Information Fusion 111 (2024) 102525M. Liu et al.
[15] S. Fan, X. Wang, C. Shi, E. Lu, K. Lin, B. Wang, One2multi graph autoencoder
for multi-view graph clustering, in: Proceedings of the Web Conference 2020,
2020, pp. 3070–3076.

[16] X. Li, B. Kao, Z. Ren, D. Yin, Spectral clustering in heterogeneous information
networks, in: Proceedings of the AAAI Conference on Artificial Intelligence, Vol.
33, 2019, pp. 4221–4228.

[17] Y. Sun, B. Norick, J. Han, X. Yan, P.S. Yu, X. Yu, Pathselclus: Integrating meta-
path selection with user-guided object clustering in heterogeneous information
networks, ACM Trans. Knowl. Discov. Data (TKDD) 7 (3) (2013) 1–23.

[18] X. Li, Y. Wu, M. Ester, B. Kao, X. Wang, Y. Zheng, SCHAIN-IRAM: An efficient
and effective semi-supervised clustering algorithm for attributed heterogeneous
information networks, IEEE Trans. Knowl. Data Eng. (2020).

[19] S. Zhou, J. Bu, Z. Zhang, C. Wang, L. Ma, J. Zhang, Cross multi-type objects
clustering in attributed heterogeneous information network, Knowl.-Based Syst.
194 (2020) 105458.

[20] R.A. Khan, M. Kleinsteuber, A framework for joint unsupervised learning of
cluster-aware embedding for heterogeneous networks, 2021, arXiv preprint arXiv:
2108.03953.

[21] T. Zhao, C. Yang, Y. Li, Q. Gan, Z. Wang, F. Liang, H. Zhao, Y. Shao, X. Wang, C.
Shi, Space4HGNN: A novel, modularized and reproducible platform to evaluate
heterogeneous graph neural network, 2022, arXiv preprint arXiv:2202.09177.

[22] M.J. Barber, Modularity and community detection in bipartite networks, Phys.
Rev. E 76 (6) (2007) 066102.

[23] J. Zhang, Y. Chen, Modularity based community detection in heterogeneous
networks, Statist. Sinica 30 (2) (2020) 601–629.

[24] X. Wang, H. Ji, C. Shi, B. Wang, Y. Ye, P. Cui, P.S. Yu, Heterogeneous graph
attention network, in: The World Wide Web Conference, 2019, pp. 2022–2032.

[25] Z. Hu, Y. Dong, K. Wang, Y. Sun, Heterogeneous graph transformer, in:
Proceedings of the Web Conference 2020, 2020, pp. 2704–2710.

[26] X. Wang, N. Liu, H. Han, C. Shi, Self-supervised heterogeneous graph neural
network with co-contrastive learning, in: Proceedings of the 27th ACM SIGKDD
Conference on Knowledge Discovery & Data Mining, 2021, pp. 1726–1736.

[27] U. Brandes, D. Delling, M. Gaertler, R. Görke, M. Hoefer, Z. Nikoloski, D. Wagner,
On Modularity-Np-Completeness and Beyond, Tech. Rep 19, ITI Wagner, Faculty
of Informatics, Universität Karlsruhe (TH), 2006, p. 2006.

[28] Y. Dong, N.V. Chawla, A. Swami, Metapath2vec: Scalable representation learn-
ing for heterogeneous networks, in: Proceedings of the 23rd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, 2017, pp.
135–144.

[29] T. Mikolov, I. Sutskever, K. Chen, G.S. Corrado, J. Dean, Distributed represen-
tations of words and phrases and their compositionality, in: Advances in Neural
Information Processing Systems, 2013, pp. 3111–3119.

[30] T.-y. Fu, W.-C. Lee, Z. Lei, Hin2vec: Explore meta-paths in heterogeneous
information networks for representation learning, in: Proceedings of the 2017
ACM on Conference on Information and Knowledge Management, 2017, pp.
1797–1806.

[31] C. Zhang, D. Song, C. Huang, A. Swami, N.V. Chawla, Heterogeneous graph neu-
ral network, in: Proceedings of the 25th ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining, 2019, pp. 793–803.

[32] X. Li, Y. Wu, M. Ester, B. Kao, X. Wang, Y. Zheng, Semi-supervised clustering
in attributed heterogeneous information networks, in: Proceedings of the 26th
International Conference on World Wide Web, 2017, pp. 1621–1629.

[33] G. Palla, I. Derényi, I. Farkas, T. Vicsek, Uncovering the overlapping community
structure of complex networks in nature and society, Nature 435 (7043) (2005)
814–818.
12
[34] Z. Wang, J. Zhang, J. Feng, Z. Chen, Knowledge graph embedding by translating
on hyperplanes, in: Twenty-Eighth AAAI Conference on Artificial Intelligence,
2014, pp. 1112–1119.

[35] S. Gregory, Fuzzy overlapping communities in networks, J. Stat. Mech. Theory
Exp. 2011 (02) (2011) P02017.

[36] B. Perozzi, R. Al-Rfou, S. Skiena, Deepwalk: Online learning of social represen-
tations, in: Proceedings of the 20th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, 2014, pp. 701–710.

[37] A. Grover, J. Leskovec, Node2vec: Scalable feature learning for networks, in:
Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, 2016, pp. 855–864.

[38] L. Zhu, W. Li, R. Mao, V. Pandelea, E. Cambria, PAED: Zero-shot persona
attribute extraction in dialogues, in: Proceedings of the 61st Annual Meeting of
the Association for Computational Linguistics, ACL, Vol. 1, 2023, pp. 9771–9787.

[39] C.C. Aggarwal, C.K. Reddy, Data Clustering, Algorithms and Applications, in:
Chapman&Hall/CRC Data Mining and Knowledge Discovery Series, Londra, 2014.

[40] J. Xie, R. Girshick, A. Farhadi, Unsupervised deep embedding for clustering
analysis, in: International Conference on Machine Learning, 2016, pp. 478–487.

[41] M. Ge, R. Mao, E. Cambria, Explainable metaphor identification inspired by
conceptual metaphor theory, in: Proceedings of the AAAI Conference on Artificial
Intelligence, Vol. 36, 2022, pp. 10681–10689.

[42] V.D. Blondel, J.-L. Guillaume, R. Lambiotte, E. Lefebvre, Fast unfolding of
communities in large networks, J. Stat. Mech.: Theory Exp. 2008 (10) (2008)
P10008.

[43] A. Clauset, M.E. Newman, C. Moore, Finding community structure in very large
networks, Phys. Rev. E 70 (6) (2004) 066111.

[44] F. Parés, D.G. Gasulla, A. Vilalta, J. Moreno, E. Ayguadé, J. Labarta, U. Cortés,
T. Suzumura, Fluid communities: a competitive, scalable and diverse community
detection algorithm, in: International Conference on Complex Networks and their
Applications, Springer, 2017, pp. 229–240.

[45] T.N. Kipf, M. Welling, Variational graph auto-encoders, 2016, arXiv preprint
arXiv:1611.07308.

[46] X. Wang, Y. Zhang, C. Shi, Hyperbolic heterogeneous information network
embedding, in: Proceedings of the AAAI Conference on Artificial Intelligence,
Vol. 33, 2019, pp. 5337–5344.

[47] Y. Ren, B. Liu, C. Huang, P. Dai, L. Bo, J. Zhang, Heterogeneous deep graph
infomax, 2019, arXiv preprint arXiv:1911.08538.

[48] S. Cavallari, V.W. Zheng, H. Cai, K.C.-C. Chang, E. Cambria, Learning community
embedding with community detection and node embedding on graphs, in:
Proceedings of the 2017 ACM on Conference on Information and Knowledge
Management, 2017, pp. 377–386.

[49] D. Bo, X. Wang, C. Shi, M. Zhu, E. Lu, P. Cui, Structural deep clustering network,
in: Proceedings of the Web Conference 2020, 2020, pp. 1400–1410.

[50] D. He, Y. Song, D. Jin, Z. Feng, B. Zhang, Z. Yu, W. Zhang, Community-
centric graph convolutional network for unsupervised community detection, in:
Proceedings of the Twenty-Ninth International Conference on International Joint
Conferences on Artificial Intelligence, 2021, pp. 3515–3521.

[51] T. Chakraborty, A. Dalmia, A. Mukherjee, N. Ganguly, Metrics for community
analysis: A survey, ACM Comput. Surv. 50 (4) (2017) 1–37.

[52] L.v.d. Maaten, G. Hinton, Visualizing data using t-SNE, J. Mach. Learn. Res. 9
(Nov) (2008) 2579–2605.

[53] H. Sun, F. He, J. Huang, Y. Sun, Y. Li, C. Wang, L. He, Z. Sun, X. Jia, Network
embedding for community detection in attributed networks, ACM Trans. Knowl.
Discov. Data (TKDD) 14 (3) (2020) 1–25.

[54] E. Cambria, R. Mao, M. Chen, Z. Wang, S.-B. Ho, Seven Pillars for the future of
artificial intelligence, IEEE Intell. Syst. 38 (6) (2023) 62–69.

http://refhub.elsevier.com/S1566-2535(24)00303-8/sb15
http://refhub.elsevier.com/S1566-2535(24)00303-8/sb15
http://refhub.elsevier.com/S1566-2535(24)00303-8/sb15
http://refhub.elsevier.com/S1566-2535(24)00303-8/sb15
http://refhub.elsevier.com/S1566-2535(24)00303-8/sb15
http://refhub.elsevier.com/S1566-2535(24)00303-8/sb16
http://refhub.elsevier.com/S1566-2535(24)00303-8/sb16
http://refhub.elsevier.com/S1566-2535(24)00303-8/sb16
http://refhub.elsevier.com/S1566-2535(24)00303-8/sb16
http://refhub.elsevier.com/S1566-2535(24)00303-8/sb16
http://refhub.elsevier.com/S1566-2535(24)00303-8/sb17
http://refhub.elsevier.com/S1566-2535(24)00303-8/sb17
http://refhub.elsevier.com/S1566-2535(24)00303-8/sb17
http://refhub.elsevier.com/S1566-2535(24)00303-8/sb17
http://refhub.elsevier.com/S1566-2535(24)00303-8/sb17
http://refhub.elsevier.com/S1566-2535(24)00303-8/sb18
http://refhub.elsevier.com/S1566-2535(24)00303-8/sb18
http://refhub.elsevier.com/S1566-2535(24)00303-8/sb18
http://refhub.elsevier.com/S1566-2535(24)00303-8/sb18
http://refhub.elsevier.com/S1566-2535(24)00303-8/sb18
http://refhub.elsevier.com/S1566-2535(24)00303-8/sb19
http://refhub.elsevier.com/S1566-2535(24)00303-8/sb19
http://refhub.elsevier.com/S1566-2535(24)00303-8/sb19
http://refhub.elsevier.com/S1566-2535(24)00303-8/sb19
http://refhub.elsevier.com/S1566-2535(24)00303-8/sb19
http://arxiv.org/abs/2108.03953
http://arxiv.org/abs/2108.03953
http://arxiv.org/abs/2108.03953
http://arxiv.org/abs/2202.09177
http://refhub.elsevier.com/S1566-2535(24)00303-8/sb22
http://refhub.elsevier.com/S1566-2535(24)00303-8/sb22
http://refhub.elsevier.com/S1566-2535(24)00303-8/sb22
http://refhub.elsevier.com/S1566-2535(24)00303-8/sb23
http://refhub.elsevier.com/S1566-2535(24)00303-8/sb23
http://refhub.elsevier.com/S1566-2535(24)00303-8/sb23
http://refhub.elsevier.com/S1566-2535(24)00303-8/sb24
http://refhub.elsevier.com/S1566-2535(24)00303-8/sb24
http://refhub.elsevier.com/S1566-2535(24)00303-8/sb24
http://refhub.elsevier.com/S1566-2535(24)00303-8/sb25
http://refhub.elsevier.com/S1566-2535(24)00303-8/sb25
http://refhub.elsevier.com/S1566-2535(24)00303-8/sb25
http://refhub.elsevier.com/S1566-2535(24)00303-8/sb26
http://refhub.elsevier.com/S1566-2535(24)00303-8/sb26
http://refhub.elsevier.com/S1566-2535(24)00303-8/sb26
http://refhub.elsevier.com/S1566-2535(24)00303-8/sb26
http://refhub.elsevier.com/S1566-2535(24)00303-8/sb26
http://refhub.elsevier.com/S1566-2535(24)00303-8/sb27
http://refhub.elsevier.com/S1566-2535(24)00303-8/sb27
http://refhub.elsevier.com/S1566-2535(24)00303-8/sb27
http://refhub.elsevier.com/S1566-2535(24)00303-8/sb27
http://refhub.elsevier.com/S1566-2535(24)00303-8/sb27
http://refhub.elsevier.com/S1566-2535(24)00303-8/sb28
http://refhub.elsevier.com/S1566-2535(24)00303-8/sb28
http://refhub.elsevier.com/S1566-2535(24)00303-8/sb28
http://refhub.elsevier.com/S1566-2535(24)00303-8/sb28
http://refhub.elsevier.com/S1566-2535(24)00303-8/sb28
http://refhub.elsevier.com/S1566-2535(24)00303-8/sb28
http://refhub.elsevier.com/S1566-2535(24)00303-8/sb28
http://refhub.elsevier.com/S1566-2535(24)00303-8/sb29
http://refhub.elsevier.com/S1566-2535(24)00303-8/sb29
http://refhub.elsevier.com/S1566-2535(24)00303-8/sb29
http://refhub.elsevier.com/S1566-2535(24)00303-8/sb29
http://refhub.elsevier.com/S1566-2535(24)00303-8/sb29
http://refhub.elsevier.com/S1566-2535(24)00303-8/sb30
http://refhub.elsevier.com/S1566-2535(24)00303-8/sb30
http://refhub.elsevier.com/S1566-2535(24)00303-8/sb30
http://refhub.elsevier.com/S1566-2535(24)00303-8/sb30
http://refhub.elsevier.com/S1566-2535(24)00303-8/sb30
http://refhub.elsevier.com/S1566-2535(24)00303-8/sb30
http://refhub.elsevier.com/S1566-2535(24)00303-8/sb30
http://refhub.elsevier.com/S1566-2535(24)00303-8/sb31
http://refhub.elsevier.com/S1566-2535(24)00303-8/sb31
http://refhub.elsevier.com/S1566-2535(24)00303-8/sb31
http://refhub.elsevier.com/S1566-2535(24)00303-8/sb31
http://refhub.elsevier.com/S1566-2535(24)00303-8/sb31
http://refhub.elsevier.com/S1566-2535(24)00303-8/sb32
http://refhub.elsevier.com/S1566-2535(24)00303-8/sb32
http://refhub.elsevier.com/S1566-2535(24)00303-8/sb32
http://refhub.elsevier.com/S1566-2535(24)00303-8/sb32
http://refhub.elsevier.com/S1566-2535(24)00303-8/sb32
http://refhub.elsevier.com/S1566-2535(24)00303-8/sb33
http://refhub.elsevier.com/S1566-2535(24)00303-8/sb33
http://refhub.elsevier.com/S1566-2535(24)00303-8/sb33
http://refhub.elsevier.com/S1566-2535(24)00303-8/sb33
http://refhub.elsevier.com/S1566-2535(24)00303-8/sb33
http://refhub.elsevier.com/S1566-2535(24)00303-8/sb34
http://refhub.elsevier.com/S1566-2535(24)00303-8/sb34
http://refhub.elsevier.com/S1566-2535(24)00303-8/sb34
http://refhub.elsevier.com/S1566-2535(24)00303-8/sb34
http://refhub.elsevier.com/S1566-2535(24)00303-8/sb34
http://refhub.elsevier.com/S1566-2535(24)00303-8/sb35
http://refhub.elsevier.com/S1566-2535(24)00303-8/sb35
http://refhub.elsevier.com/S1566-2535(24)00303-8/sb35
http://refhub.elsevier.com/S1566-2535(24)00303-8/sb36
http://refhub.elsevier.com/S1566-2535(24)00303-8/sb36
http://refhub.elsevier.com/S1566-2535(24)00303-8/sb36
http://refhub.elsevier.com/S1566-2535(24)00303-8/sb36
http://refhub.elsevier.com/S1566-2535(24)00303-8/sb36
http://refhub.elsevier.com/S1566-2535(24)00303-8/sb37
http://refhub.elsevier.com/S1566-2535(24)00303-8/sb37
http://refhub.elsevier.com/S1566-2535(24)00303-8/sb37
http://refhub.elsevier.com/S1566-2535(24)00303-8/sb37
http://refhub.elsevier.com/S1566-2535(24)00303-8/sb37
http://refhub.elsevier.com/S1566-2535(24)00303-8/sb38
http://refhub.elsevier.com/S1566-2535(24)00303-8/sb38
http://refhub.elsevier.com/S1566-2535(24)00303-8/sb38
http://refhub.elsevier.com/S1566-2535(24)00303-8/sb38
http://refhub.elsevier.com/S1566-2535(24)00303-8/sb38
http://refhub.elsevier.com/S1566-2535(24)00303-8/sb39
http://refhub.elsevier.com/S1566-2535(24)00303-8/sb39
http://refhub.elsevier.com/S1566-2535(24)00303-8/sb39
http://refhub.elsevier.com/S1566-2535(24)00303-8/sb40
http://refhub.elsevier.com/S1566-2535(24)00303-8/sb40
http://refhub.elsevier.com/S1566-2535(24)00303-8/sb40
http://refhub.elsevier.com/S1566-2535(24)00303-8/sb41
http://refhub.elsevier.com/S1566-2535(24)00303-8/sb41
http://refhub.elsevier.com/S1566-2535(24)00303-8/sb41
http://refhub.elsevier.com/S1566-2535(24)00303-8/sb41
http://refhub.elsevier.com/S1566-2535(24)00303-8/sb41
http://refhub.elsevier.com/S1566-2535(24)00303-8/sb42
http://refhub.elsevier.com/S1566-2535(24)00303-8/sb42
http://refhub.elsevier.com/S1566-2535(24)00303-8/sb42
http://refhub.elsevier.com/S1566-2535(24)00303-8/sb42
http://refhub.elsevier.com/S1566-2535(24)00303-8/sb42
http://refhub.elsevier.com/S1566-2535(24)00303-8/sb43
http://refhub.elsevier.com/S1566-2535(24)00303-8/sb43
http://refhub.elsevier.com/S1566-2535(24)00303-8/sb43
http://refhub.elsevier.com/S1566-2535(24)00303-8/sb44
http://refhub.elsevier.com/S1566-2535(24)00303-8/sb44
http://refhub.elsevier.com/S1566-2535(24)00303-8/sb44
http://refhub.elsevier.com/S1566-2535(24)00303-8/sb44
http://refhub.elsevier.com/S1566-2535(24)00303-8/sb44
http://refhub.elsevier.com/S1566-2535(24)00303-8/sb44
http://refhub.elsevier.com/S1566-2535(24)00303-8/sb44
http://arxiv.org/abs/1611.07308
http://refhub.elsevier.com/S1566-2535(24)00303-8/sb46
http://refhub.elsevier.com/S1566-2535(24)00303-8/sb46
http://refhub.elsevier.com/S1566-2535(24)00303-8/sb46
http://refhub.elsevier.com/S1566-2535(24)00303-8/sb46
http://refhub.elsevier.com/S1566-2535(24)00303-8/sb46
http://arxiv.org/abs/1911.08538
http://refhub.elsevier.com/S1566-2535(24)00303-8/sb48
http://refhub.elsevier.com/S1566-2535(24)00303-8/sb48
http://refhub.elsevier.com/S1566-2535(24)00303-8/sb48
http://refhub.elsevier.com/S1566-2535(24)00303-8/sb48
http://refhub.elsevier.com/S1566-2535(24)00303-8/sb48
http://refhub.elsevier.com/S1566-2535(24)00303-8/sb48
http://refhub.elsevier.com/S1566-2535(24)00303-8/sb48
http://refhub.elsevier.com/S1566-2535(24)00303-8/sb49
http://refhub.elsevier.com/S1566-2535(24)00303-8/sb49
http://refhub.elsevier.com/S1566-2535(24)00303-8/sb49
http://refhub.elsevier.com/S1566-2535(24)00303-8/sb50
http://refhub.elsevier.com/S1566-2535(24)00303-8/sb50
http://refhub.elsevier.com/S1566-2535(24)00303-8/sb50
http://refhub.elsevier.com/S1566-2535(24)00303-8/sb50
http://refhub.elsevier.com/S1566-2535(24)00303-8/sb50
http://refhub.elsevier.com/S1566-2535(24)00303-8/sb50
http://refhub.elsevier.com/S1566-2535(24)00303-8/sb50
http://refhub.elsevier.com/S1566-2535(24)00303-8/sb51
http://refhub.elsevier.com/S1566-2535(24)00303-8/sb51
http://refhub.elsevier.com/S1566-2535(24)00303-8/sb51
http://refhub.elsevier.com/S1566-2535(24)00303-8/sb52
http://refhub.elsevier.com/S1566-2535(24)00303-8/sb52
http://refhub.elsevier.com/S1566-2535(24)00303-8/sb52
http://refhub.elsevier.com/S1566-2535(24)00303-8/sb53
http://refhub.elsevier.com/S1566-2535(24)00303-8/sb53
http://refhub.elsevier.com/S1566-2535(24)00303-8/sb53
http://refhub.elsevier.com/S1566-2535(24)00303-8/sb53
http://refhub.elsevier.com/S1566-2535(24)00303-8/sb53
http://refhub.elsevier.com/S1566-2535(24)00303-8/sb54
http://refhub.elsevier.com/S1566-2535(24)00303-8/sb54
http://refhub.elsevier.com/S1566-2535(24)00303-8/sb54

	Interest-driven community detection on attributed heterogeneous information networks
	Introduction
	Related Work
	Preliminaries and Problem Definition
	Preliminaries
	Problem Definition

	The Proposed Methodology
	Heterogeneous Information Encoder
	Community Detector
	Jointly Optimization
	Complexity Analysis

	Experiments
	Experiments Setup
	Datasets
	Baselines
	Implementation details

	Results (RQ1): The Effectiveness
	Result (RQ2): Effects of Different Soft Assignment Distribution Q
	Results (RQ3): Parameter Sensitivity
	Results (RQ4): Case Study

	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	References


