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Abstract—Conversational sentiment analysis (CSA) and emotion-cause pair extraction (ECPE) tasks have attracted increasing attention
in recent years. The former aims to predict the sentiment states of speakers in a conversation, and the latter is about extracting
emotion-cause clauses in a document. However, one drawback of CSA is that it cannot model the causal reasoning among emotion and
neutral utterances from different speakers. In this work, we propose a new task: emotion-cause pair extraction in conversations (ECPEC),
which aims to extract pairs of emotional utterances and corresponding cause utterances in conversations. The utterance-level ECPEC
task is more challenging since the distance between emotion and cause utterances is larger than that of the clause-level ECPE task. To
this end, we build a novel dataset ConvECPE and propose a specifically designed two-step framework for the new ECPEC task.
Experimental results on ConvECPE dataset demonstrate the feasibility of the ECPEC task as well as the effectiveness of our framework.
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1 INTRODUCTION

CONVERSATIONAL sentiment analysis (CSA) is a task that
consists in predicting the sentiment labels or sentiment

intensities of a sequence of utterances in a dialogue [1]. It can be
applied to many practical application scenarios, e.g., improving
the performance of robot agents, tracking the mood of the speaker
and so on. As a sub-task of CSA, Emotion-Cause Pair Extraction
(ECPE) task, first proposed by [2], has aroused wide attention and
become a hot research topic. The ECPE task aims to identify all
potential pairs of emotions and the corresponding cause clauses in
documents [2]. CSA predicts the sentiment states of utterances in
conversations. Despite the increasing popularity and importance of
CSA, emotional transmission (i.e., sentiment interactions) among
speakers has not been taken into consideration in previous works
on CSA to the best of our knowledge. To make full use of the
sentiment states of all speakers and figure out how an utterance
from one speaker affects the sentiment state of another speaker, we
propose a new task: Emotion-cause Pair Extraction in Conversations
(ECPEC), the aim of which is to extract emotion-cause utterance
pairs (EC pairs) in conversations. This is important because the
new task enables a comprehensive understanding of the sentiment
interactions among speakers. E.g., in the customer service system,
this task can be applied to improving the response quality of the
conversational agent by analyzing the interactions between user
emotion and agent response. We also present a new model since
existing ECPE models like [3] and [4] are not specifically designed
for the new ECPEC task. Compared with traditional documents,
unique properties such as ungrammaticality, discontinuity, context-
dependence and interactivity [5] make conversational data more
difficult to analyze. For example, unlike the clause-level ECPE task,
an utterance in ECPEC task is not necessarily to be a grammatically
complete sentence. On the contrary, it can be built from single
words, single phrases and non-lexical utterances (e.g., ‘huh?’) [6].
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In addition, the distance between emotion and cause utterances
in conversations is larger than the emotion-cause pair distance
in documents. since the ECPEC task is formalized at utterance
level instead of clause level. In the ECPE task, around 90% of
the documents only have one emotion-cause pair [2] while the
utterance-level ECPEC task has dozens of emotion-cause pairs in
a conversation. Besides, an utterance may contain emotion and
corresponding cause at the same time since there are several clauses
in an utterance. These features make ECPEC a more challenging
task, especially in long conversations.

In Fig. 1, we illustrate the difference between the traditional
ECPE task and our new ECPEC task. The snippet comes from a
conversation in the IEMOCAP dataset [7] in which seven utterances
are included. The document is adapted from the conversation
snippet and composed of five clauses. In the document, the third and
fifth clauses are emotion clauses containing emotions “happy” and
“disappointed”. Each of the emotional clauses has a corresponding
cause clause. Here, the goal of the clause-level ECPE task is to
extract the two EC pairs in this document. In the conversation,
turns 1, 2 and 7 are emotional utterances. Each of them has two
corresponding cause utterances. Taking turn 7 as an example, the
emotion of the female speaker becomes “happy” because of the
“understand” (turn 3) and “special package” (turn 6) from the male
speaker. The goal of the utterance-level ECPEC task is to extract
EC pairs in this conversation without knowing the emotion labels in
advance. To the best of our knowledge, there is no existing dataset
for the ECPEC task. Therefore, we build an English conversational
EC pair extraction dataset named ConvECPE, which is based on
the famous interactive emotional dyadic motion capture database
(IEMOCAP) [7]. It contains 7433 utterances that lie in 151 two-
way conversations, where training and test sets contain 120 and 31
conversations, respectively. Each utterance carries one sentiment
label from six sentiment labels, i.e., happy, sad, neutral, angry,
excited and frustrated. Although Crawford [8] argued that this
Ekman set of 6 basic emotions cannot capture the nuances of
emotional experience in the world, it is widely used in the CSA
task and the corresponding dataset [9] since 6 basic emotions are
concise and would benefit annotation consistency.
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Fig. 1: Comparison between ECPEC and traditional ECPE

Besides, it would be challenging for the application scenarios
if incorporating the fine-grained sentiment in this task. Hence, we
choose IEMOCAP with six basic emotional types as the basic
dataset to build our ConvECPE dataset. Each non-neutral utterance
has at least one cause utterance and at most three cause utterances.
We do not label neutral utterances since sentiment interactions
among the majority of neutral utterances are relatively weak. With
this new dataset, we further develop an ECPEC-specific framework.
The experimental results prove that, although challenging, the new
ECPEC task is feasible. The main contributions of this work are
summarized as follows:

• We propose a new task: emotion-cause pair extraction
in conversations. It extends research on conversational
emotion detection and helps the understanding of emotion
interactions in conversations.

• Based on a CSA dataset, IEMOCAP, we build a high-
quality dataset, ConvECPE for the new ECPEC task.

• We propose a framework consisting of two multi-task
learning modules for this ECPEC task. The framework
takes the properties of conversations into consideration.

We release the ConvECPE dataset1 and baseline systems
online in the hope that this could contribute to research on EC
pair extraction and a comprehensive understanding of sentiment
interactions in conversations.

1. https://github.com/senticnet/ECPEC

2 RELATED WORK

2.1 EC Extraction

Lee et al. [10] first proposed the task of EC extraction, which is
defined by extracting word-level cause of emotion expression in
a given text. The authors manually built a corpus from Academia
Sinica Balanced Chinese Corpus. After that, researchers developed
plenty of works on this task setting, which can be categorized
into rule-based models [11], [12], [13], [14] and machine learning
models [15], [16], [17].

Considering that a clause may be a more appreciate unit for
EC extraction, Chen et al. [15] transformed this word-level task
into a clause-level task, and exploited six groups of linguistic
cues to detect causes. Following this setting, numerous researchers
make a contribution to algorithm achievement. Russo et al. [18]
presented a linguistic patterns model augmented with common
sense knowledge to classify the Italian sentence with a cause
phrase. Gui et al. [19] extended the above idea into 25 groups of
linguistic cues, then trained a machine learning model with SVM
and CRF for EC extraction.

With the emerging trend of deep learning, an increasing number
of researchers are applying deep neural networks for EC extraction.
Gui et al. [20] expressed this task as a question answering task,
and proposed a deep memory network with the convolution
operation [21] to extract answers (cause) of questions (emotion).
Li et al. [22] proposed a co-attention neural network to capture
the correlation between emotion context and cause context. EC
pair extraction was proposed by Xia and Ding [2] as a new task,
whose objective is to extract the potential pairs of emotions and
corresponding causes in documents. Compared with the existing
document-level dataset, the conversation is more complex and has
more application scenarios. Thus, it is essential to propose EC pair
extraction in conversations.

2.2 Conversational Sentiment Analysis

Sentiment analysis is one of the most important tasks in natural
language processing (NLP) because of its potential applications
in a wide area of systems, including opinion mining [23], health-
care [24], recommendation systems [25], education [26], etc.

In recent years, CSA attracted researchers’ attention. Poria et
al. [27] presented an LSTM-based model to preserve the sequential
order of utterances and share information of consecutive utterances.
Hazarika et al. [28] proposed Interactive COnversational memory
Network to extract multimodal features from conversational videos
and hierarchically capture the self- and inter-speaker emotional
features into global memories. Besides, Majimder et al [29] keep
track of states of speakers by modeling the party state, global state
and emotional dynamics. Li et al. [1] utilized neural tensor networks
to do context compositionality in conversations and proposed a two-
channel feature extractor for sentiment analysis in conversations.
However, knowing the sentiment of each utterance in conversations
is not enough for us to understand the sentiment interactions
among speakers and cannot provide informative knowledge for the
application scenarios like the conversational agent in the customer
service system. Hence, our work is proposed to deal with the
drawback of the CSA task and promote the application of sentiment
analysis in conversations.
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3 TASK DESCRIPTION AND CONVECPE DATASET

3.1 Problem Definition
First of all, we give the definition of our ECPEC task. Given a
multi-turn conversation U =

[
u1, u2, ..., u|d|

]
, the ECPEC task is

to extract a set of EC pairs in U :

P = {..., (ue, uc), ...} , (1)

where ue is an utterance with certain emotion and uc is the
corresponding cause utterance. Following the definition of cause
events by Lee [10], the cause utterance of an emotion utterance is
an utterance containing explicitly or implicitly expressed arguments
or events evoking (or partially evoking) the presence of the
corresponding emotion. Unlike the traditional ECPE task, the
ECPEC task is defined at utterance level instead of clause level.
Therefore, the “emotion” and “cause” used in this paper refer to
“emotional utterance” and “cause utterance”, respectively.

3.2 Dataset Annotation
As there is no existing dataset for the ECPEC task, we introduce a
conversational emotion-cause pair extraction dataset (ConvECPE)
in this paper. Similar to RECCON [30], our ConvECPE dataset is
constructed based on the existing interactive emotional dyadic mo-
tion capture database (IEMOCAP) [7]. The IEMOCAP is a dataset
of two-way conversations involving ten distinct participators [1],
where six different sentiments (happy, sad, neutral, angry, excited
and frustrated) are included. In this paper, we denote utterances
(labeled as happy, sad, angry, excited or frustrated) as emotional
utterances and neutral utterances as non-emotional utterances.

Because the sentiment interactions of most non-emotional utter-
ances are relatively weak, we only annotate emotional utterances in
this task. Due to the discontinuity and interactivity of conversation,
emotional utterances with more than one cause utterance frequently
occur while most of emotion clauses in documents have only one
cause clause. Considering that the number of cause utterances of
different emotional utterances varies from each other, we set the
maximum number of causes to three to reduce the complexity of
the ECPEC task. The predefined annotation rules are as follows:

1) The cause label of a given emotional utterance can be
the emotional utterance itself or any other utterance within the
conversation. If an emotional utterance contains both emotion
related expression and its corresponding cause expression, then
the current emotional utterance is regarded as its cause. Taking
the utterance “I am not feeling good. I’ve been out of work.” as
an example, the emotion of this utterance is frustrated and we
find that the event unemployment evokes this emotion. Therefore,
this utterance contains emotion and corresponding cause in the
mean time. In the original word-level emotion cause extraction
(ECE) task [15], about 85% of the emotion causes are in the same
clause where the emotion keywords are, which makes the ECE
task less complex. In our corpus, the percentage that emotion and
corresponding cause are in the same utterance is less than 30%.

2) Assuming that there are three emotional utterances ua, ub
and uc in a conversation, ub and uc are both the cause of ua and
uc is also the cause of ub. In this case, the priority is given to ub
when labeling the causes of ua since ub is the direct cause of ua.
For example, there is a conversation snippet:
A : I was admitted to Stanford University

(uc, happy)
B : Congrats! That is a great university.

(ub, happy)

ConvECPE Zero One Two Three
Match 992 2558 1794 381
Ratio 17.33% 44.68% 31.34% 6.65%

TABLE 1: The labeling result in round one.

A : Thanks! this is my dream school.
(ua, excited)

In this example, both uc and ub are the causes of ua. Obviously,
the emotion of ub is affected by the good news in uc. The feedback
from speaker B further strengthens the positive emotion of the
speaker A in ua. Therefore, ub is regarded as the most direct cause
of ua in this case.

Based on the annotation rules mentioned above, we design
an annotation workflow. In the first round labeling, we invite
two expert annotators who have enough knowledge for sentiment
analysis and dialogue systems to independently label each con-
versation. Due to the number of cause utterances for emotional
utterances varies from one to three, it is impossible to use kappa
to measure the interrater agreement. Hence, we use the statistical
information in Table 1 to show the quality of the first round
annotation. Specifically, only 17.33% of the annotations from two
annotators for the same utterance have no intersection, and around
82.67% have at least one intersection, indicating that the judgment
between our two annotators is basically consistent. Then we collect
the labeling results and compare the differences between them.
We only keep the results that are both labeled as cause utterances
by the two annotators. In the second round, we invite a third
expert annotator to process those emotional utterances that have
no intersection in the first round (only 17.33% of them need to be
processed). We get the union set of the labels given by the previous
two annotators for each utterance. In this case, the third annotator
is supposed to select the most relevant labels from the union set;
Otherwise, we invite experts to discuss those utterances and obtain
the final results by means of a majority vote (around one percent
of the utterances need to be processed). Discussion is used as the
final solution to process the conflicts between annotators [9].

3.3 ConvECPEC Dataset Analysis

The ConvECPE dataset consists of 151 dialogues with 7,433
utterances, among which 1,708 are neutral and 5,725 are emotional.
The proportion of emotional utterances with the different number
of cause utterances is shown in Table 2: 47.12% have one cause,
36.82% have two causes and only 14.32% have three; 29.39% are
the causes for themselves.

Fig. 2a shows the distribution of distances between emotional
utterances and their causes. The distance is calculated over 9, 473
EC pairs according to the formula ide − idc. Here, ide and idc
are the index of the emotional utterance and corresponding cause
utterance, respectively. Here, the sign of the distance corresponds
to the relative directions instead of the real values. As in Fig. 2a,
the distances between emotion and cause utterances are within
the range of [ide − 42, ide + 39]. And the majority of the cause
utterances of current emotional utterance are within a window in
which the index ranges from ide − 10 to ide + 5. Therefore, it is
essential to determine a window within which the classifier extracts
EC pairs. An appropriate window size should help to reduce the
computational complexity and maintain the performance as well.

However, as described before, because more than 50% of the
emotional utterances have more than one cause, it is necessary
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ConvECPE Dialogue Utterance Neutral Pairs Pairs* One Two Three

ALL 151 7,433
100%

1,708
22.98%

9,473
100%

2,784
29.39%

2,797
48.86%

2,108
36.82%

820
14.32%

Train set 120 5,810
100%

1,324
22.79%

7,558
100%

2,266
29.98%

2,114
47.12%

1,672
37.27%

700
15.60%

Test set 31 1,623
100%

384
23.66%

1,915
100%

518
27.05%

683
55.13%

436
35.19%

120
9.69%

TABLE 2: Statistical information of the ConvECPE dataset. Neutral stands for non-emotional utterance. Here Pair refers to EC pair and
Pair* refers to the pair where emotion and cause utterances are the same. One, Two and Three are the number of emotional utterance
with one, two or three causes, respectively.

(a)

(b)
Fig. 2: The distribution among the EC pairs. (a) denotes the
distribution of distances between emotion and cause utterances. (b)
denotes the distribution of cause range. Here range is defined as
the maximum distance among causes of an emotional utterance.

to know how these causes distribute w.r.t. current utterance. We
calculated the distance among these causes (i.e., cause range) with
|idc1 − idc2 | and plotted the distribution in Fig. 2b. Apparently,
cause range is a power-law distribution, with more than 80% of
them smaller than 3. This means we can search the cause within
a certain range (e.g., chunk) without losing accuracy. Therefore,
we add an auxiliary task emotion-cause-chunk (EC-chunk) pair
extraction to the EC pair extraction task to improve the search
efficiency, and the details are introduced in section 4.

To facilitate the usage of the dataset and produce comparable
results, we selected 120 of these dialogues as the training set
consisting of 5,810 utterances and the remaining 31 as the test set
consisting of 1,623 utterances. Generally, the maximum utterance
number is 110 and the average is 49.23.

4 APPROACH

Considering that the number of causes of emotional utterances
ranges from one to three, it is hard to directly extract EC pairs
in conversations. Therefore, we propose a two-step framework
to address this new ECPEC task. In the first step, a multitask
model is advanced to jointly detect emotion and cause utterances in
conversations. In the second step, an auxiliary task EC-chunk pair
extraction is presented to provide informative features which help
more accurately extract EC pairs. Here is the detailed definition of
the proposed framework:
Step 1 (Joint Emotion and Cause Detection) Here, the goal is
to detect whether an utterance is emotional or not and whether it
is a cause utterance of any utterance in the conversation. First, we
obtain a set of emotional utterances E =

{
ue1, ..., u

e
me

}
and cause

utterances C =
{
uc1, ..., u

c
mc

}
for each conversation. To do so,

two kinds of multi-task learning networks are presented to jointly
extract emotion and cause utterances in a conversation.
Step 2 (EC-Chunk Pair Extraction and EC pair Ectraction)
Since there are more than 100 utterances in some conversations,
directly pairing emotion set E and cause set C by applying a
Cartesian product is not an efficient choice. Based on the statistical
information in Fig. 2a and Fig. 2b, the causes of an emotional
utterance lie in a small region of the conversation in most situations.
In this case, it is easy to differentiate this small cause region from
other non-cause regions. Thus, we split C into several cause-
chunks and pair the emotional utterance with the cause-chunk
instead of the cause. Here cause-chunk is defined as a sequence of
contiguous cause utterances inC. Then, we train an EC-chunk filter
to recognize the candidate EC-chunk pairs, where the correct cause-
chunk should contain the cause/causes of the current emotional
utterance. For the EC pair extraction task, we pair the emotion set
E and the cause setC by applying a Cartesian product. This yields
a set of candidate EC pairs. Finally, we train the EC pair filter to
select the pairs that contain a causal relationship between emotion
and cause utterances. We elaborate each step in the following
subsections.

4.1 Step 1: Joint Emotion and Cause Detection

In this ECPEC task, a conversation is composed of a sequence of
d utterances. Each utterance in a conversation consists of a number
of words which are represented as vectors Vi =

[
v1i , v

2
i , ..., v

n
i

]
through the pre-trained GloVe [31] word vectors. Here i represents
the ith utterance and n is the number of words in the utterance.
As shown in Fig. 3, a two-layer Long Short-Term Memory [32]
(LSTM) module is employed as the tool to generate utterance-level
embeddings. The LSTM module takes word vectors of an utterance
as inputs and outputs the embedding of this utterance. For example,
if we input Vi, then the utterance embedding ut can be obtained
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accordingly. As a result, the input conversation can be represented
as a set of d embeddings: U = [u1, u2, ..., ud].

Following the results in [1], we take adjacent utterances ui−1
and ui+1 of utterance ui as its context at time step i. Then we
employ a linear layer to perform context compositionality for
utterance pairs (ui−1, ui) and (ui, ui+1) on both tasks, and get
context-aware vectors pei,f and pei,b for emotion detection task and
pci,f and pci,b for cause detection task, respectively. Taking the
cause detection task in Fig. 3 as an example, the context-aware
vectors pci,f and pci,b are fed into forward and backward LSTM
modules [32] to obtain sci which is the concatenation of the forward
and backward LSTM outputs. sei can be obtained analogously.

According to Xia and Ding [2], emotion information contributes
to detecting the causes and vice versa. Previous works also proved
that soft-parameter sharing can effectively improve the performance
of multi-task learning model [33], [34], [35]. Therefore, we propose
two multi-task learning variants with different soft information shar-
ing mechanisms to augment the performances of both emotion and
cause detection tasks. The one with cross attention mechanism [36]
is named as Joint-Xatt and the other with graph convolutional
network (GCN) is called Joint-GCN in this paper. The sharing
mechanisms play an important role in the joint learning structure
and are elaborated in detail in the following part.

As shown in Fig. 3, the features se = {se1, ..., seNe
} of the

emotion detection task and sc = {sc1, ..., scNc
} of the cause

detection task are transmitted to the soft information sharing
module. Ne and Nc are the number of emotion and cause
utterances, respectively. Concretely, in the case of Joint-Xatt, the
additional feature for sei can be obtained by the the following
equations of cross attention mechanism:

ci,j = seiWcs
c
j

αi,j =
exp(ci,j)∑
k exp(ci,k)

ŝei = sei ⊕ (
∑

j
αi,js

c
j)

(2)

where the matrix W c is the model parameter and ⊕ denotes
vector concatenation. Here emotion detection is the target task.
When cause detection becomes the target task, the calculation of
the additional feature for sci is performed in a symmetric manner,
where sci and sei exchange their positions in Formulas 2 and ŝci
can be obtained accordingly. Finally, sexatt = {ŝe1, ..., ŝeNe

} and
scxatt = {ŝc1, ..., ŝcNc

} are obtained and fed into a fully connected
layer followed by a softmax layer for classification.

For Joint-GCN model, we model the interactions between
se = {se1, ..., seNe

} and sc = {sc1, ..., scNc
} via a directed

graph. Each node in the graph represents a vector in these two
sets. Edges represent dependency between vectors from the sets
se and sc. In other words, we focus on the inter-dependency
instead of intra-dependency between these two sets of vectors. By
feeding this graph to a GCN [37] consisting of one convolution
operation, the information is propagated through vectors in se

and sc. Here we omit the details of GCN, and readers may refer
to [38] and [39]. Similarly, the features segcn = {ŝe1, ..., ŝeNe

} and
scgcn = {ŝc1, ..., ŝcNc

} are obtained and fed to the output layer.
Here we employ segcn and scgcn to introduce the equations for
emotion and cause detections:

ŷe = softmax(W esegcn + be)

ŷc = softmax(W cscgcn + bc)
(3)

where W e, be, W c and bc are the model parameters. The loss of
Joint-GCN is a weighted sum of two parts:

L = λLe + (1− λ)Lc (4)

where Le and Lc are the cross-entropy error of emotion and cause
detections, respectively. Here λ is a trade-off parameter. The loss
of Joint-Xatt can be computed in the same way as Joint-GCN.

4.2 Step 2: EC-Chunk Pair Extraction and EC Pair Ex-
traction

After step 1, we get a set of emotions E =
{
ue1, ..., u

e
me

}
and

cause utterancesC =
{
uc1, ..., u

c
mc

}
. As mentioned before, instead

of directly filtering candidate EC pairs, we propose an auxiliary
task EC-chunk pair extraction to enhance the performance of the
EC pair extraction task. Then these two tasks are combined into a
unified multi-task model, named Joint-EC.

In the Joint-EC model, we follow the same procedure as in step
1 models to generate utterance-level embeddings from pre-trained
GloVe word vectors. As shown in Fig. 4, The EC-chunk filter
and EC pair filter are combined in a parallel structure. Both of
them take the emotion utterance vectors ue and cause utterance
vectors uc as inputs, except that the output of EC-chunk filter ŷck

is fed into the EC pair filter as well, which makes this structure
an interactive multi-task learning framework. The EC-chunk filter
is designed to extract EC-chunk pairs. The equation of EC-chunk
filter is as follows:

φi,j = u
e
i ⊕ uck

j ⊕ (‖ue
i − uck

j ‖)⊕ (ue
i � uck

j )⊕ pckj
gi,j = LeakyReLU(W gφi,j + b

g)

ŷck
i,j = softmax(W ckgi,j)

(5)

where W g , bg and W ck are model parameters, � denotes
element-wise multiplication. uckj is the embedding of the jth cause-
chunk. Cause-chunk uck is obtained by splitting cause vectors
uc and attention mechanism [40] is applied to obtaining chunk-
level embedding. pckj is a fixed position embedding of the jth
cause-chunk. gi,j is the final feature vector and ŷck

i,j the prediction
result.

A Cartesian product is applied to pairing all the possible EC
pairs. Then we apply EC pair filter composed of the classification
module [36] to extract EC pairs. The equation of EC pair filter is
as follows:

δi,j = u
e
i ⊕ uc

j ⊕ (‖ue
i − uc

j‖)⊕ (ue
i � uc

j)⊕ ppj

f i,j = LeakyReLU(W fδi,j + b
f )

ŷi,j = softmax(W pf i,j)

(6)

whereW f , bf andW p are model parameters, � denotes element-
wise multiplication. ppj is a fixed position embedding of the j-th
cause uj . f i,j is the final feature vector and ŷp

i,j the prediction
result. Motivated by teacher forcing mechanism [41] used in
machine translation, with a certain probability, we feed ground
truth labels of
textitstep 1 into step 2 models to further enhance the performance
in step 2 and reduce overfitting [42] to some extent. Besides,
we propose the window-restricted Joint-EC(named as Joint-ECW)
which is a standard Joint-EC model taking uei − ucj as input where
i− j ∈ [−window,window]. Window-restricted mechanism is
proved to be computation-efficient [4]. In addition, it is capable of
alleviating unbalanced sample issue.
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GCN

Cause Context 
Compositionality

Emotion Context 
Compositionality

...

Concatenation

...

... ...

Cross Attention

Fig. 3: The proposed two models for joint emotion and cause utterances detection. Joint-GCN is illustrated in the left side and it
uses graph convolutional network as the soft information sharing method to enhance the emotion and cause detection tasks. The
structure of Joint-Xatt model is similar to Joint-GCN and the difference is that Joint-Xatt model employs cross attention as the soft
information sharing method to improve the performances of both tasks. Take Joint-GCN as an example, it has emotion and cause context
compositionality modules for emotion and cause detection tasks, respectively. These two modules have the same structure, hence we only
display the cause context compositionality module in this figure.

EC pair filterEC-chunk filter

Cause chunk Emotion Cause

Fig. 4: Illustration of Joint-EC

The loss of Joint-EC model is a sum of two parts:

L = Lck +Lp (7)

where Lck and Lp are the cross-entropy error of EC-chunk pair
and EC pair extraction tasks, respectively.

5 EXPERIMENTS

5.1 Metrics

Similarly to previous work on ECPE [2], we evaluate our models
on precision, recall and F1 score. We report the definition of these

metrics:

Precision =

∑
correct pairs∑
proposed pairs

(8)

Recall =

∑
correct pairs∑

annotated pairs
(9)

F1 =
2× Precision×Recall
Precision+Recall

(10)

where correct pairs is the number of emotion, cause, or EC
pairs (depending on the task) correctly identified by the model.
proposed pairs is the total number of emotion, cause, or EC
pairs predicted by the model, including the false positives. Lastly,
annotated pairs is the total number of emotion, cause, or EC
pairs present in the dataset. Precision measures the ability of
a classifier to correctly detect emotion(cause) utterances from
proposed emotion(cause) utterances. Recall is to measure how
many annotated emotion(cause) utterances are found. F1 score is
the harmonic mean of precision and recall and it is a consolidated
indicator to evaluate the performance of a classifier.

5.2 Baseline and Setting
5.2.1 BERT baseline
To assess how well our model fares compared to other solutions,
we also experiment with a BERT-based baseline [43], where we
apply it to the emotion and cause detection tasks separately, as
well as to the EC pair extraction. More specifically, we employ the
pre-trained BERT base model followed by a layer to perform the
binary classification task. We use a maximum sequence length of
128 and train the model using the Adam optimizer with a learning
rate of 1e − 6 and minimize the weighted binary cross-entropy
loss function. For the EC pair prediction task we train and evaluate
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the model on all of the possible pairs within a conversation. In
order to address the class imbalance problem, as well as to reduce
the training time, we use negative sampling, resulting in roughly
the same number of negative and positive samples at each training
iteration. Moreover, we experiment with a windowed version of
this model, taking into account only the utterances that lie within
10 utterances of each emotional utterance.

5.2.2 ECPE baselines
The models (e.g., Inter-CE, Inter-EC) from [2] are currently the
most relevant to our proposed task. Therefore, it is necessary to
make such comparisons. The code we use is publicly available 2,
and it is the default setting applied during the model training.
Specifically, the maximum sequence length is set to 128, the
learning rate is 0.005 and the batch size is set to 32.

5.2.3 Joint-Xatt, Joint-GCN, Indep and Joint-EC
As mentioned in subsection 4.1, we use the pre-trained 100-
dimensional GloVe word vectors3 for Joint-GCN, Joint-Xatt and
Indep. For Joint-EC model, we also use the pre-trained 100D GloVe
word vectors and set chunk size as 2. For training details, we use
Adam [44] as the optimizer. Batch size and learning rate are set to
1 and 1e− 3, respectively. To alleviate overfitting [42], dropout is
applied and set to 0.4. Indep is a variant of step 1 model, where the
emotion and cause utterances are detected individually. Window
size of Joint-ECW is set to 8 in this experiment.

5.3 Evaluation on ECPEC task
The emotion detection task is defined as a binary classification
by predicting whether the utterance carries emotion, and it is the
same case in the cause detection task. As mentioned earlier, each
utterance may have one or more causes, therefore, all of these
causes are treated as true labels in the prediction. Table 3 shows
the results for our proposed step 1 models and other baselines.
Here we use the average F1 score (AVG) on emotion detection and
cause detection tasks to evaluate overall performances of step 1
models since a high AVG corresponds to more emotion-cause pairs,
which would benefit step 2 models. From the overall perspective
of AVG, we observe that our proposed step 1 models get better
performances than ECPE related models (i.e., Inter-CE, Inter-EC),
and even outperform the BERT model by a large margin. These
results validate the effectiveness of the proposed step 1 models.

Among our proposed step 1 models, Joint-GCN and Joint-
Xatt achieve almost the same average F1 score on both tasks,
which shows that both GCN and cross attention are effective soft
information sharing mechanisms for joint learning of emotion and
cause detection tasks. In particular, compared with Indep, Joint-
GCN and Joint-Xatt improve the performance of cause detection
task by a large margin without reducing the performance of emotion
detection too much. Compared with the interactive multi-task
learning modules of Inter-EC and Inter-CE which directly employ
the prediction results of one task as additional features to improve
the performance of another task, learnable soft information sharing
modules GCN and cross attention are more helpful and powerful.
If the prediction results of one task is incorrect, the error would
broadcast as the prediction is directly used as part of the input
features of another task. Our learnable soft information sharing
modules do not directly share the prediction results. On the contrary,

2. https://github.com/NUSTM/ECPE
3. http://nlp.stanford.edu/data/glove.6B.zip

they take the coupling of two tasks into consideration to share useful
features.

The performances of BERT baseline are far behind the other
models including Inter-CE, Inter-EC and our step 1 models.
However, BERT model adopts a different detection strategy which
is noteworthy. To be specific, BERT is inclined to detect emotion
or cause utterances as precisely as possible instead of detecting
emotion or cause utterances as many as possible. In contrast,
Inter-EC and Inter-CE tend to achieve a high recall but are not
good at correctly detecting emotion or cause utterances. The
possible reason is that the emotion and cause clauses in the
ECPE documents are sparse (most documents contain only one EC
pair [2]); whereas, there are around 38 emotional utterances on
average in a conversation, and each of them has one or more causes.
This misleads ECPE related models (i.e., InterCE, InterEC) into
predicting that almost all utterances are the emotional utterances
and most utterances are cause utterances. Our step 1 models have
balanced performances over two metrics recall and precision, and
thus get better F1 scores than ECPE related models.

By summarizing the results in Table 3, we find that the
performances of all the models on emotion detection task are far
better than those on cause detection task. According to the results
in ECPE task [2], the performance gap between emotion and cause
detection tasks is even larger(around 20%). One possible reason
is that cause detection is a more challenging task. In most cases,
an utterance itself can provide sufficient information for detecting
whether it is emotional or not. However, this is not applicable
to the detection of cause utterances since cause utterances are
highly related to their corresponding emotional utterances. In future
research, the unique properties of cause utterances should be taken
into account to design cause utterance-specific structure.

As mentioned before, the Joint-EC model is applied to ex-
tract EC pairs from the detected emotion and cause utterances.
To verify the feasibility of the ECPEC task and evaluate the
performance of the proposed Joint-EC model, we introduce a
series of Joint-EC based models and compare these models with
baselines. To be specific, Joint-EC based models are as fol-
lows: Joint-EC(BERT Indep), Joint-EC(Inter-EC), Joint-EC(Inter-
CE), Joint-EC(Indep), Joint-EC(Joint-Xatt), Joint-EC(Joint-GCN),
Joint-ECW(BERT Indep), Joint-ECW(Inter-EC), Joint-ECW(Inter-
CE), Joint-ECW(Indep), Joint-ECW(Joint-Xatt), Joint-ECW(Joint-
GCN), where Joint-EC is the standard Joint-EC model and Joint-
ECW is window-restricted Joint-EC model. The names between
brackets refer to the step 1 models, and Joint-EC or Joint-ECW
is the name for step 2 model. Take Joint-EC(BERT Indep) model
as an example, it employs BERT in the first step to extract the
emotion and cause utterances independently and then applies our
Joint-EC framework to extract EC pairs. BERT is employed as the
baseline model in the experiment. The results are listed in Table 4.

Applying BERT to extract target EC pairs from all candidate
pairs is time consuming with low extraction accuracy, since it deals
with tens of thousands of pairs. This is validated in the results
of BERT. BERT model tends to classify most of the candidate
EC pairs as true EC pairs and this yields a high recall. However,
considering that true EC pairs are very rare among candidate EC
pairs, it is hard for BERT to precisely extract true EC pairs in this

1. The window size is set to 12 for Joint-ECW(BERT Indep) to run this
experiment.

2. We use Joint-GCN as the input for Joint-EC-Bound and Joint-EC-Bound.
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Emotion Detection Cause Detection AVGPrecision Recall F1 Precision Recall F1
Joint-GCN 83.05% 95.32% 88.76% 71.47% 86.35% 78.21% 83.49%
Joint-Xatt 83.32% 94.35% 88.49% 69.68% 89.42% 78.33% 83.41%
Indep 80.70% 96.21% 87.78% 72.76% 80.55% 76.46% 82.12%
Inter-CE 76.34% 100.00% 86.58% 67.79% 86.92% 76.17% 81.38%
Inter-EC 76.34% 100.00% 86.58% 68.55% 85.55% 76.11% 81.35%
BERT 90.71% 67.80% 77.60% 75.64% 74.18% 74.90% 76.25%

TABLE 3: Results on emotion detection and cause detection tasks, AVG denotes the average F1 score of the two tasks, the higher the
better.

Combinations PR REC F1
BERT 9.81% 60.57% 16.89%(2e-3)
BERT-Window 13.80% 68.72% 22.98%(3e-3)
Joint-EC(BERT Indep) 35.68% 24.39% 28.97%(4e-3)
Joint-ECW1(BERT Indep) 37.31% 35.93% 36.61%(1e-3)
Joint-EC(Inter-EC) 30.91% 37.34% 33.82%(2e-3)
Joint-ECW(Inter-EC) 30.76% 57.13% 39.99%(7e-3)
Joint-EC(Inter-CE) 30.05% 37.75% 33.46%(5e-3)
Joint-ECW(Inter-CE) 31.24% 58.06% 40.62%(1e-3)
Joint-EC(Indep) 37.38% 31.23% 34.03%(4e-3)
Joint-ECW(Indep) 34.79% 52.95% 41.99%(3e-3)
Joint-EC(Joint-Xatt) 38.23% 37.08% 37.65%(3e-3)
Joint-ECW(Joint-Xatt) 37.12% 56.09% 44.67%(3e-3)
Joint-EC(Joint-GCN) 42.79% 35.35% 38.72%(4e-3)
Joint-ECW(Joint-GCN) 38.16% 59.27% 46.43%(4e-3)
Joint-EC-Bound2 #52.67% #39.63% #45.23%(2e-3)
Joint-ECW-Bound #49.27% #59.66% #53.97%(3e-3)

TABLE 4: The results of the two-step framework and baseline
models. PR and REC are the abbreviation of precision and recall,
respectively. The reported results are the average of 3 runs. The
numbers in brackets are the standard deviation of F1 scores.

case. If applying window restriction to the BERT model, then the
BERT-Window model achieves a better precision and recall in the
mean time. Nevertheless, the performance of BERT-Window is still
poor in terms of precision. The proposed twelve models, by contrast,
show a different scheme which is to reduce the proposed pairs
without decreasing correct pairs too much. In this case, precision
increases a lot while recall slightly decreases. Among these models,
our proposed Joint-ECW(Joint-GCN) and Joint-ECW(Joint-Xatt)
get the best performances in terms of F1 score. In addition, Joint-
ECW based models surpass the corresponding Joint-EC based
models by 7.28% on average. Take Joint-ECW(Joint-GCN) and
Joint-EC(Joint-GCN) as an example, there are 145,228 proposed
EC pairs in the training set of Joint-EC(Joint-GCN) among which
7,558 pairs are true EC pairs. If we apply window restriction to the
Joint-EC, then the proposed pairs reduce to 47,049 and the true EC
pairs are 7,424 in this case. With the help of the window restriction,
we obtain a more balanced training set, which would benefit the
filter. Meanwhile, this also demonstrates the effectiveness of the
window restriction mechanism.

Combining the results in Table 3 and Table 4, we observe that
the performances of EC pair extraction are positively correlated
to the step 1 performances. The higher the performance in step 1
is achieved, the higher the performance in EC pair extraction is
observed. For instance, Joint-EC(GCN) performs the best in terms
of average F1 score in step 1, and its performance surpasses the
other models in step 2. In contrast, BERT has a low average F1
score in step 1. Thus its F1 score in step 2 is far behind the other
models. Besides, we find that Joint-EC(Inter-CE) is slightly behind
the Joint-EC(Inter-EC) while Joint-ECW(Inter-CE) is slightly better

than Joint-ECW(Inter-EC) in step 2, although the Inter-CE and
Inter-EC have almost the same performance in step 1. One possible
reason is that the extracted emotion and cause utterances by Inter-
EC and Inter-CE may contain different numbers of true EC pairs
under different conditions. For instance, both Inter-EC and Inter-CE
extract 100 emotion utterances and 100 cause utterances in step 1,
where there are 50 true EC pairs in Inter-EC and 40 true EC pairs in
Inter-CE. Joint-EC(Inter-EC) may obtain a better performance than
Joint-EC(Inter-CE) in this case. Nonetheless, Inter-CE may have
more true EC pairs than Inter-EC under the restriction of window
mechanism, which may account for the better performance of Joint-
ECW(Inter-CE). In addition, the above analysis can also be used
to analyze the performance gap between Joint-ECW(Joint-Xatt)
and Joint-ECW(Joint-GCN). The F1 score of the latter outperforms
the former by a large margin, even though the AVG F1 scores
of the two models are comparable. In the training set of Joint-
ECW(Joint-Xatt), there are 52,660 EC pairs among which 6,937
are true EC pairs. As mentioned before, 7,424 out of the 47,049
EC pairs are true in the training set of Joint-ECW(Joint-GCN).
In fact, Joint-GCN is a better filter than Joint-Xatt, which cannot
be reflected by the current metrics. In future research, we need to
design a more accurate measurement to evaluate the performance
of the step 1 filter.

To explore the upper bound of the performance, we use the
annotated label directly rather than the output from the first step
as the input of Joint-EC. However, this cannot be fairly compared
with other models and is marked by a “#”. Nevertheless, we can
still get some insights from the results of Joint-EC-Bound and
Joint-ECW-Bound. With the window restriction, both Joint-EC-
Bound and Joint-ECW-Bound dramatically improve the F1 score
by more than 6%. The results of Joint-EC-Bound and Joint-ECW
indicate that it is essential to keep improving the performances
in step 1. Additionally, in future research, if prior knowledge like
the interaction pattern [45] is incorporated in a conversation into
a model like Joint-ECW, we may extract more EC pairs and get
better performance on this task.

5.4 Ablation Study
To further explore the proposed Joint-EC model, we perform
ablation study to investigate the influence of the proposed auxiliary
task EC-chunk pair extraction task. To be specific, we employ
Joint-EC(Joint-GCN) and Joint-ECW(Joint-GCN) to conduct
experiments on ConvECPE dataset. The results are shown in
Table 5, where EC is a standard Joint-EC model without EC-
chunk extraction task; ECW is a standard Joint-ECW model
without EC-chunk extraction task. The auxiliary task EC-chunk
pair extraction is proved to be effective. Comparing EC with Joint-
EC, the EC-chunk task increases the F1 score from 32.53% to
38.72%. Moreover, with the help of the auxiliary task, Joint-ECW



IEEE TRANSACTIONS ON AFFECTIVE COMPUTING, VOL. 14, NO. 3, JULY-SEPTEMBER 2023 1762

Model EC-chunk extraction Window restriction Precision Recall F1

EC - - 43.04% 26.15% 32.54%
ECW - + 38.07% 29.71% 33.38%

Joint-EC + - 42.79% 35.35% 38.72%
Joint-ECW + + 39.01% 52.37% 44.72%

TABLE 5: Results of ablated Joint-EC models on the ConvECPE dataset.

outperforms ECW by 11.34% in terms of the F1 score. Similarly,
ECW achieves a better F1 score than EC model by means of
window restriction mechanism. If we combine EC-chunk extraction
and window restriction mechanism, the F1 score of Joint-ECW
improves by 12.18% compared with that of the EC model, which
indicates a good coupling between these two parts.

Window restriction can partially alleviate the unbalanced
sample issue, which in turn benefits the EC pair extraction task. We
also notice that the window restriction mechanism slightly reduces
the precision. One possible reason is that the number of proposed
pairs increases more than correct pairs within the window scope.
Specifically, the mechanism may lead the classifier to identify more
potential pairs. Meanwhile, we observe significant performance
gain in terms of recall as the ratio of correct pairs increases
dramatically within the window area. EC-chunk pair extraction
focuses on a small region rather than a specific cause utterance,
which is more stable and robust compared to EC pair extraction.
Therefore, EC-chunk extraction may provide informative features
enhancing the EC pair extraction task. In particular, the auxiliary
task may slightly increase or reduce the precision while increasing
the recall by a large margin. One possible reason is that EC-chunk
extraction may have a similar function to the window mechanism.
In other words, the auxiliary task may determine one or several
chunk regions that are highly related to the current utterance,
which provides additional features enabling the EC pair filter to
concentrate on the pairs within the chunk regions.

5.5 Effect of Chunk Size

In this subsection, we employ Joint-EC and Joint-ECW to further
study the influence of chunk size of the auxiliary task. Chunk
size reflects the span of the cause utterance region, which is of
vital importance for the EC-chunk pair extraction task and the
subsequent EC pair extraction task. As shown in Fig. 5, the optimal
value of chunk size is 2 on both models. The value of F1 score
declines slightly when chunk size changes from 2 to 6. When chunk
size increases from 6 to 10, F1 score slightly fluctuates up and down.
There are some practical explanations about the results in Fig. 5.
In general, a small chunk could provide more informative features
for the main task EC pair extraction since a small adjacent cause
utterance region is closely related to the corresponding emotional
utterance. The only exception is when chunk size equals 1. In this
case, the auxiliary task is equivalent to the EC pair extraction task.
However, it cannot provide enough complementary information for
the main task. A large chunk contains a lot of irrelevant information
which is useless to the main task. The performance of Joint-ECW
decreases to around 35.5% which is close to the model without
the auxiliary task (ECW model). The performance of Joint-EC is
even slightly worse than the one without the auxiliary task (EC
model). In conclusion, the experimental results coincide with the
theoretical analysis of the proposed auxiliary task.

Fig. 5: The influence of chunk size of the auxiliary task

Fig. 6: The influence of teacher forcing rate on EC pair extraction

5.6 Effect of Teacher Forcing Rate

We also conduct experiments to investigate the effect of teacher
forcing rate. As shown in Fig. 6, The optimal values for Joint-EC
and Joint-ECW are 0.4 and 0.5, respectively. Hence, there is no
one-size-fits-all optimal teacher forcing rate for different models.
In general, teacher forcing mechanism has a limited influence on
EC pair extraction task. One possible reason is that the predicted
distribution in step 1 is close to the distribution of the ground truth.
Besides, Joint-ECW is less sensitive to the teacher forcing rate
compared with Joint-EC since it is a more stable and robust filter.
On the one hand, predicted labels in the training set have a very
similar distribution to the predicted labels in the test set. On the
other hand, there are a number of errors in the predicted labels
of the training set, which may reduce the accuracy of the filter.
Therefore, introducing the ground truth labels may improve the
performance of the filter and alleviate overfitting to some extent.

5.7 Case Study

In Fig. 7, we illustrate the EC pair extraction result of a conversation
snippet. There are five utterances in the snippet. Three are from
speaker A and two are from speaker B. According to the ground
truth label (the yellow arrows), there are seven EC pairs in
this snippet, i.e., (turn 21, turn 21), (turn 22, turn 21),
(turn 23, turn 22), (turn 23, turn 23), (turn 24, turn 24),
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Fig. 7: Case study of the ECPEC task. In this figure, the EC pair extraction results of a conversation snippet is illustrated. The one on the
left is the result of the Joint-ECW model while the one on the right is from the Joint-EC model. The arrow points from an emotional
utterance to its corresponding cause utterance. The yellow arrows are the ground truth. The blue arrows and green arrows are predicted
by Joint-ECW and Joint-EC, respectively.

(turn 25, turn 25), (turn 25, turn 22). As mentioned before,
an utterance may contain adequate information where emotion and
corresponding cause are included at the same time. Take turn 21
as an example, speaker A thought that speaker B wastes her time,
which makes her feel frustrated. The emotion of turn 25 is anger
and the cause is that speaker A cannot help him and makes an
exception for him.

In this snippet, the Joint-ECW model extracts nine EC pairs
while the Joint-EC model extracts five EC pairs, which coincides
with the performances of the two filters. The Joint-ECW has a
slightly lower Precision compared with Joint-EC. Hence, the
Joint-ECW is inclined to extract more candidate EC pairs than the
Joint-EC. Besides, it is hard for both models to extract the EC pair
that has a long distance between emotion and cause utterances.
Moreover, both models have a common mistake. Take utterances
turn 23 and turn 24 as an example, the cause of turn 23 cannot
be turn 24 since the response turn 24 happens after turn 23 and
cannot evoke the emotion of turn 23 in this case. One possible
reason for such a mistake is that, even though an utterance cannot
evoke emotion, it may be still partially related to the emotional
utterance.

5.8 Visualization

In this subsection, we use visualization to illustrate EC pairs
in conversations. In Fig. 8a and Fig. 8b, we display the EC
pair extraction results given by Joint-ECW and Joint-EC models,
respectively. The x- and y-axes in Fig. 8 represent the index of
each utterance in a conversation. Taking Fig. 8a as an example,
the figure in the left upper corner shows the extracted EC pairs
from conversation Ses05F impro02, where each green point is
an EC pair. The ground truth label of the Joint-ECW model is
shown in the bottom-left corner. The extracted results and ground
truth label of the Joint-EC model are in the right side. In general,
most of the EC pairs lie around the diagonal of the figure, which
is in accord with the theoretical analysis in 3.3. Meanwhile, we
observe the same result as in the case study, that is, the Joint-ECW
model tends to extract more candidate EC pairs than the Joint-EC
model. Besides, compared with the ground truth of Joint-EC, the

(a) Ses05F impro02

(b) Ses05F impro07
Fig. 8: Visualization of EC pairs in conversations
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ground truth of Joint-ECW removes some points that are far from
the diagonal. On the one hand, this indicates the effectiveness
of the window restriction mechanism. On the other hand, these
points have a negative impact on the Joint-EC filter and would
lead to more long-range EC pairs. It is hard to extract long-range
EC pairs and the accuracy of long-range EC pairs of the Joint-EC
model is low according to Fig. 8a and Fig. 8b. With the help of
window restriction, the Joint-ECW filter focuses more on short-
range EC pairs than long-range EC pairs and thus achieves a better
performance.

6 CONCLUSION

In this paper, we propose a new task, termed ECPEC, which aims
to extract all possible EC pairs in conversations. Since there is
no existing dataset for the new task, we introduce a high-quality
conversational emotion-cause pair extraction dataset ConvECPE.
To deal with this task, we propose a two-step framework taking the
properties of conversations like context-dependence and interactiv-
ity into account. We first employ multi-task learning to combine
emotion detection and cause detection into a unified model. Then,
instead of directly pairing all the detected emotions and causes, we
propose a multi-task model which pairs EC-chunk and EC pairs at
the same time. Experimental results demonstrate the feasibility of
ECPEC task and the effectiveness of our models. Furthermore, the
experiments on the ConvECPE dataset enable us to have a deep
understanding of this new task.

Our two-step framework is the first successful attempt on this
new task and new dataset. Nevertheless, it is not the final solution
for this challenging task. In future work, we plan to build a model
combining the two steps into a unified framework to further improve
the performance of this ECPEC task. Moreover, information about
speakers should be taken into account in future research to enhance
the filter. In addition, it is also feasible to perform a multi-modal
EC pair extraction task through the ConvECPE dataset since it also
contains visual and audio features.
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