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Abstract—Aspect-based sentiment analysis (ABSA) means to identify fine-grained aspects, opinions, and sentiment polarities. Recent
ABSA research focuses on utilizing multi-task learning (MTL) to achieve less computational costs and better performance. However,
there are certain limits in MTL-based ABSA. For example, unbalanced labels and sub-task learning difficulties may result in the biases
that some labels and sub-tasks are overfitting, while the others are underfitting. To address these issues, inspired by neuro-symbolic
learning systems, we propose a meta-based self-training method with a meta-weighter (MSM). We believe that a generalizable model
can be achieved by appropriate symbolic representation selection (in-domain knowledge) and effective learning control (regulation) in a
neural system. Thus, MSM trains a teacher model to generate in-domain knowledge (e.g., unlabeled data selection and pseudo-label
generation), where the generated pseudo-labels are used by a student model for supervised learning. Then, the meta-weighter of MSM
is jointly trained with the student model to provide each instance with sub-task-specific weights to coordinate their convergence rates,
balancing class labels, and alleviating noise impacts introduced from self-training. The following experiments indicate that MSM can
utilize 50% labeled data to achieve comparable results to state-of-arts models in ABSA and outperform them with all labeled data.

Index Terms—Aspect-based sentiment analysis, Meta learning, Self-training

✦

1 INTRODUCTION

A SPECT-based sentiment analysis (ABSA) is an entity-
oriented and fine-grained sentiment analysis task. The

task consists of three sub-tasks, including aspect term ex-
traction (AE), opinion extraction (OE), and aspect-level sen-
timent classification (SC) [1]. As shown in Fig. 1, given a
sentence “The restaurant is crowded but with efficient and
accurate service”, ABSA aims to collect triplets {crowded,
restaurant, negative} and {(efficient, accurate), service, posi-
tive}. Such fine-grained ABSA can help recognize, interpret,
and simulate human emotions better and further support
many downstream applications, such as precise recommen-
dation systems and intelligent dialogue systems [2], [3], [4].

Typically, AE and SC sub-tasks were respectively re-
garded as a two-step pipelined task [5], [6], and OE was
performed separately [7], [8]. Considering the requirements
of end-to-end processing and a lighter model in real-world
application scenarios, these three tasks were also formulated
as a multi-task learning (MTL) issue. Using MTL can simul-
taneously obtain aspects, their polarities, and opinions with
a shared encoder, which can save an amount of comput-
ing resource and gain performance-boosting improvements
from the learnt knowledge of each sub-task [9]. However,
MTL-based ABSA faces additional challenges, compared
with single-task learning solutions, e.g., various sub-tasks
annotated in an instance may cause an imbalanced label
distribution. It is hard to sample sufficient instances with
equal numbers of labels for each sub-task in an MTL setting.
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(1) The restaurant is crowded but with efficient and accurate service.

Aspect extraction
Opinion extraction Neutral  sentiment

Negative sentiment

(2) An expensive laptop but offers many advanced features.

(3) Food was okay but is not worth an hour drive.

Positive sentiment

Fig. 1. The examples of aspect-based sentiment analysis (ABSA) task,
which consists of aspect extraction (AE), opinion extraction (OE), and
aspect-level sentiment classification (SC).

This problem becomes more obvious in a sequence la-
beling task in which the class of “others” dominates its tag
sets. Some label instances in a sub-task may be insufficient
to train a robust neural network. Taking a utilized ABSA
corpus [10] in this paper as an example, the number of
instances with the most common label versus the most
uncommon one reaches 760:1. With a limited dataset, such
extremely imbalanced data may result that some classes
insufficiently support an MTL neural network to play its
functions properly.

To address the above issue, inspired by neuro-symbolic
learning systems, self-training communities seek to a robust
method to generate in-domain knowledge, e.g., selecting
confident input (symbolic representations) and generating
pseudo labels, to mitigate the impacts of insufficient and
imbalanced data [11], [12], [13]. Such a method can enhance
the predictive ability of a model by training with more data
that are automatically labeled by the model itself.
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However, employing self-training inevitably introduces
noisy pseudo labels [14], [15], which may cause the problem
of gradual drift [16]. To figure out this problem, a direct
and typical method is re-weighting [17]. When obtaining
the generated pseudo labels, some self-training methods
utilized uncertainty and utility thresholds to evaluate the
quality of the pseudo-labeled data [18], [19], and allo-
cated small weights for low-quality pseudo-labels. When
applying self-training technology in an MTL and sequence-
labeling ABSA, re-weighting becomes more challenging in
the following aspects. First, the generated pseudo-labeled
data need smaller weights to alleviate noise influences.
Second, classes with fewer annotated instances should be
allocated with larger weights to help the model learn from
insufficient data [20], [21]. Lastly, considering the fact that
different sub-tasks have different convergence rates and im-
portance (main tasks vs. auxiliary tasks), the sub-tasks may
need different weights to be coordinated comprehensively.
Typical re-weighting research [22], [23] likely focused on
one of the above conditions. They manually designed a pre-
defined function to re-weight data, solving the problem of
either imbalanced distributions or denoising. It is hard to
manually design a pre-defined weighting function to satisfy
these three requirements simultaneously, and working well
under different conditions adaptively.

To deal with the above problems, e.g., insufficient and
imbalanced data, and sub-task re-weighing for ABSA, this
paper proposes a Meta-based Self-training method with
Mix-weighter (MSM). MSM employs self-training to obtain
more training data and automatically calculates different
weights for multiple tasks under different conditions. As
shown in Fig. 2, MSM consists of three components: a
teacher model, a student model, and an extra meta-weighter.
The teacher model owns the same structure as the student
model, while the teacher model is only trained by gold-
labeled data to avoid the influences of pseudo labels. The
student model is trained with both gold and pseudo labels
that are re-weighted by the meta-weighter, so that the stu-
dent model can obtain a fully and unbiased supervision. The
meta-weighter provides sub-task-specific weights of mixed
labeled and unlabeled instances for the student model.
Besides, to ensure the meta-weighter can generate proper
weights, we employ a three-step meta updating method
for jointly training the meta-weighter and student model
of MSM. By maintaining two sets of parameters, the meta-
weighter can employ current feedback from the student
model to generate weights for current inputs. The meta-
weighter offers the student model a better convergence,
because they are already updated by the same input. Finally,
the student model provides final predictions under the
supervision of the teacher model and meta-weighter.

The main contributions of this work are as follows:

• We propose MSM, which achieves self-training by
employing a typical teacher-student framework plus
a novel meta-weighter. The meta-weighter can gen-
erate sub-task-specific weights to mitigate noise im-
pacts, coordinating sub-tasks, and balancing class
labels in ABSA.

• We design a three-step meta training method to
update the meta-weighter and student model jointly.

Utilizing the proposed method, MSM can take ad-
vantage of current feedback from the student model
to lead MSM to a temperature gradient direction.

• We utilize 50% training data to achieve comparable
performance of state-of-art models and outperform
them with all labeled data in ABSA tasks. The exper-
imental results demonstrate the effectiveness of the
proposed MSM.

2 RELATED WORK

Multi-task learning is a popular technology in recent ABSA
studies [24], [25], [26]. Compared with pipeline methods,
MTL-based solutions simultaneously deal with AE, OE, and
SC rather than extracting aspect terms first then identifying
sentiment polarities. The most recent research focus on how
to enhance the interactions among sub-tasks. GBM [24] pro-
posed a novel Gated Bridging Mechanism for sharing useful
information between different sub-tasks, while filtering out
useless information. IMN [25] introduced a message passing
mechanism among different tasks through a shared set of
latent variables, which jointly learnt multiple related tasks
at both the token level and the document level. RACL [9]
proposed a MTL method to encode collaborative signals be-
tween different sub-tasks in a stacked multi-layer network.

However, besides enhancing information interactions,
unique data features and requirements should also be
paid attention in MTL-based sequence labeling, such as
ABSA. Considering the potentially insufficient and imbal-
anced data features, self-training is a promising technol-
ogy to mitigate the problems. Generating pseudo labels
is a welcome method in self-learning. Flipping, rotating,
and translating are common operations in computer vision
field to generate pseudo-labeled instances [14], [27], [28],
[29]. Generating pseudo-labeled data is more challenging
in the natural language processing (NLP) field, because of
the ambiguity of language [30], [31]. Randomly deleting,
inserting, and switching some tokens in a sentence [32]
may cause semantic incoherence and side effects for token-
level sequence labeling tasks. Hence, self-labeling is a more
effective method in NLP tasks [19]. SFLM [33] proposed a
prompt-based learner with self-training for few-shot tasks.
Given two views of an instance via weak and strong aug-
mentations, SFLM generated a pseudo label on the weakly
augmented version and fine-tuned with the strongly aug-
mented version. Du et al. [34] introduced SentAugment to
generate task-specific data for a given task from a bank of
billions of unlabeled sentences and utilized a supervised
teacher model to label these sentences. The work of Wang et
al. [35] is similar to ours, which focused on addressing the
label scarcity challenge of sequence labeling tasks with self-
training. However, they just explored a single-task setting
while we try to deal with multiple sequence labeling tasks.

One challenge for self-training is that pseudo labels
are noisy, making it hard for the neural model to achieve
effective convergence. To alleviate impacts from noise, the
generated pseudo labels need to be cherry-picked. Some
early work simply utilized the predicted softmax score [36],
[37]. In addition, a part of recent active learning works [38],
[39] also depended on the model output scores to select
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Fig. 2. The overview of the proposed meta-based self-training method with a meta-weighter (MSM). Different data stream is exhibited with different
colors. The details of TMU training are illustrated in Fig. 3.

samples. However, a prediction with a high softmax score
cannot be fully trusted. This is because these models, trained
for generating pseudo labels, are limited with their gen-
eralization ability and the number of training data. Thus,
they are likely to confidently allocate wrong labels [40]. For
such a reason, some studies [41], [42] leveraged curriculum
learning to select data instances from simple to complex.
Some research about self-paced learning [43], [44] calculated
data uncertainty as the criterion for data selection. In this
work, our model takes both data uncertainty and utility into
account for pseudo-labeled data selection.

3 METHODOLOGY

This section formulates the ABSA task, introduces the
overview of MSM, and describes the training method of
meta-weigher in detail. As shown in Fig. 2, the proposed
MSM consists of three components: a teacher model, a
meta-weighter, and a student model. The teacher model
adopts gold data to learn the task, generate pseudo labels,
and calculate the uncertainty for unlabeled data. The meta-
weighter is jointly trained with the student model to allocate
sub-task-specific weights for gold and pseudo data. Guided
by the teacher model and the meta-weighter, the student
model is trained with gold and pseudo labels, and then
performs the final interference.

MSM utilizes two independent teacher model and stu-
dent model, so that the teacher can only be trained by
gold data to avoid noise impacts and generate high-quality
pseudo labels. The student model can adopt more training
data without extra manual annotations to mitigate imbal-
anced and insufficient data influences. Considering that
automatically labeled data are noisy, necessary measures
can be used to prevent gradual drift in the student model. To

TABLE 1
The comparison of different existing related work. AOPE means

Aspect-Opinion Pair Extraction [47]. ACSA means Aspect-Category
Sentiment Analysis [48]. TASD means Target Aspect Sentiment

Detection [49]. ABSA and ABSA1 [50] both means Aspect-based
Sentiment Analysis. Compared with ABSA1, our ABSA task also

extracts opinion. The symbol [a] refers to aspect, [c] refers to category,
[o] refers to opinion, and [s] refers to sentiment.

Input: An expensive laptop but offers many advanced features.

Task Name Output

AOPE (laptop [a], expensive [o]), (features [a], advanced[o])
ACSA (Product [c], positive [s]), (Attribute [c], negative[s])
TASD (laptop [a], product [c], positive [s])
ABSA1 (laptop [a], positive [s]), (features [a], negative [s])

ABSA (laptop [a], expensive [o], positive [s]),
(features [a], advanced [o], negative [s])

this end, we design the meta-weighter to provide sub-task-
specific weights. Different from using predefined weight
functions by human experts [23], [45], the meta-weighter
considers feedback from the student model and can be
dynamically adjusted during training. Intuitively, this is
similar to curriculum learning [46], which instructs the
student model to be trained with a learnable input order
and also recognizes pseudo and gold data.

3.1 Task Definition
ABSA is a standard MTL issue, which consists of aspect
extraction (AE), opinion extraction (OE), and sentiment
classification (SC) sub-tasks. Each subtask is formulated as
a sequence tagging task, following the baseline studies [5],
[9], [24], [25]. Table 1 shows the comparison of different
existing related work. Specifically, given an input sentence
with L tokens, MSM aims to predict a label sequence for
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Fig. 3. Joint training meta-weighter with the student model, based on a three-step meta updating (TMU). This figure illustrates how MSM updates
the student model and meta-weighter from a time step t=0 to the next step t=1. This figure corresponds to the TMU training in Fig. 2.

TABLE 2
The Example of the BIO tagging scheme in ABSA, where “B” means the beginning, “I” means the inner, and “O” means the other.

Sentence: The restaurant is very crowded but with efficient and accurate service .

AE: O B O O O O O O O O B O
OE: O O O B I O O B O O O O
SC: O neg O O O O O O O O pos O

each sub-task. The BIO schema is employed for AE and
OE subtasks, where “B” means the beginning, “I” stands
the inner, and “O” represents the other. For the SC subtask,
MSM employs the label set {pos, neg, neu,O}, representing
positive, negative, neutral sentiment polarities and others,
respectively. The label “O” in the SC subtask means this
token is not an aspect term and does not have a sentiment
polarity. Table 2 shows the example of the utilized tagging
scheme in this paper.

3.2 Learning to self-train

This section aims to introduce the self-training method
in MSM in detail. The self-training in MSM consists of
four steps, namely initializing the teacher model, generat-
ing pseudo labels, initializing the student model, and self-
training the student model with a meta-weighter (see Fig. 2).

Initializing the teacher model. In the first step, the
teacher model is supervised with a labeled data set Dlab

for initialization (see Eq. 1 and Eq. 2). There is no unlabeled
data taking part in this training process to minimize the
impact of data noise from unlabeled data on MSM.

HS = BERTTea(w1, ..., wL) (1)

Ŷ t
S = Argmax(Softmax(FNN t

Tea(HS))), (2)

where w1, ..., wL is an input sentence S with L tokens. Task
t ∈ {AE,OE, SC}. HS is the hidden representation of S ∈

Dlab. FNN is a two-layer feedforward neural network with
ReLU activation function [51]. BERTTea is the encoder of
the teacher model. For the fair comparison with studies [5],
[9], [24], [25], the teacher model and the student model both
utilize BERT-large [52] as encoders.

LossTea is used to update the teacher model, which is
computed as averaged cross entropy CE on the three tasks.

LossTea =
1

||tasks||
∑

t∈tasks

∑
wi∈S

CE
(
Ŷ t
wi
, Y t

wi

)
. (3)

Ŷ t
S is a predicted label sequence, where Ŷ t

wi
∈ Ŷ t

S ; Y t
S is a

gold label sequence, where Y t
wi

∈ Y t
S .

Generating pseudo labels. In the second step, MSM
utilizes the initialized teacher model to generate pseudo
labels for unlabeled data Dunl, calculating data uncertainty
and modeling utility to cherry-pick these generated labels.
Dunl are taken from the original dataset without annotated
labels.

Specifically, for each unlabeled sentence Sunl, given
Naug forward passes through the teacher model with
dropout (stochasticity can be introduced by dropout), and
each pass with the same model parameters, MSM generates
the averaged representations of these unlabeled data as data
augmentation. Then, an averaged representation is mapped
into a soft pseudo label for each token in a sub-task t.

logitstS,pseu =
1

Naug

∑
i∈Naug

FNN t
Tea(HS,i) (4)
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Ŷ t
S,pseu = Softmax(logitstS,pseu)), (5)

where HS,i denotes the Bert hidden states of a sentence S
from the ith forward pass in the teacher model.

MSM utilize Monte-Carlo dropout [53] to calculate data
uncertainty unc in Eq. 6, based on soft pseudo labels Ŷ t

pseu

unctpseu =
Ŷ t
S,pseu ∗ log Ŷ t

S,pseu∑
S′∈Dunl

Ŷ t
S′,pseu ∗ log Ŷ t

S′,pseu

. (6)

The motivation of Eq. 6 is that if we can use the same model
to predict the same sample multiple times and the predicted
values are different, the entropy from these multiple tries
can be calculated to estimate the uncertainty for this sample.

The final data uncertainty uncpseu for an instance is
averaged over different tasks t. Higher data uncertainty in-
dicates that the instances are hard samples. If MSM delivers
too many easy samples for the self-training student model,
it may not contribute helpful information. However, very
high uncertainty may suggest these data instances are noisy.
For such a reason, MSM only utilizes pseudo-labeled data
with uncertainty in a range from U% to L%, where U and
L are hyperparameters (see Table 4). The pseudo-label data
filtered by uncertainties is denoted as Dunc

pseu.
Additionally, we define utilpseu to measure the predic-

tion utility of the teacher model for unlabeled data. The
difference between utilpseu and uncpseu is that uncpseu is an
instance-level measure and utilpseu is token-level. uncpseu
aims to select more reliable and confident sentences, while
utilpseu is for sampling the sentences whose label sequences
have more non-“other” tags. utilpseu is given by

utilpseu =
1

||tags′||
∑

tag∈tags′

Softmax(logitstagS,pseu), (7)

where tags′ is the set of all non “other” tags from AE,
OE, and SC. Considering the imbalanced label distributions
of ABSA, MSM selects instances of which util > βtag

to obtain more non “other” tags, forming pseudo-labeled
data set Dutil

pseu. βtag is a threshold hyperparameter (see
Table 4). The final selected pseudo-labeled data set Dpseu =
Dutil

pseu ∩ Dunc
pseu. With appropriate uncertainty and utility,

MSM can cherry-pick pseudo-labeled data to maximize the
information gain for the student model without introducing
too much noise.

Initializing the student model. In the third step, the
student model is initialized with Dlab, which is similar to
step 1. An initialized student model helps avoid gradual
drift when the student model conducts self-training with
pseudo-labeled data.

Self-training the student model with a meta-weighter
In the fourth step, MSM first combines the selected pseudo-
labeled data set Dpseu and Dlab to form Dmix. Dmix is
employed to perform self-training for the student model.

The sentence S′ ∈ Dmix inputs to the Bert encoder of the
student model to obtain the representation HS′ as the same
way as Eq. 1, and then get prediction labels Ŷ t

S′ as Eq. 2.
Then, LosstMix is calculated by

LosstMix = CE(Ŷ t
S′
Mix

, Y t
S′
Mix

), (8)

where Ŷ t
S′
Mix

is a predicted label sequence. Y t
S′
Mix

is a gold
or pseudo label sequence. Noticeably, LosstMix is a loss

Algorithm 1 The algorithm for self-learning with MSM.
Input:

A teacher model; a student model; a meta-weighter;
max training iterations Epoch; a labeled data set Dlab; a
unlabeled data set Dunl;

Output:
The predictions on a validation set.

1: for i= 0 to Epoch do
2: initializing the teacher model with Dlab as Eq. 3.
3: generating pseudo labels for Dunl with the initialized

teacher model.
4: mixing the Dlab and pseudo-labeled Dunl to form

Dmix.
5: initializing the student model with Dlab.
6: training the student model and meta-weighter with

Dmix by TMU method (see Algorithm 2).
7: inference on the validation set.
8: end for

sequence with the length L (same to the length of input).
MSM reserves this loss sequence as the input of the meta-
weighter for computing the sub-task-specific weights.

Next, LosstMix are regarded as parts of input for meta-
weighter to calculate the sub-task-specific and time-varying
weights W t.

W t = Meta-weighter([LosstMix;Hlab;Hepo;HS′ ]), (9)

where Meta − weighter is a two-layer forward neural
network. [;] denotes concatenation.

Hlab and Hepo are corresponding label and epoch em-
beddings, which are encoded by two separate embedding
layers (fully connected layers). Each label is allocated with
a one-hot vector, and the one-hot vector is inputted into the
related embedding layer to obtain Hlab, which represents
the related class. Hepo indicates the learning progress of the
student model, which is normalized as an integer between
1 and 100. Similarly, this integer also is mapping into a one-
hot vector and input into related embedding layer to obtain
Hepo. For clarity, we omit Hlab, Hepo, and HS′ in the inputs
of meta-weighter in Fig. 2 and Fig. 3.

Then, LosstMix of each sub-task will be weighted by W t

to obtain final LossStu.

LossStu =
1

L

∑
L

W t · LosstMix (10)

The details of updating the student model with LossStu are
described in the next section. Summarily, the whole training
of MSM is illustrated in Algorithm 1.

3.3 A three-step meta updating for jointly training the
meta-weighter and student model
Inspired by the studies from [17], [22], [55], this section
describes a three-step meta updating (TMU) method for
jointly training the meta-weighter and the student model.
The workflow can be seen in Fig. 3. This method allows
MSM to take advantage of current feedback (LossStu) from
the student model to weight corresponding data instances.
The generated weights can both alleviate the impacts of
noise in Dmix and coordinate three sub-tasks in ABSA.
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Algorithm 2 A three-step meta updating method for the
meta-weighter and the student model (TMU)
Input:

An initialized student model; a meta-weighter; a mixed
label and pseudo-labeled data set Dmix; a labeled data
set Dlab;

Output:
The updated parameters of the student model (in time
step 2) and meta-weighter (in time step 1).

1: computing weighted LossStu with Dmix by Eqs. 9
and 10.

2: updating the student model from time step 0 to time
step 1 with LossStu by Eq. 11.

3: updating the meta-weighter from time step 0 to time
step 1 with Dlab, based on the student model in time
step 1.

4: updating the student model from time step 0 to time
step 2 with Dmix, based on the meta-weighter in time
step 1.

TABLE 3
The statistics of datasets. # indicates the number; % indicates the
percentage; ap. represents aspect labels; op. represents opinion
labels; Tags ratio means the percentage of different tags in each

sub-task. For sub-task AE and OE, it represents the percentage of tag
“B”, “I” and “O” for all tags. For sub-task SC, it represents the ratio of

“positive”, “negative”, “neural” and “O” for all tags, where only integers
are reserved for clear.

Dataset #number Train Valid Test

Res14

# of sent. 2,436 608 800
# of tok. 35,545 8,779 11,825
% of ap. 11.82 10.97 14.02
% of op. 8.15 8.36 9.21
% Tags ratio (AE) 8/3/88 8/2/89 9/4/85
% Tags ratio (OE) 8/1/91 8/1/9 9/1/90
% Tags ratio (SC) 7/2/2/88 7/2/2/89 9/2/3/86

Lap14

# of sent. 2,439 609 800
# of tok. 38,675 9,670 11,007
% of ap. 7.30 7.34 9.78
% of op. 5.95 6.12 6.57
% Tags ratio (AE) 5/2/93 5/3/93 6/4/90
% Tags ratio (OE) 5/1/94 5/1/94 6/1/93
% Tags ratio (SC) 3/3/2/92 3/3/1/93 5/2/3/90

Res15

# of sent. 1052 263 685
# of tok. 13875 3385 9831
% of ap. 10.04 10.04 8.18
% of op. 7.67 7.56 5.56
% Tags ratio (AE) 7/3/90 7/3/90 6/3/92
% Tags ratio (OE) 7/1/92 7/1/92 5/1/94
% Tags ratio (SC) 9/2/1/88 9/3/0/88 6/4/0/90

According to loss sequence LossStu in Eq. 10, the stu-
dent model will be updated once from ts=0 to ts=1 follow-
ing

Θ1
Stu = Θ0

Stu − λStu∇ΘStu
αmLossstu, (11)

where ts corresponds to TimeStep in Fig. 3. αm is a hyper-
parameter. λStu is the learning rate for the student model.
Noticeably, the meta-weighter is not updated at this step.

Next, the student model utilizes data with gold-labels
to calculate LossLab in Fig. 3. It helps the meta-weighter
lead the student model to the appropriate gradient direction.
With the updated student model parameter Θ1

Stu and gold

TABLE 4
Hyperparameters for uncertainty range and utility threshold.

Res14 Lap14 Res15

Uncertainty upper bound (U%) 80% 75% 65%
Uncertainty lower bound (L%) 20% 30% 35%

Utility threshold (βtag) 0.25 0.3 0.4

labeled data, LossLab is calculated following Eq. 1, Eq. 2
and Eq. 3. Then, the meta-weighter is updated as

Θ1
Mix = Θ0

Mix − λMix∇ΘMix
(αmLossLab|Θ1

Stu), (12)

where λMix is a learning rate for the meta-weighter. LossLab

is only used to train meta-weighter at this step, without any
effects to other modules.

Next, MSM obtains an updated meta-weighter (ts=1).
Thus, meta-weighter can lead the student model to the
more appropriate gradient direction, because it is already
updated by the current batch data. With the meta-weighter
taking the feedback of the current batch from the student
model (LossMix in Fig. 3) as input, the original student
model (ts=0) is formally updated with the supervision of
the updated meta-weighter following

Θ2
Stu = Θ0

Stu − λStu∇ΘStu
(αmLoss2stu|Θ1

Mix), (13)

where Loss2stu is similarly calculating with LossLab-based
Θ0

Stu and Θ1
Mix. The whole process of the three-step meta

updating is summarized in Algorithm 2. We calculate the
time costs with/without Algorithm 2, the results show we
need about extra 0.35 times run cost for performing TMU.

4 EXPERIMENT

4.1 Data

We utilized three ABSA datasets (Res14, Lap14, Res15) from
SemEval-2014 [1] and SemEval-2015 [10] to evaluate the pro-
posed MSM. These three datasets are widely employed by
many researchers [9], [24], [25], [54] before. All the utilized
datasets have fixed segmentation for training and testing.
In this paper, MSM follows the study [9], which further
randomly sample 20% of training data as validation sets for
tuning hyper-parameters. The remaining 80% of data are
used for training MSM. The details of used data are shown
in Table 3. To illustrate the imbalanced label distributions
in ABSA, we list the ratios of different tags in AE, OE, SC
sub-tasks. The ratios of “O” tags exceed 90% in all three sub-
tasks. On the contrary, all ratios of “I” tags are no more than
4%.

Following all baselines [9], [24], [25], [54], we regard the
first predicted sentiment label of an aspect term as an SC
result and filter out the conflict sentiment labels in SC sub-
task. This filter may cause the sum of ratios in SC to be less
than 100%. Besides, to further explore the data utilization of
MSM, we allocate an augmented dataset for each dataset
above. Specially, for Res14, Lap14, and Res15, we match
Res15, Lap15, and Res14 as their augmented dataset, re-
spectively. Lap15 dataset also comes from SemEval-2015 [10]
challenge.
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TABLE 5
The main results of MSM compared with full data supervised baselines. The numbers in the brackets are the percentages of labeled data used for
supervised training and the remaining for self-training. + extra means MSM utilizes unlabeled data from other datasets. † indicates the results are

quoted from the repetition experiments in the study [9].

Model Res14 Lap14 Res15

AE-F1 OE-F1 SC-F1 ABSA-F1 AE-F1 OE-F1 SC-F1 ABSA-F1 AE-F1 OE-F1 SC-F1 ABSA-F1

IMN-GloVe [25] 84.01 85.64 71.90 68.32 78.46 78.14 69.92 57.66 69.80 72.11 60.65 57.91
IMN-BERT [25]† 84.06 85.10 75.67 70.72 77.55 81.00 75.56 61.73 69.90 73.29 70.10 60.22

SPAN-BERT [54]† 86.71 - 71.75 73.68 82.34 - 62.50 61.25 74.63 - 50.28 62.29
RACL-GloVe [9] 85.37 85.32 74.46 70.67 81.99 79.76 71.09 60.63 72.82 78.06 68.69 60.31
RACL-BERT [9] 86.38 87.18 81.61 75.42 81.79 79.72 73.91 63.40 73.99 76.00 74.91 66.05
GBM-BERT [24] 87.10 87.16 82.24 75.73 83.34 77.93 77.52 65.61 - - - -

MSM (10%) 78.32 79.50 75.79 65.92 70.64 74.65 67.46 50.19 62.10 65.80 55.94 50.28
MSM (30%) 84.09 84.20 77.77 71.60 77.70 77.99 71.92 58.20 69.87 68.99 72.56 60.40
MSM (50%) 87.36 83.96 80.02 75.90 81.76 77.76 76.43 65.53 76.77 74.00 76.78 64.16

MSM (70%+extra) 88.18 84.65 80.83 76.21 80.37 78.09 77.42 66.26 74.59 77.66 74.36 65.19
MSM (100%+extra) 88.95 84.78 82.36 76.89 83.16 77.91 77.50 67.02 74.29 77.84 76.78 66.89

TABLE 6
Ablation analysis of MSM on testing sets. w/o means without.

Dataset AE-F1 OE-F1 SC-F1 ABSA-F1

Res14
MSM(50%) 87.36 83.96 80.02 75.90
w/o meta-weighter 86.34 85.94 81.06 74.93
w/o self-training 85.31 83.69 78.47 72.72

Lap14
MSM(50%) 81.76 77.76 76.43 65.53
w/o meta-weighter 78.76 75.65 76.41 65.03
w/o self-training 77.46 76.94 75.72 63.51

Res15
MSM(50%) 76.77 74.00 76.78 64.16
w/o meta-weighter 74.89 75.72 74.46 63.58
w/o self-training 70.73 72.87 67.78 59.85

4.2 Baselines
We introduce four benchmarking baselines:

IMN [25] is an interactive MTL model for AE, OE,
and SC, which can be employed in both the token level
and document level. IMN introduced a message passing
mechanism that can transform from different tasks through
shared latent variables. For a fair comparison, MSM com-
pares with their results which using BERT-large as the
pretrained language model. The cited results was reported
by the study [9].

SPAN [54] is a pipelined ABSA method. SPAN extracted
multi-targets by a heuristic algorithm at first, and then
the related span representations were used to classify their
sentiment polarities. We benchmark the results of this work
that was reported in the work of [9].

RACL [9] proposed a relation-aware collaborative learn-
ing model for learning AE, OE, and SC, simultaneously.
They explored how to establish interactions among three
sub-tasks with an attention mechanism.

GBM [24] proposed a novel gating mechanism for the
bridging of different sub-task in MTL. GBM allowed a
task-specific tower to filter out useless information from
a neighbour tower and fuse the useful information of the
neighbour tower to obtain performance gains.

4.3 Evaluation Metrics and Hyperparameters
For fair comparisons, MSM employs the same evaluation
metrics with all baselines mentioned above. Specifically,

Fig. 4. Performance comparison with different input data setups. The
performance is measured by ABSA-F1 on testing sets. The solid line
denotes the results, given by MSM with incremental labeled data and
fixed 50% unlabeled data. The dash line “w/o” means that the model
only uses incremental labeled data without using unlabeled data for self-
training. 50% dataset w/o means that the model uses fixed 50% labeled
data without using unlabeled data.

MSM is measured by AE-F1, OE-F1, SC-F1, and ABSA-F1.
The first three F1 scores are computed by normal precision
and recall measures. For SC-F1, if an aspect contains multi-
ple words, the predicted sentiment label of the first token is
considered as the final result. For ABSA-F1, an aspect label
is regarded as true positive only when related AE and SC
labels are both correct. Besides, conflict labels are ignored
when calculating SC-F1 and ABSA-F1. MSM utilizes BERT-
large with 1024 hidden dimensions. The maximum length
of input sentences is equal to 100. Adam optimizer [56] is
used to update MSM. Batch size is 64. In Eq. 11, the learning
rate λStu for BERT-large and for the linear layers on the
top of BERT-large is equal to 4e-5 and 8e-5, respectively.
λMix is set to 8e-5 in Eq. 12. αm in Eqs 11, 12 and 13 is 0.5,
0.5, and 0.3 for Res14, Lap14 and Res15, respectively. The
model utility threshold βtag , upper (U%), and lower (L%)
bounds of uncertainties for the entities that are delivered to
the student model by MSM are shown in Table 4. The total
training Epoch is 500 in Algorithm 1. Naug is set to 2 in Eq 4.
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Fig. 5. The visualization of weights that are learned by various methods. (a) means no weights for data instances. (b) means using the self-pace
function [57] to calculate weights. (c) means using focus loss [58] to calculate weights. (d)-(f), (e)-(i), and (j)-(l) show the weights learned by the
meta-weighter of MSM at on AE, OE, and SC of Res14, Lap14, and Res15 dataset, respectively. The z-axes is the learned weight values. The
x-axes denotes inputted losses for the meta-weighter. The y-axes indicates the difference between the current loss with its moving average, where
δ is the averaged loss moving.

5 RESULTS

Table 5 illustrates the main results of the proposed MSM.
Since MSM is a self-training method, we explore its perfor-
mances with different amounts of manually annotated data.
It should notice that the benchmarking baselines adopt all
labeled data of the corresponding dataset in Table 5, while
we report MSM performance with the datasets in 10%, 30%,
and 50%. Additionally, we also test MSM with 70% and
100% of data with extra unlabeled dataset augmentation.
The purpose of introducing the unlabeled dataset augmen-
tation is that the unlabeled data can help the learning of the
student model and the meta-weighter with more pseudo-

labeled data, since 70% and 100% of labeled data have been
employed in these setups. Generally, all MSM F1 measures
of different sub-tasks are rising with more labeled data for
MSM. Considering ABSA-F1, with only 30% labeled data,
our proposed MSM outperforms IMN-GloVe [25] in all sub-
tasks. In the same conditions, MSM is also comparable to the
performance of RACL-GloVe [9] in Res14 and Res15 datasets
and obtains better results in Lap14. By using the same
BERT encoder and 50% labeled data, MSM can achieve the
improvements of 5.18% ABSA-F1 for Res14, 3.80% ABSA-F1
for Lap14, and 3.94% ABSA-F1 for Res15, compared with
IMN-BERT [25].
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In addition, MSM sightly outperforms the state-of-art
GBM-BERT [24] in the Res14 and Lap14 dataset, with
only 50% labeled data. For adopting 50% labeled data of
Res15, ABSA-F1 of MSM is lower than results of full-data
supervised RACL-BERT. This is because the size of Res15
is less than half of the sizes of Res14 and Lap14. This
is insufficient to train a robust teacher model to guide a
student model, because the generated pseudo data may con-
tain too much noise from an unserviceable teacher model.
Next, MSM adopts 70% and 100% annotated data in Res14,
Lap14, and Res15 as labeled data, with extra unlabeled
data from other datasets for self-training. The employed
extra unlabeled data are introduced in section 4.1. With
more labeled data, the improvements of Res15 are apparent,
while the improvements of Res14 and Lap14 start to be
limited. For example, ABSA-F1 measures are increased by
1.03% (50%+extra vs. 70%+extra) and 1.70% (70%+extra vs.
100%+extra) in Res15. The corresponding increments are
0.73% (50%+extra vs. 70%+extra) and 0.76% (70%+extra
vs. 100%+extra) in Lap14, while these increments drop to
0.31% (50%+extra vs. 70%+extra) and 0.68% (70%+extra vs.
100%+extra) in Res14. These results indicate that MSM can
reduce the requirements of labeled data to some extent.
To sum up, compared with the strongest baselines in each
dataset, MSM can achieve comparable results with only
50% labeled data. When using 70% and 100% labeled data,
MSM takes more strict data selections to avoid the noise
impacts. In such condition, the problem of insufficient data
is not prominent, so MSM generates lesser pseudo-labels
and tends to focus on re-weighting data instances in Dmix.
Then, the final improvements of MSM are 1.16% and 1.41%
compared with GBM-BERT [24] in Res14 and Lap14, and
0.84% with RACL-BERT [9] in Res15.

5.1 Ablation study
As shown in Table 6, we explore the utilities of differ-
ent components in MSM. Ablation analysis is conducted
to investigate the effects of the meta-weighter and self-
training process. Without the meta-weighter, the student
model allocates all gold-labeled and pseudo-labeled data
with the same weights, and assumes that the three sub-
tasks are also with equal complexity and importance. There
are 0.97%, 0.5%, and 0.58% ABSA-F1 drops occupied in
Res14, Lap14, and Res15, respectively. Comparing the rows
without meta-weighter and the rows without self-training,
the differences illustrate the effects of self-training with
unlabeled data by excluding the influences of the meta-
weighter. With pseudo-labeled data, we can obtain 2.21%,
1.52%, and 3.73% ABSA-F1 improvements for three utilized
datasets. Finally, in the comparison between full MSM and
MSM without self-training, we omit the weighted self-
training process. The model without self-training only trains
a student model with 50% training data, excluding the
teacher model and meta-weighter. The results show that the
full MSM model improves 3.18%, 2.02%, and 4.31% ABSA-
F1 in Res14, Lap14, and Res15, respectively.

5.2 Influence of labeled and unlabeled data
This section explores the influences of different numbers
of annotated data on MSM. First, we compare the effects

of including and excluding unlabeled data on model per-
formance (see the solid line vs. the dash line in Fig. 4).
Generally, all models show the increasing F1 measures by
employing more labeled data. MSM (including unlabeled
data) can stably improve the ABSA-F1 measures across all
the employed labeled data ratios from 10% to 50%.

The biggest gap between MSM (the solid line) and
MSM without unlabeled data (the dash line) appears in
using 30% labeled data in Res15, accounting for 4.81%. For
Res14 and Lap14, the most prominent improvements are
given by 3.18% with 50% of labeled data, and 4.15% with
20% of labeled data, respectively. MSM with 10% labeled
data displays a limited enhancement for Lap14 and Res15
dataset. By using more than 20% labeled data, the improve-
ment becomes apparent. This is because only utilizing 10%
labeled data is hard to supervise a usable teacher model.
The teacher model needs an effective initialization to help
MSM avoid gradual drift.

Next, we compare the performance of MSM with a
smaller fraction of the labeled data and the unlabeled data
(the solid line), and the model with 50% of the labeled
data and without unlabeled data (the vertical dash-dotted
line). In Fig. 4, the intersection of the solid line “Res14” and
the dash-dotted line “50% Res14 w/o” at the point of 41%
indicates that MSM can achieve the same performance with
less labeled data, saving 9% of labeled data. Similarly, by
using MSM, about 4.5% and 15% labeled data can be saved
for Lap14 and Res15 datasets.

5.3 Loss visualization
Considering that the meta-weighter of MSM aims to
automatically learn different weighting strategies under
different conditions, we visualize the generated weights
and compare them with three typical weighting methods
(weighters). We use virtual losses ranging from 0 to 15 as
inputs of weighters. The virtual losses are automatically
generated numbers with uniform distribution. These losses
can simulate all possible inputs in a suitable range to our
weighters, which are helpful to visualize the learned dis-
tribution of weighters. Then, the losses are fed to different
weighters. In Fig. 5 (a)-(c), the weighters are manually de-
signed with explicit mathematics functions. In Fig. 5 (d)-(l),
the weighter is our proposed meta-weighter that is trained
with different ABSA sub-tasks and datasets.

The distributions of calculated weights in Fig. 5 (a) and
(b) are not changed over different losses. Fig. 5 (a) represents
non-weight scenarios, namely all data instances with equal
weights under any conditions. Fig. 5 (b) is self-pace-based
methods [57], which chooses easy samples to learn and
ignores the hard ones. Fig. 5 (c) is focus loss [58] which
was designed for imbalanced data. The distribution in a
waterfall shape shows that instances from classes which
have insufficient labels usually have a larger loss. Focus
loss allocates these instances with larger weights to help
the model focus on hard negative examples. The methods
in Fig. 5 (a), (b), and (c) are based on a predefined weight
function. They cannot adaptively respond to the feedback
from the student model in different condition.

In contrast to all the aforementioned predefined meth-
ods, the distributions of generated weights from the meta-
weighter of MSM are dynamically changed over different
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TABLE 7
Correctly and incorrectly classified examples. The gold labels are the same with the predicted labels in the correct example.

An Example of Correct ABSA

Sentence: The price is reasonable , although the service is poor .
Predicted AE: O B O O O O O B O O O
Predicted OE: O O O B O O O B O B O
Predicted SC: O pos O O O O O neg O O O

Two Typical Examples of Incorrect ABSA

Sentence: students love this place so it makes for a fun young atmosphere .
Gold AE: O O O O O O O O O O O B O
Predicted AE: O O O B O O O O O O O B O
Gold OE: O B O O O O O O O B B O O
Predicted OE: O B O O O O O O O B I O O
Gold SC: O O O O O O O O O O O pos O
Predicted SC: O O O pos O O O O O O O pos O
Sentence: Web access through the 3G is so slow , it ’s very frustrating .

Gold AE: B I O O B O O O O O O O O
Predicted AE: B I O O B O O O O O O O O
Gold OE: O O O O O O O B O O O B O
Predicted OE: O O O O O O O B O O O B O
Gold SC: neg neg O O neg O O O O O O O O
Predicted SC: neg neg O O O O O O O O O O O

instances with different feedback signals. Fig. 5 (d)-(f), (g)-
(i), and (j)-(l) show the final weight distributions for AE,
OE, and SC sub-tasks of the three utilized datasets, respec-
tively. Two main observations can be found in these figures.
First, MSM can automatically generate task-specific weights
for the three sub-tasks. For different sub-tasks, MSM can
get rid of human experts to design task-specific weighting
functions. For example, given Res14 dataset, the generated
weights approach a linear increase for AE, and an expo-
nential decrease for OE. The distribution pattern differences
between tasks can be observed in other datasets as well.

Second, the generated weight distributions can be dif-
ferent for the same tasks in different datasets. Specifically,
comparing Fig. 5 (f), (i), and (l), these figures show that the
generated weight distributions of SC for Res14 and Res15
are similar. MSM allocates complex samples with higher
weights, selecting hard samples for training models. On
the contrary, for SC of Lap14, MSM prefers to employ easy
samples to learn, because the weights decrease when the
losses increase. It may suggest that as the generated pseudo
labels of SC in Lap14 are noisier, MSM tries to filter out those
very pseudo-labeled data.

5.4 Case study
We list correct and incorrect ABSA examples in Table 7. As
shown in the correct example, the sentence is a typical ABSA
instance with multiple aspects with different sentiment po-
larities. MSM correctly recognizes the aspects, opinions, and
related sentiment polarities in the sentence.

Besides, we display the two incorrect examples, which
represent three kinds of most common errors in MSM. In
the first incorrect example, there are two types of errors. The
first one is MSM recognize “place” as an aspect and predict
related positive sentiment. However, the word “place” is
not regarded as an aspect and has no sentiment in gold
annotations. The related reason may come from the tokens
“love” and “this” before “place”. These three tokens com-
pose a common pattern to recognize aspects, which may

mislead our model. The second error occurred with the
token “young”. Because the token “fun” and “young” are
contiguous, MSM allocate “I” label for the token “young”.
After reviewing corpus, We find that gold annotations also
assign “I” label for the second token in such condition,
which may confuse our model.

In the second incorrect example, although all aspects
are appropriately recognized, some related sentiment labels
are missed. Considering MSM focuses on self-training and
re-weighting from the view of data distribution, this phe-
nomenon indicates that the interactions of the three sub-
tasks are not enhanced enough in MSM. Related works [9],
[24] may be helpful to mitigate this problem by establishing
more information fusion among different sub-tasks.

6 CONCLUSION

This paper proposes a meta-based self-training method
MSM to alleviate the problem of insufficient and imbal-
anced data in the ABSA task. MSM consists of a teacher
model, a student model, and a meta-weighter, where the
teacher model and the student model have the exact same
structure. The teacher model is utilized to generate pseudo
labels with extra unlabeled data for training the student
model. In addition, a three-step meta updating method for
jointly training the meta-weighter and the student model is
proposed, aiming to avoid gradual drift caused by noise in
the automatically labeled data. In the future, we will learn to
deal with multiple sequence labeling tasks with more severe
low-data scenarios, such as N-way-K-shot setting.
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