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Abstract—In recent years, AI research has showcased tremendous potential to
impact positively humanity and society. Although AI frequently outperforms humans
in tasks related to classification and pattern recognition, it continues to face chal-
lenges when dealing with complex tasks such as intuitive decision-making, sense
disambiguation, sarcasm detection, and narrative understanding, as these require
advanced kinds of reasoning, e.g., commonsense reasoning and causal reasoning,
which have not been emulated satisfactorily yet. To address these shortcomings,
we propose seven pillars that we believe represent the key hallmark features for
the future of AI, namely: Multidisciplinarity, Task Decomposition, Parallel Analogy,
Symbol Grounding, Similarity Measure, Intention Awareness, and Trustworthiness.

In 2022, the world was stunned by ChatGPT,
a chatbot that relies on a large language
model (LLM) built by means of generative

pre-training transformers (GPT). We do not deny the
performance capabilities of GPT-based LLMs: these
capabilities enable chatbots to generate detailed, orig-
inal, and plausible responses to prompts. GPT-4 and
other LLMs are pretrained on a large dataset (self-
supervised and at scale), before being adapted for a
variety of downstream tasks through fine-tuning. Pre-
training is time-intensive and never repeated, whereas
fine-tuning is conducted in a regular fashion.

The behavior of GPT-based chatbots arises through
fine-tuning. The performance capabilities of LLMs have
been attributed to at least two factors: pretraining and
scale [1]. Pretraining, an instance of transfer learning
in which LLMs use knowledge acquired from one task
and transfer it to another, makes LLMs possible. Scale,
including better computer hardware, the transformer
architecture, the availability of more training data,
makes LLMs powerful. Although these capabilities are
not insubstantial, they do not yet rise to the level of
natural language understanding [2], [3], [4].
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In addition, LLMs are prone to hallucination:
ChatGPT may produce linguistic responses that,
though syntactically and semantically fine and credible-
sounding, are ultimately incorrect [5]. Furthermore,
we may distinguish between the capabilities of LLMs
(acquired through pretraining) and the behavior (af-
fected by fine-tuning)of LLMs. Fine-tuning can have
unintended effects, including behavioral drift on certain
tasks. As discussed in a recent study [6], in fact, Chat-
GPT seems prone to the ‘short blanket dilemma’: while
trying to improve its accuracy on some tasks, OpenAI
researchers inadvertently made ChatGPT worse for
tasks which it previously excelled at.

AI research has slowly been drifting away from
what its forefathers envisioned back in the 1960s.
Instead of evolving towards the emulation of human
intelligence, AI research has regressed into the mim-
icking of intelligent behavior in the past decade or so.
The main goal of most tech companies is not designing
the building blocks of intelligence but simply creating
products that existing and potential customers deem
intelligent. In this context, instead of labeling it as ‘ar-
tificial’ intelligence, it may be more apt to characterize
such research as ‘pareidoliac’ intelligence. This term
highlights the development of expert systems while
raising questions about their claim to possess genuine
intelligence.
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We feel there is a need for an AI refocus on
humanity, an Anti-Copernican revolution of sorts: like
Copernicus demoted humans from their privileged spot
at the center of the universe, in fact, deep learning
has removed humans from the equation of learning.
In traditional neural networks, especially those with a
shallow architecture (few hidden layers), humans were
at the center of the technological universe as they
had to carefully design the input features, select ap-
propriate hyperparameters, adjust learning rates, etc.
Instead, due to their increased complexity and capacity
to automatically learn features from data, deep neural
networks do not require manual feature engineering
and, hence, have effectively removed humans from
the loop of learning. While this is good in terms of
cost, time, and effectiveness, it is bad for several
other reasons, including transparency, accountability,
and bias.

In the deep learning era, humans no longer have
control on how the learning process takes place. To
save on cost and time, we delegated the important
task of selecting which features are important for
classification to deep neural networks. These, how-
ever, are mathematical models with no commonsense
whatsoever: they do not know how to properly choose
features. For example, in selecting candidates for a
job opening, deep neural networks may decide that
gender is an important feature to take into account
simply because more men are present in the training
data as positive samples.

The issue is not only that deep nets may acci-
dentally choose unimportant or even wrong features,
but that we have no way of knowing this because
of their black-box nature. In other words, not only
humans have been taken out of the picture but they
have also been blindfolded. For these reasons, we feel
there is a need to bring human-centered capabilities
back at the center of AI, e.g., by having human-in-
the-loop or human-in-command systems that ensure AI
outputs and reasoning steps are human-readable and
human-editable. To this end, we propose seven pillars
for the future of AI (Fig. 1), namely: Multidisciplinarity
(Section I), Task Decomposition (Section II), Parallel
Analogy (Section III), Symbol Grounding (Section IV),
Similarity Measure (Section V), Intention Awareness
(Section VI), and Trustworthiness (Section VII). The
focus of our ‘manifesto’ is on natural language process-
ing (NLP) but the same concepts can be easily adapted
to other AI domains such as computer vision, speech
recognition, signal processing, multimodal analysis,
edge computing, and robotics.

FIGURE 1. Seven Pillars for the future of AI.

I. MULTIDISCIPLINARITY
Due to the complex and multifaceted nature of modern
AI technologies and applications, Multidisciplinarity is
of increasing importance for the future of AI. The inte-
gration of knowledge from disciplines like mathematics,
semiotics, logic, linguistics, psychology, sociology, and
ethics allows for a more holistic understanding of AI’s
capabilities and limitations. Mathematical principles
such as linear algebra, calculus, probability theory,
and optimization underpin the design of AI algorithms.
Maths alone, however, is not enough for designing
intelligent systems, because mathematical approaches
excel at capturing predominant linguistic patterns but
often struggle with addressing ‘long tail’ issues such
as less common or niche linguistic phenomena.

Disciplines like semiotics can help AI systems
understand the nuances of language, including
metaphors, idioms, sarcasm, and cultural references,
whether they fall within the more frequent or rarer
occurrences across the spectrum of everyday human
language. Logic also plays a fundamental and en-
during role in the development and advancement of
AI, as it provides a rigorous framework for reason-
ing, problem-solving, and knowledge representation.
Word embeddings, which essentially replace words
with numbers, have made most AI researchers forget
about the importance of linguistics. Concepts from
syntax, semantics, phonetics, and morphology (see
Section II), however, are crucial for interpreting the
intended meaning of natural language. Psychology will
play an essential role in creating systems that enhance
well-being, foster human relationships, and provide
meaningful and empathetic interactions. By addressing
issues related to inequality and cultural diversity, soci-
ology will guide AI development in ways that promote
positive societal outcomes and responsible innovation.
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The arts are also going to be key for the future
of AI, as highlighted by recent STEAM (STEM + Art)
initiatives, in order to ‘humanize’ AI through compu-
tational creativity, cultural and social understanding,
and the enhancement of AI usability [7]. Finally, ethics
are paramount to ensure that AI technologies are
developed, deployed, and used in ways that align with
human values and promote accountability [8].

II. TASK DECOMPOSITION
Like Multidisciplinarity, Task Decomposition aims to
better handle the complex and multifaceted nature of AI
problems. It is a method commonly used in psychology,
instructional design, and project management to break
down a complex task or activity into its individual
components. Task Decomposition is also important for
NLP: no matter what kind of downstream task we are
handling, if we do not deconstruct it into its constituent
subtasks, we are practically forcing our model to implic-
itly solve a lot of subtasks it has never been trained for.
The ‘sentiment suitcase model’ [9], for example, lists 15
NLP subtasks that need to be solved separately before
sentiment analysis can be accomplished (Fig. 2).

Firstly, a Syntactics Layer pre-processes text so
that informal and inflected expressions are reduced
to plain standard text [10]. This is done through
subtasks such as microtext normalization, for refining
and standardizing informal text, part-of-speech (POS)
tagging, for assigning grammatical categories (such
as nouns, verbs, adjectives, and adverbs) to each
word in a sentence, and lemmatization, for reducing
words to their base or dictionary form (lemmas).

FIGURE 2. The sentiment suitcase model [9].

Secondly, a Semantics Layer deconstructs normal-
ized text into concepts, resolves references, and filters
out neutral content from the input [11]. This is done
through subtasks such as word sense disambiguation,
for determining the correct meaning of a word within a
given context, named entity recognition, for identifying
and classifying names of people, places, organizations,
and dates, and subjectivity detection, to distinguish
between factual information and subjective content.

Finally, the Pragmatics Layer extracts meaning from
both sentence structure and semantics obtained from
the previous layers. This is done through subtasks
such as personality recognition, to infer traits, char-
acteristics, preferences, and behavioral tendencies of
the speaker, metaphor understanding, for interpreting
figurative language in text, and aspect extraction, for
identifying and extracting specific facets, features, or
components mentioned in text and, hence, enabling
a more fine-grained analysis. Only after handling all
these subtasks, which we humans take care of almost
subconsciously during reading or communication, the
downstream task, e.g., polarity detection, can be effec-
tively processed.

III. PARALLEL ANALOGY
Similar to Multidisciplinarity and Task Decomposition,
Parallel Analogy looks at AI problems in a multifaceted
way. Engineers and computer scientists have always
been obsessed with optimization. In the development
of AI systems, this translates into finding the ‘best’
knowledge representation, the ‘best’ reasoning algo-
rithm, the ‘best’ way of doing things. This, however,
results in only having one way of solving a problem. In-
stead, several analogous representations of the same
problem should be maintained in parallel while trying
to solve it so that, when problem-solving begins to fail
while using one representation, the system can switch
to one of the others.

Parallel Analogy, or ‘panalogy’ [12], is key to solving
highly complex AI problems, but also simpler problems
in which a change of perspective is required. In af-
fective computing tasks, for example, sometimes it is
useful to see emotion concepts from a semantic point
of view, e.g., ‘joy’ and ‘sadness’ are similar because
they are both emotions, or a polarity point of view, e.g.,
‘joy’ and ‘sadness’ are opposite because the former
is positive and the latter is negative [13]. Similarly,
we could say that words like ‘joyful’, ‘joyfully’, ‘enjoy’,
and ‘enjoyment’ are similar because they all share the
same root word ‘joy’, but totally different in a POS
tagging sense (adjective versus adverb versus verb
versus noun, respectively).
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FIGURE 3. An example of ‘panalogy’ where the same data is ‘redundantly’ represented as a knowledge graph, as a matrix,
and as embeddings [13].

For more general NLP tasks, it could be useful
to have the same data ‘redundantly’ represented both
as a knowledge graph and as embeddings (Fig. 3).
The knowledge graph could be more useful for solving
problems requiring Symbol Grounding, e.g., answering
questions like ‘what is what?’ (see Section IV). Em-
beddings, instead, could be more useful for Similarity
Measure, e.g., answering questions like ‘what is similar
to what?’ (see Section V).

IV. SYMBOL GROUNDING
Symbol Grounding is the central pillar of our structure,
being one of the fundamental challenges in the field
of AI since its inception. It deals with how symbols,
which are abstract representations, acquire meaning
and connection to the real world. In human cognition,
we understand the meanings of symbols through a
process known as ‘grounding’. When we see or hear
a word, for example, our brains associate it with the

sensory experiences and interactions we have had with
the objects or concepts that such a word represents,
thus providing a foundation for our understanding of its
meaning.

In the context of AI, the Symbol Grounding problem
arises because computers lack the inherent sensory
experiences that humans possess. They process sym-
bols as strings of characters or digital information
without a direct connection to the real world, raising
the question of how they can truly understand the
meanings of symbols in a way that is equivalent to
human understanding. For instance, consider the word
‘apple’. Humans understand this word not just as a
sequence of letters, but as a fruit with certain sensory
qualities like color, taste, texture, and smell, all of which
are grounded in our experiences with actual apples.
Current AI systems are unable to grasp the richness of
meaning behind the word ‘apple’ without having those
sensory experiences. To solve this, we may have to
take a step back in order to move forward.
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Old-school (symbolic) AI was better at Symbol
Grounding but it was not scalable nor flexible. New
deep-learning-based (subsymbolic) AI, instead, is very
scalable and flexible but it does not handle symbols.
The best of both worlds could be achieved through a
hybrid (neurosymbolic) AI that leverages the strengths
of both symbolic and subsymbolic models to overcome
their respective limitations and achieve a more compre-
hensive understanding of the world.

In NLP research, this can be implemented in sev-
eral ways, e.g., by injecting external knowledge into a
deep neural neural network [14] in the form of embed-
dings (Fig. 4). Another recent neurosymbolic approach
consists in a three-step normalization process [15]
that first leverages linguistics to replace expressions
like shopping_for, bought, and purchasing with
their lemmas, e.g., shop_for, buy, and purchase,
respectively. Next, deep learning models are used
to cluster the resulting lemmas into primitives, e.g.,
BUY(x) is the cluster representing shop_for, buy,
and purchase and the likes of them (where x is the
direct object acted upon by the primitive). Finally, logic
is used to ground such primitives, e.g., BUY is defined
in terms of GET and GIVE, which in turn are specified
in terms of other superprimitives defining transfer of
ownership.

In robotics, some researchers have emphasized
the importance of physical embodiment and senso-
rimotor experiences in the development of intelligent
systems. Such approaches, which go under the name
of Embodied AI, are promising but they are still limited
to very basic sensory experiences such as object
manipulation.

FIGURE 4. An example of neurosymbolic AI where (symbolic)
commonsense knowledge is injected into a (subsymbolic)
graph convolutional network [14].

A similar approach can be taken in virtual worlds
or in the metaverse, where AI could learn social com-
monsense, based on how people interact, and some
sort of physical or spatial commonsense, such as
gravity or the fact that you cannot go through walls.
Additionally, an AI system could generate real-time
virtual simulations to better perform causal reasoning
and narrative understanding by grouding words into
virtual objects and actions on the fly.

V. SIMILARITY MEASURE
Because we have no better way of performing ground-
ing, in computer science we use embeddings to rep-
resent data, e.g., text, audio, images, and videos, as
vectors or data points in a multi-dimensional space.
This mapping is learned from large amounts of data
during a training process and it is usually focused on
just one kind of similarity (usually semantic similarity
based on word co-occurrence frequency). In order to
enable Parallel Analogy (see Section III), we need to
generate different representations for the same data
based on different kinds of similarities.

Another problem is that we are still using very
basic metrics to quantify the similarity between pairs
of embeddings and, hence, perform classification. All
such similarity metrics, e.g., Jaccard coefficient, Eu-
clidean distance, and cosine similarity, blindly calculate
distances in a multi-dimensional vector space without
considering its topology. In the future, we need to
adopt more topology-aware methods for calculating
similarity in multi-dimensional vector spaces, e.g., Ma-
halanobis, Minkowski or Wasserstein distances and
principal path methods [16]. These kernel methods are
designed to discover smooth paths between objects
in space by traversing a series of waypoints. One of
their standout features is their ability to seek paths
that pass through high-probability regions of the space,
effectively navigating through geodesics influenced by
the probability distribution of the sampled data. These
methods also emulate the cognitive process where
thinking involves transitioning from one concept to
another while traversing regions of space with a high
likelihood of encountering related concepts.

VI. INTENTION AWARENESS
Intention Awareness plays a crucial role in commu-
nication, as it enables individuals to anticipate and
interpret the actions and behaviors of others, leading
to more effective and empathetic interactions. Current
AI models provide one-fits-all solutions without taking
into account user beliefs, goals and preferences.
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Theory of mind should always be applied to better
understand user’s actions and queries. When this is
not possible, user profiling in the form of persona or
personality detection should be employed to gener-
ate more relevant actions or answers [17]. For the
same reason, AI should also have enough common-
sense knowledge, including a model of fundamental
human beliefs, desires, and intentions, in order to min-
imize miscommunication and avoid unintended conse-
quences (e.g., apocalyptic scenarios like accidentally
wiping out humanity in the attempt to solve climate
change). In other words, future AI systems should
always try to understand what users are doing and why
they are doing it. For instance, recent hybrid frame-
works have tried to improve human-robot interaction by
modeling Intention Awareness in terms of motivational
and affective processes based on conceptual depen-
dency theory [18].

Finally, recent attempts to augment the human
decision-making process, especially in dynamic and
time-sensitive scenarios such as military command
and control, game theory, home automation, and
swarm robotics, have focused primarily on environmen-
tal details such as positions, orientations, and other
characteristics of objects and actors of an operating
environment (situation awareness). However, a sig-
nificant factor in such environments is the intentions
of the actors involved [19]. While creating systems
that can shoulder a greater portion of this decision-
making burden is a computationally intensive task,
performance advances in modern computer hardware
bring us closer to this goal.

VII. TRUSTWORTHINESS
Last but not least, Trustworthiness is a key pillar that
measures the degree to which AI systems, models,
and algorithms can be relied upon to perform as
intended, make accurate and ethical decisions, and
avoid harmful consequences. It is a concept closely
related to Intention Awareness (see Section VI), but
also explainability and interpretability. Explainability
allows an AI model to generate descriptions of its
decision-making processes in order to enable the user
to make informed modifications to the outputs or even
to the model itself in a human-in-the-loop fashion.
Interpretability, in turn, enables users to understand
the inner workings of an AI model, e.g., by identifying
which input features have the most impact on its output
or by assessing how changes in input variables affect
the model’s predictions or by leveraging a confidence
score to gauge how confident the AI model is about its
own output.

According to one theory of trust, trust is grounded
in probabilities that a trustor A attributes to his/her
own beliefs about the behavior and competences of
a trustee B with respect to the performance of some
action φ relevant to a goal G. Where n denotes the
probability threshold value and m denotes the prob-
ability value that A attributes to his/her trust-relevant
beliefs, there will be a trust relation between A and B
if and only if m ≥ n.

It is at least arguable that this probability thresh-
old value will be met, given the twin phenomena of
hallucination and behavioral drift. In any case, we
believe that trust is more than a matter of satisfying
probability threshold conditions (i.e., m ≥ n). We can
define Trustworthiness as a 5-ary relation R(A, B, φ,
ψ, G), consisting of five relata: the trustor A, a trustee
B, some action φ to be performed, some G-relevant
attribute ψ that may be judged by A as absent or
present in B during B’s performance of φ, and a goal
G that makes the performance of φ desirable [20].
Indeed, trust is a mental state that A holds toward B
with respect to the performance of some G-relevant φ.

If the goal G is NLP, actions φi are typical NLP
tasks such as sentiment analysis and dialogue gener-
ation, and G-relevant attributes ψi are qualities such as
explainability and interpretability. All other things being
equal, if B1 possesses each G-relevant attribute ψi in
greater abundance than B2, we have pro tanto reasons
to have greater trust in the former than the latter.

Intuitively, even if real parrots or stochastic ones
(LLMs) produce appropriate linguistic responses to
task-related φi prompts, we would not deem their
linguistic behavior trustworthy unless they possess the
relevant natural language understanding. Meaning in-
volves a relation between the linguistic form of data and
an extralinguistic reality that is distinct from language.
Where M denotes meaning, E denotes the form of nat-
ural language expressions, and I denotes communica-
tive intent, this relation may be formally represented
as M ⊆ E × I [2]. M contains ordered pairs (e, i) of
natural language expressions (e) and communicative
intents (i). Understanding may be interpreted as the
process of retrieving i , given e.

Since LLMs are pretrained on large datasets
and meaning cannot be learnt from linguistic form
(e) alone, however impressive their transformer
architecture might be, LLMs will necessarily lack
the relevant intentionality. Such a limit can result in
hallucinatory responses from LLMs, if e and i are not
directly associated in the pertaining datasets. Hence,
humans have to watch over them and correct them in
mission-critical tasks.
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Ensuring Trustworthiness requires collaboration
among AI experts, ethicists, and policymakers. It in-
volves a combination of technical measures, ethical
considerations, and transparency initiatives. As AI con-
tinues to play an increasing role in various aspects of
society, building and maintaining trust in AI technolo-
gies is essential for their responsible and sustainable
integration.

CONCLUSION
The pursuit of automating tedious or repetitive tasks
has a rich history, with origins tracing back to Ancient
Egypt and the Greek Empire. Among the earliest doc-
umented works on automation is the “Book of Inge-
nious Devices”, published in 850 by the Banu Musa
brothers. While we have made significant strides since
those times, thanks to advancements in mathematical
modeling, we now face the challenge that mere math-
ematics alone may not suffice to model the intricate
processes by which the human brain encodes and
decodes meaning for complex tasks, including intuitive
decision-making, sense disambiguation, and narrative
comprehension.

In this work, we proposed a novel approach to
AI that centers on humanity, characterized by seven
essential features or pillars. In the future, we plan
to define best practices for abiding by such pillars.
For example, current post-hoc interpretability methods
may not be the best way to implement Trustworthiness
as they simply find correlations between inputs and
outputs of an AI model without really explaining its
inner workings. Similarly, there is no point in having
a confidence score if this is calculated based on the
wrong parameters. Moreover, we need to define how
to evaluate explainability in terms of qualities such
as plausibility, i.e., the extent to which an explanation
resonates with and is deemed acceptable by a human
audience, and faithfulness, i.e., the extent to which the
explanation accurately reflects the model’s decision-
making process.

As we look ahead, it is imperative to foster
the development of human-in-the-loop and human-in-
command systems, integrating human participation in
AI through paradigms such as active learning and
decision intelligence. We need to develop clear guide-
lines and principles for AI development which prioritize
human values, fairness, accountability, transparency,
and privacy, and which should be integrated into the
design process from the outset. We need to conduct
regular audits of AI algorithms to detect and mitigate
biases, errors, and ethical concerns.

Finally, we need to implement and enforce regu-
lations and governance mechanisms that define the
boundaries of AI usage, protect individual rights, and
foster moral AI practices. By implementing these
strategies, society can work toward ensuring that AI
technologies are developed and used in ways that
empower individuals and align with ethical values. Bal-
ancing technological progress with human agency and
values is essential for the responsible advancement of
AI. If we do not engineer it well, in fact, AI could very
much end up being like plastic: a great invention that
made our life easier about a century ago, but which is
now threatening our own existence.
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