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Abstract—Multimodal aspect-based sentiment classification (MASC) is an emerging task due to an increase in user-generated
multimodal content on social platforms, aimed at predicting sentiment polarity toward specific aspect targets (i.e., entities or attributes
explicitly mentioned in text-image pairs). Despite extensive efforts and significant achievements in existing MASC, substantial gaps
remain in understanding fine-grained visual content and the cognitive rationales derived from semantic content and impressions
(cognitive interpretations of emotions evoked by image content). In this study, we present Chimera: a cognitive and aesthetic sentiment
causality understanding framework to derive fine-grained holistic features of aspects and infer the fundamental drivers of sentiment
expression from both semantic perspectives and affective-cognitive resonance (the synergistic effect between emotional responses
and cognitive interpretations). The framework aligns visual patches with words, extracts coarse and fine-grained visual features,
translates them into textual descriptions, and uses LLM-generated sentimental causes and impressions to boost sensitivity to affective
cues. Experiments on MASC datasets show the model’s effectiveness and greater flexibility compared to LLMs like GPT-4o. We have
publicly released the complete implementation and dataset at https://github.com/SenticNet/Chimera

Index Terms—Multimodal aspect-based sentiment classification, Sentiment causality, Large language models, Affective-cognitive
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1 INTRODUCTION

MULTIMODAL aspect-based sentiment classification
(MASC) is a valuable task for analyzing user-

generated multimodal content on social platforms, aiming
to predict the sentiment polarity of a specific target/aspect
term within a sentence, based on an image-text pair. In an
era marked by growing global interconnectedness, social
platforms have become essential channels for individuals
to express opinions and share experiences [1]–[4]. These
platforms support multimodal content, blending text and
visual media, which better reflects how sentiment is con-
veyed [5]. Consequently, analyzing fine-grained sentiment
expression in multimodal scenarios not only improves the
depth of sentiment classification but also aligns with the
natural manner in which users express opinions and emo-
tions, ultimately supporting more accurate sentiment anal-
ysis for applications in finance [6], [7], social research [8]–
[10], and human-computer interaction [11], [12]. Current
methodologies for MASC can be broadly divided into two
principal categories: visual-text fusion-based approaches
and translation-based approaches. Visual-text fusion-based
methods address MASC by directly integrating visual con-
tent with textual features through various attention-based
mechanisms [13]–[18].
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Yu et al. [13] were the first to propose the utiliza-
tion of ResNet for image feature extraction in conjunc-
tion with BERT for language sequence modeling, subse-
quently feeding these components into a BERT encoder
to facilitate the interactive modeling of cross-modal rep-
resentations. Ling et al. [16] introduced a vision-language
pre-training framework that leverages Faster R-CNN for
extracting object-level visual features and BART for gen-
erating textual features, with the model pre-trained using
three task-specific strategies targeting the language, vision,
respectively. Yu et al. [15] presented a novel multi-task
learning framework Image-Target Matching Network (ITM),
which concurrently performs coarse-to-fine-grained visual-
textual relevance detection and visual object-target align-
ment through cross-modal Transformers.

Translation-based approaches focus on mapping
visual content into the language space as auxiliary
textual representations, leveraging this supplementary
information, or integrating it with visual features to
enhance MASC [19]–[24]. Khan et al. [19] translated the
image into a corresponding caption, which is then jointly
input with the sentence into BERT to predict the sentiment
polarity associated with specific targets. Yang et al. [25]
exploit a face-sensitive, translation-based approach that
translates facial expressions in images into textual sentiment
cues, which are then selectively aligned and fused with
the targets for enhanced sentiment analysis. Xiao et al. [21]
proposed the CoolNet framework, which generates
visual captions for images and extracts syntactic and
semantic features from the textual modality, subsequently
fusing these with visual features through a cross-modal
Transformer.

https://github.com/SenticNet/Chimera
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Despite substantial efforts and promising advancements,
current solutions continue to encounter the following chal-
lenges. First, excessive duplicative visual patches can over-
shadow critical visual clues relevant to the specific target,
leading to considerable misalignment during patch-token
interactions. These small visual patches often lack semantic
coherence compared to complete visual regions, particularly
when aligning targets with their corresponding objects in
an image, potentially leading to ambiguous semantic repre-
sentations. Second, limited studies have focused on the un-
derlying rationale behind sentiment cues, particularly from
the perspectives of semantic content and affective-cognitive
resonance. Owing to the multimodal nature of Twitter con-
tent, which spans diverse facets of daily life, inferring the
sentiment associated with specific targets necessitates not
only an understanding of the surface-level information in
text and images (e.g., facial expressions) but also an in-depth
comprehension of the contextual background of particular
events and the impressions evoked by the image’s content
and aesthetic attributes.

To address the aforementioned challenges, this paper
proposes Chimera: a cognitive and aesthetic sentiment
causality understanding framework. This framework aims
to incorporate and align fine-grained features of specific
targets and reasons about semantic and impression ratio-
nales. However, two critical issues must be resolved to
achieve these objectives: 1) How can specific targets in a
sentence be aligned with their corresponding object-level
fine-grained features in an image? 2) How can the model be
enabled to reason about the emotional causal reasons within
the semantic content of image-text pairs and the affective
resonance evoked by image aesthetic attributes? For the first
question, we propose to make the cross-modal alignment
of the target via the visual patch-level by linguistic-aware
patch-token alignment and object-level by accurately trans-
lating the object feature into language space. Regarding the
second issue, while a recent study [26] developed a reason-
ing dataset for MASC, this dataset primarily explains the
emotional causes within textual content and lacks reasoning
capabilities for visual content and the affective resonance
evoked by images, limiting its suitability for the multi-
modal nature of this task. Consequently, we employ a large
language model (LLM), GPT-4o, to generate the semantic
rationale and impression rationale to understand the causal
foundations of emotions.

Specifically, our proposed framework first extracts visual
patch-level and textual features, feeding them into a tai-
lored linguistic-aware patch-token alignment (LPA) module
to achieve patch-token alignment. Concurrently, a transla-
tion module (TM) translates the holistic image or object-
level content into aesthetic captions or facial descriptions,
leveraging multimodal named entity annotations from the
work of Wang et al. [27]. The TM-generated text, along
with the sentence and aspect, is then input into a genera-
tive module for multi-task learning to produce sentiment
polarity, semantic rationale (SR), and impression rationale
(IR). By bootstrapping the model’s perception of underlying
rationale through an in-depth understanding of textual and
visual content as well as the affective resonance evoked by
images, it enhances the performance of sentiment classifica-
tion.

In a nutshell, the primary contributions are as follows:

• We propose a novel framework for MASC that
aligns specific targets with their corresponding visual
objects at the patch-token and object levels while
equipping the model with causal rationale reasoning
ability for semantic rationale (SR), and impression
rationale (IR).

• We approach this task by enabling the model to
grasp the semantic content of image-text pairs and
the affective resonance evoked by images. To our
knowledge, we are the first to collect semantic and
impression rationale data for the MASC task, based
on existing MASC datasets, extending its content
to incorporate semantic and impression rationale,
offering a valuable resource for advancing MASC
research.

• Experiments on three widely-used Twitter bench-
marks demonstrate that our proposed method out-
performs previous approaches, achieving state-of-
the-art performance. Further evaluations validate the
effectiveness of our approach for MASC tasks.

The remainder of this paper is organized as follows:
Section 2 provides an overview of related research on multi-
modal aspect-based sentiment classification, image aesthetic
assessment, and multimodal learning. Section 3 details
the proposed framework, including linguistics-aware patch-
token alignment, the translation-based module, causal ratio-
nale dataset construction, and LLM-based annotation gener-
ation. Main experimental results are presented in Section
4, and the in-depth analysis is shown in 5, followed by
conclusions in Section 6.

2 RELATED WORK

This section reviews key methods in multimodal aspect-
based sentiment analysis and image aesthetic assessment.
Additionally, as our novel rationale dataset is constructed
using an LLM, we introduce LLMs for data annotation.

2.1 Multimodal Aspect-based Sentiment Analysis

Sentiment analysis is a well-established research area fo-
cused on understanding and identifying human emotions
and opinions across various contexts [28]–[33]. With the
exponential growth of user-generated multimodal content
(e.g., image-text pairs, video clips) on social platforms [34]–
[37] has drawn substantial attention to Multimodal Aspect-
based Sentiment Analysis (MABSA) [38]–[42]. The MABSA
task consists of two sub-tasks: Multimodal Aspect Term
Extraction (MATE) and our focused MASC task. MATE [43]
is essentially a named entity recognition task aimed at iden-
tifying all relevant specific targets within the textual content
of an image-text pair. MASC [44], [45] is a text classification
task in which specific targets are provided, requiring the
identification of their sentiment polarity (positive, neutral,
or negative) based on the given image-text pair. A series
of recent studies have successfully unified these two sub-
tasks into a single framework, effectively streamlining the
MABSA process [16], [17], [24], [46]–[49].
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Fig. 1. The overall framework of the proposed Chimera. Chimera consists of four parts: Translation Module, Rationale Dataset Construction,
Linguistic-aware Semantic Alignment, and Rationale-Aware Learning.

Among these studies, Yu et al. [14] proposed the Entity-
Sensitive Attention and Fusion Network (ESAFN), which
employs entity-oriented attention combined with a visual
gate mechanism to model entity-sensitive inter-dynamics
for MASC. Ju et al. [46] were the first to integrate MATE
and MASC into a end-to-end task, developing a joint
learning framework with cross-modal relation detection.
Kruk et al. [37] proposed a multimodal framework for
Instagram intent detection, integrating three taxonomies
and the MDID dataset. It demonstrates that text-image
fusion enhances accuracy by 9.6% under semiotic diver-
gence, emphasizing the necessity of multimodal models
for capturing the non-intersective ”meaning multiplication”
inherent in social media. Yang et al. [17] improved cross-
modal alignment modeling through a Transformer-based
multi-task learning framework, incorporating text-guided
cross-modal interactions and using adjective–noun pairs as
supervision for a visual auxiliary task.

Zhou et al. [18] developed an aspect-oriented multimodal
fusion approach that constructs an informative dependency
graph to minimize additional visual and textual noise in
cross-modal interactions by selectively processing aspect-
relevant textual and image features. Huang et al. [22] put
forward to mapping images into scene graphs, using triplet
semantic relationships among entities along with image cap-
tions to construct a relatedness matrix for achieving cross-
modal alignment in MASC. More recently, Xiao et al. [24]
introduced the Atlantis, a trident-shaped architecture that
incorporates aesthetic attributes to enhance the emotional
resonance of visual content. Fan et al. [26] devised a Flan-
T5-based multi-task learning architecture to enhance the
model’s reasoning capabilities for inferring underlying and

direct causes of sentiment expressions. Additionally, they
constructed a practical causal dataset for MASC. Our pro-
posed method aims to achieve cross-modal alignment at the
patch and object levels while equipping the model with rea-
soning capabilities to discern the semantic and impression
rationale underlying sentiment expressions.

2.2 Image Aesthetic Assessment

Image aesthetics play a fundamental role in shaping
viewers’ emotional responses and overall aesthetic expe-
rience through complex psychological and cognitive pro-
cesses [50]. Image aesthetics pertain to the subjective eval-
uation and appreciation of its beauty [51]. Image Aesthetic
Assessment seeks to systematically appraise this aesthetic
quality by analyzing the visual appeal of images [52]. Em-
pirical psychological research corroborates that images can
trigger a wide range of emotions, which are influenced by
their aesthetic attributes and semantic content [53]. Previous
research concentrated on aesthetic image captioning and
analysis through the aggregation of commentary on aes-
thetic attributes [54]. These studies address the concepts of
style, layout, and aesthetics from the viewpoints of beauty
and visual attractiveness. Recent scholarly efforts have fo-
cused on encouraging vision-language models to generate
visual connotations and captions related to various aesthetic
attributes (e.g., color, harmony, lighting, composition) [55].
More recently, Kruk et al. [56] introduced a connotation-
rich dataset, Impressions, designed to explore the emotions,
thoughts, and beliefs that images evoke, along with the
aesthetic elements that elicit these responses.
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The introduction of this dataset marks a significant ad-
vance in the study of how visual stimuli can influence com-
plex perceptual and emotional outcomes. In this study, we
utilize aesthetic attributes to capture sentiment cues within
visual content at both object and holistic levels. Inspired by
Impressions [56], we further prompt the LLM to generate
impression rationales for MASC, enabling analysis of the
underlying affective resonance evoked by images.

2.3 LLMs-Based Rationale Generation
Recently, LLMs have achieved significant success across
various downstream tasks [57]–[60]. LLMs such as GPT-
4o [61], Gemini [62], and LLaMA-2 [63] hold significant
potential to usher data annotation into a new era, func-
tioning not merely as auxiliary tools but as vital enhancers
of its effectiveness and quality [64], [65]. LLMs can auto-
matically annotate samples, ensure consistency across large
data volumes, and adapt to specific domains via fine-tuning,
thereby establishing a new standard in deep learning [66]–
[68]. The rationale represents the detailed cognitive process
an individual typically follows when solving a problem,
providing useful supplementary information for the final
answer [69]. Early studies [70] typically relied on human ex-
perts to annotate rationale in datasets, significantly limiting
availability and scalability. A bunch of diverse methodolo-
gies have been developed to produce high-quality and fine-
grained rationale. Wang et al. [71] proposed to elucidate each
choice in a sample by generating choice-specific rationales
via LLMs. Wang et al. [72] enhanced the credibility of gener-
ated rationales by incorporating gold-standard answers and
using contrastive decoding algorithms. Liu et al. [73] laid
much emphasis on curating high-quality prompts to obtain
fine-grained rationales from GPT-4o and build a logical
chain-of-thought instruction-tuning dataset. More recently,
Kang et al. [74] developed a sophisticated neural reranking
mechanism to dynamically retrieve highly relevant supple-
mentary documents for generating high-quality rationales
in knowledge-intensive reasoning tasks.

In this paper, we build upon the work of Wang et al. [72]
by fully utilizing the dataset’s gold-standard annotations to
generate semantic and impression rationales through metic-
ulously designed prompts. This approach ensures high-
quality rationale generation while avoiding additional costs
from trial-and-error OpenAI API usage fees.

3 METHODOLOGY

This section presents our proposed framework for MASC,
beginning with the task formalization, followed by the
rationale dataset construction process, and concluding with
the proposed method, comprising linguistic-aware semantic
alignment, a translation module, rationale dataset construc-
tion and a rationale-aware learning framework.

3.1 Task Definition
Given a multimodal dataset M , each sample Xi consists of
an image Vi paired with a sentence Si containing one or
more specific targets Ti. The goal of MASC is to predict
the sentiment polarity Yi ∈ {Positive, Negative, Neutral}
for a specific target Ti. Moreover, our framework infers

both semantic rationale SRi and impression rationale IRi,
explaining the sentiment prediction Yi for a specific target
Ti, based on multimodal semantic meaning and the affective
resonance evoked by the image. In this study, the model
outputs SRi, IRi, Yi for an input sample Xi = (Si, Vi, Ti),
where SRi and IRi offer supplementary sentimental cues
for sentiment prediction Ti.

3.2 Method Overview
As shown in Figure 1, our proposed framework comprises
four technical components, namely a Translation Module,
Rationale Dataset Construction, Linguistic-aware Seman-
tic Alignment, and Rationale-Aware Learning. The Trans-
lation Module converts visual content, both holistic and
object-level, into language captions. For entire images, it
generates emotion-laden aesthetic captions using our fine-
tuned BLIP. For object-level content, it maps visuals to
facial descriptions or aesthetic captions with rich emotional
cues via EmoLA or our fine-tuned BLIP. The construction
of the rationale dataset involves generating semantic and
impression rationales. We curate prompts tailored to each
rationale category and input them, along with the samples,
into GPT-4o to collect the desired rationales. The Linguistic-
aware Semantic Alignment module segments the input im-
age into patches, dynamically selects and refines relevant
visual patches, and achieves patch-token alignment guided
by linguistic features from the input sentence. Lastly, we
propose a Rationale-Aware Learning framework built up
on a generative model that simultaneously learns sentiment
classification, semantic rationale generation, and impression
rationale generation from diverse textual inputs, such as
sentences, aesthetic captions, and facial descriptions.

3.3 Translation Module
This module translates visual content into overall aesthetic
captions, object-level facial descriptions, or object-level aes-
thetic captions in textual form, embedding rich sentimental
cues to facilitate object-level sentiment alignment. Specifi-
cally, we leverage object annotations from the Fine-Grained
Multimodal Named Entity Recognition (MNER) task [27],
which annotates specific targets in the sentence and their
corresponding objects in the image. The MNER dataset
is derived from the same Twitter dataset as the MASC
datasets, incorporating the original image-text pairs from
MASC. We further pre-process the MNER dataset and trans-
fer its object annotations to the MASC dataset. To generate
aesthetic captions rich in sentimental cues, we fine-tune
a BLIP model using the recent aesthetic-specific dataset,
Impression [56]. For facial description, we deploy the LLM-
based EmoLA [75] to interpret fine-grained human mental
states from images.

To tackle the challenge of potential one-to-many anno-
tation scenarios, wherein multiple visual objects correspond
to a specific target in the sentence, we calculate the similarity
between the entire image and all object annotations, retain-
ing only the object with the highest similarity score for each
specific target. Subsequently, we generate various textual
auxiliary sentences, based on object annotations. Firstly, in
cases where the object corresponding to a specific target is
absent from the image, a fine-tuned BLIP model is applied to
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generate an overall aesthetic caption Ac =
(
ac1, a

c
2, . . . , a

c
Nc

)
for the entire image:

Ac = BLIPfine(V ), (1)

where BLIPfine(·) is the fine-tuned BLIP over Impression
dataset. If the object corresponding to a specific target is
present in the image, we develop a Human-Object Differen-
tiation (HOD) module based on the Sample and Computa-
tion Redistribution for Efficient Face Detection (SCRFD) [76]
framework. This module determines the presence of a face
within the annotated object-level visual content and assigns
a facial binary label:

Y
oj
i = HOD(V

oj
i ), (2)

where Y
oj
i ∈ [1, 0] indicates whether the object-level visual

content contains a face (0 for no face, 1 for face detected),
and V

oj
i denotes the j-th object-level visual content in the

i-th image. Subsequently, we generate facial descriptions or
aesthetic captions for object-level visual content based on
the facial binary label:

Ao =

{
EmoLA(V

oj
i ), if Y oj

i = 1 ,

BLIPfine(V
oj
i ), otherwise,

(3)

where Ao =
(
ao1, a

o
2, . . . , a

o
No

)
is the generated auxiliary

sentence (facial description or aesthetic caption) for the
object-level visual content.

3.4 Rationale Dataset Construction

The current MASC benchmark includes only specific target
(aspect) labels within the image-text pair sentences and their
corresponding sentiment polarities. Recently, Fan et al. [26]
introduced a dataset for MASC with cause analysis, focus-
ing exclusively on textual semantics rather than integrating
both visual and textual cues. Moreover, they overlook the
affective resonance evoked by image aesthetic attributes,
eliminating a crucial layer of emotional cues and resulting
in an incomplete sentiment representation. This omission
hinders the holistic integration of textual and visual modal-
ities, leading to suboptimal sentiment modeling. Therefore,
we employ GPT-4o to generate semantic and impression
rationales, with the detailed generation process outlined in
Algorithm 1.

Algorithm 1 Rationale Dataset Construction
Input: All samples (V , S, T , Y ) in MASC dataset M
Output: Rationale dataset R which contains Semantic Ra-

tionale (SR) and Impression Rationale (IR)
1: Design & refine prompt pool for SR (SRP) and IR (IRP)
2: for each sample (Vi, Si, Ti, Yi) in M do
3: //Randomly select a prompt from SRP for SR
4: SRprompt ← PromptPoolforSR(Vi, Si, Ti, Yi)
5: //Randomly select a prompt from IRP for IR
6: IRprompt ← PromptPoolforIR(Vi, Si, Ti, Yi)
7: Produce SR and IR via GPT-4o
8: SRi ← GPT-4o(Vi, Si, Ti, Yi, SRprompt)
9: IRi ← GPT-4o(Vi, Si, Ti, Yi, IRprompt)

10: Add (Vi, Si, Ti, Yi, SRi, IRi) to R
11: end for

TABLE 1
Example prompts for semantic rationale generation.

Type Prompts

System
Prompt

You are an AI assistant specializing in mul-
timodal understanding and sentiment anal-
ysis, particularly in scenarios involving the
integration of image and text modalities.

Semantic
Rationale
Generation
Prompt

You will be provided with an image-text
pair. Your task is to analyze the sentiment
towards the specified entity {aspect} and
explain why the sentiment polarity {label}
is appropriate.
Your explanation should consider both the
semantic meaning of the text and the visual
representation of the image, focusing on ex-
plicit content and the emotional or contex-
tual cues conveyed by their combination.
Start your response with: ”Based on the
image-text pair, the sentiment towards
{aspect} is {label} because...”. Provide a
concise, focused explanation highlighting
the single most compelling reason for this
sentiment classification.

To comprehensively capture the emotional rationale un-
derlying the identified sentiment polarity from a semantic
perspective of both image and text, we employ GPT-4o
(gpt-4o-2024-05-13) via the OpenAI API1 to generate SR.
Meanwhile, to enable the model to effectively capture im-
plicit emotional cues arising from the affective resonance of
aesthetic attributes, we employ GPT-4o to generate the IR.

To enhance the diversity of generated semantic and
impression rationales (SR and IR), we designed and refined
a series of templates to construct separate prompt pools for
SR and IR, from which a prompt is randomly selected as
instructions to guide GPT-4o in generating the correspond-
ing rationale. In this study, we adopt the approach outlined
by Sarah et al. [77] and Wang et al. [72], leveraging tailored
prompts conditioned on the dataset’s gold-standard anno-
tations to generate SR and IR using GPT-4o. The example
prompts for generating SR and IR are presented in Tables 1
and 2, respectively.

3.5 Linguistic-aware Semantic Alignment(LSA)

We first introduce dynamic patch selection in Sec. 3.5.1.
Then, we introduce the semantic patch calibration in
Sec. 3.5.2. and patch-token alignment in Sec. 3.5.3. The
overall process of LSA is shown in the persucode 2.

3.5.1 Dynamic Patch Selection(DPS)
Dynamic Patch Selection (DPS) is considered a discrimina-
tive task that assigns significance scores to visual patches
and selects valuable patches based on high scores. For the
image in an image-text pair, we opt for vision Transform-
ers as the visual encoder. The image V is divided into
Nv non-overlapping patches by spatial distribution. These
patches are then input as a visual token sequence into the

1. https://platform.openai.com
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TABLE 2
Example prompts for impression rationale generation.

Type Prompts

System
Prompt

You are an AI assistant specializing in mul-
timodal emotion and aesthetic understand-
ing, especially in analyzing the emotional
responses elicited by visual content.

Impression
Rationale
Generation
Prompt

You will be given an image-text pair.
Your task is to analyze the specified en-
tity {aspect} and its associated sentiment
label {label} based entirely on the image’s
aesthetic attributes and the emotional reso-
nance it conveys.
Focus exclusively on the overall impression
and visual connotations conveyed by the
image, emphasizing why the assigned sen-
timent {label} aligns with the general mood
or perception evoked by the entity. Avoid
mentioning specific details; instead, high-
light the prevailing emotional or aesthetic
impression.

vision Transformer to obtain a set of visual patch features
V = (vcls, v1, v2, . . . , vNv

) ∈ R(Nv+1)×d. For sentence S, a
pre-trained Transformer serves as the textual encoder. The
sentence is tokenized into Ns tokens and processed by the
encoder to extract linguistic features S = (s1, s2, . . . , sNs

) ∈
RNs×d. Subsequently, we incorporate spatial information
from images into visual patch features and use an MLP-
based score-sensitive prediction mechanism to learn signifi-
cant scores:

psi = Sigmoid (MLP (vi)) , i ∈ {1, 2, . . . , Nv}, (4)

where psi ∈ [0, 1] represents the importance score assigned
to each visual patch. Moreover, achieving refined cross-
modal alignment requires more than depending solely on
a scoring mechanism to identify valuable visual patches
without linguistic supervision [78], [79]. Consequently, we
introduce linguistic context by calculating attentive scores
between visual patches and the input sentence. First, we
derive linguistic-aware scores pli through cross-attention
between visual patches and linguistic features. Then, we
enhance key visual content by computing self-attention
within patches, producing image-prominent scores pei :

pli = Norm (vi · S/d) , pei = Norm (vi · V/d) , (5)

where Norm(·) denotes the normalization of scores to a
range from 0 to 1. S and V represent the global embeddings
for linguistic features and visual patches, respectively. These
scores are integrated to derive the final value score:

pfi = (1− β)psi +
β

2

(
pli + pei

)
, (6)

where β refers to the weight parameter. After obtaining the
value score pf =

(
pf1 , p

f
2 , p

f
3 , . . . , p

f
Nv

)
∈ RNv , we convert it

into a binary decision matrix {0, 1}Nv to determine patch
selection. This matrix is constructed using the Gumbel-
Softmax technique [80], ensuring a smooth and differen-
tiable sampling process.

Algorithm 2 Linguistic-aware Semantic Alignment (LSA)
1: procedure DYNAMIC PATCH SELECTION(V, S)
2: Extract visual patches V ← ViT(V ), text tokens S ←

TextEnc(S)
3: Compute significance scores: psi ← MLP(vi), pli ←

Norm(viS
⊤), pei ← Norm(viV

⊤)
4: Fuse scores: pfi ← (1− β)psi +

β
2 (p

l
i + pei )

5: Apply Gumbel-Softmax sampling to obtain binary
mask D ∈ {0, 1}Nv

6: Return selected patches V p ← {vi|Di = 1}
7: end procedure
8: procedure SEMANTIC PATCH CALIBRATION(V p)
9: Aggregate key patches: Ṽ p ← Softmax(MLP(V p)) ·

V p ▷ Adaptive weighting
10: Fuse redundant patches: ṽr ←

∑
p̃ivi ▷ Weighted

sum via pf

11: Return Ṽ p ← [vcls; Ṽ
p; ṽr]

12: end procedure
13: procedure PATCH-TOKEN ALIGNMENT(Ṽ p, S)
14: Compute cosine similarity matrix A ∈ R(Nf+2)×Ns

15: Calculate alignment score K(V, S) ←
1
2 (mean(maxj Aij) + mean(maxi Aij))

16: Optimize with Lalign ←
Bi-directional Triplet Loss(K(V, S),K(V, Ŝ),K(V̂ , S))

17: end procedure

The Gumbel-Softmax matrix is defined as:

M i,l =
exp (log (mi,l +Gi,l) /τ)∑L

j=1 exp (log (mi,j +Gi,j) /τ)
, (7)

where M ∈ RNv×L, L indicates the total number of cate-
gories. In this scenario, L is set to 2 for the binary decision
(mi,1 = pfi , mi,2 = 1 − pfi ). Gi = − log (− log (Ui))
represents the Gumbel distribution, Ui refers to the uniform
distribution and τ is the temperature parameter.

Next, we obtain the differentiable decision matrix D by
applying the arg-max on M :

D = Sampling(M)∗,1 ∈ {0, 1}Nv , (8)

where D indicates patch selection outcomes: “1” for impor-
tant patches and “0” for redundant ones. In the training
stage, gradients are backpropagated through the differen-
tiable decision matrix, enabling the dynamic selection of
valuable visual patches via the score-sensitive prediction
mechanism.

3.5.2 Semantic Patch Calibration(SPC)
This section aims to further refine the semantic repre-
sentation of the selected valuable visual patches. After
dynamically selecting important visual patches guided
by linguistic supervision, we designate them as V p =(
vp1 , v

p
2 , . . . , v

p
Np

)
∈ RNp×d. Np is the number of selected

valuable visual patches. We employ an aggregation net-
work [81] to model multiple aggregation weights and com-
bine the selected Np visual patches to generate Nf informa-
tive visual features:

ṽp
j =

Np∑
i=1

(W )ij · vp
i , j = [1, . . . , Nf ] , (9)
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W = softmax (MLP (V p)) , (10)

where (W ) denotes the normalized weight matrix and∑Ns

i=1(W )ij = 1. Nf is the number of aggregated patches
(Nf < Np). The aggregation network adaptively combines
visually similar patches and is differentiable for end-to-end
training. While redundant visual patches can be discarded,
they may contain supplementary semantic features for re-
fined cross-modal alignment. Therefore, we fuse them into
a single patch:

ṽr =
∑
i∈N

p̃i · vi, p̃i =
exp

(
pfi

)
Di∑N

i=1 exp
(
pfi

)
Di

, (11)

where N represents the set for redundant visual patches. p̃i
denotes the normalized score of the value score pfi . Finally,
this component models the calibrated refined visual patches,
denoted as Ṽ p =

(
vcls, ṽ

p
1 , ṽ

p
2 , . . . , ṽ

p
Nf

, ṽr
)
∈ R(Nf+2)×d.

3.5.3 Patch-token Alignment(PTA)

This module aims to achieve the fine-grained patch-token
level alignment. Specifically, we first utilize the refined vi-
sual patches Ṽ p and linguistic features S to compute token-
wise similarities, producing a patch-token similarity matrix
A ∈ R(Nf+2)×Ns . (A)ij =

(ṽi)
T sj

∥ṽi∥∥sj∥ denotes the patch-
token level alignment score between the i-th visual patch
and the j-th word. Subsequently, maximum-correspondence
interaction is introduced to aggregate cross-modal align-
ment. For each visual patch (or token), we identify the most
aligned textual token (or patch) and calculate the average
alignment score K(V, S), representing the overall alignment
between the image V and the sentence S:

K(V, S) =
1

Nf + 2

Nf+2∑
i=1

max
j

(A)ij +
1

Ns

Ns∑
j=1

max
i

(A)ij

(12)
Following a previous method [82], the bi-direction triplet

loss with hard negative mining is exploited:

Lalign =
∑
(V,S)

[γ −K(V, S) +K(V, Ŝ)]+

+ [γ −K(V, S) +K(V̂ , S)]+,

(13)

where γ is the trade-off parameter. [x]+ = max(x, 0)
and (V, S) refers to a positive image-text pair in the
mini-batch. Moreover, Ŝ = argmaxj ̸=S K(V, j) and V̂ =
argmaxi ̸=V K(i, V ) indicate the hardest negative sentence
and visual examples within a mini-batch, respectively.

3.6 Rationale-aware Learning

To endow the model with the ability to perform se-
mantic causality and impression reasoning, we propose a
rationale-aware learning framework designed to fine-tune a
sequence-to-sequence (seq2seq) model. This seq2seq model
is proposed to achieve three task objectives for each specific
target within the image-text pair: sentiment classification
(SC), semantic rationale generation (SRG), and impression
rationale generation (IRG). These tasks are differentiated by
the use of distinct input configurations and input content.

For SC, the decoder outputs only the predicted sen-
timent polarity. In SRG and IRG, the decoder produces
the corresponding rationale and the sentiment prediction.
Specifically, our input comprises the textual sentence S =
(s1, s2, . . . , sNs

), the overall aesthetic caption of the im-
age Ac =

(
ac1, a

c
2, . . . , a

c
Nc

)
, the object-level description

Ao =
(
ao1, a

o
2, . . . , a

o
No

)
, which pertains to either facial or

aesthetic attributes and the specific target T . The input
format is determined by the presence of the specific target
within the visual content. For example, if the specific target
is identified in the image, based on the annotations provided
by Wang et al. [27], the input for SC, SRG, and IRG is defined
as follows:

Hsc = encoder(t⟨sc⟩, A
c, S, T ), (14)

Hsrg = encoder(t⟨srg⟩, A
c, S, T ), (15)

H irg = encoder(t⟨irg⟩, A
c, S, T ), (16)

where encoder(·) is the Transformer encoder of the seq2seq
model. The tokens t⟨sc⟩, t⟨srg⟩, and t⟨irg⟩ are specialized
tokens designed to represent distinct tasks. Although the
specific aspects are not present in the image, this does
not imply that sentimental cues from the image have no
impact on predicting the sentiment polarity. On the contrary,
incorporating sentiment cues from the holistic image can
provide valuable insights into the influence of image aes-
thetic attributes on the sentiment prediction for the specific
aspect. For samples where specific targets are present in the
visual content, the input format is structured as follows:

Hsc = encoder(t⟨sc⟩, S,A
o, T ), (17)

Hsrg = encoder(t⟨srg⟩, S,A
o, T ), (18)

H irg = encoder(t⟨irg⟩, S,A
o, T ). (19)

We employ fine-grained, object-level emotion-laden de-
scriptions to establish alignment between specific targets
and their corresponding objects in the image, which en-
hances both the accuracy and interpretability of the sen-
timent prediction process. Subsequently, these hidden fea-
tures are passed through a stack of self-attention-based en-
coders, which dynamically fuse representations and model
both intra-modal and cross-modal interactions. Finally, the
decoder produces task-specific outputs. For Sentiment Clas-
sification (SC), the decoder generates the predicted sen-
timent polarity, selecting from “positive,” “negative,” or
“neutral,” denoted as ŷsc:

Gsc = [⟨sen⟩ŷsc⟨/ sen⟩] , (20)

where the special tokens ⟨sen⟩ and ⟨/ sen⟩ are denoted as
the start and end markers for SC predictors. For the two
additional rationale generation tasks SRG and IRG, the
decoder generates not only the semantic rationale ŝr and
impression rationale îr for the specific target but also their
corresponding sentiment predictions ŷsr and ŷsi:

Gsr = [⟨sr⟩ŝr⟨/sr⟩⟨sen⟩ŷsr⟨/ sen⟩] , (21)

Gir =
[
⟨ir⟩îr⟨/ir⟩⟨sen⟩ŷir⟨/ sen⟩

]
, (22)

where ⟨sr⟩, ⟨/sr⟩, ⟨ir⟩, ⟨/ir⟩, ⟨sen⟩, and ⟨/sen⟩ serve as
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specialized markers to delineate the rationale and sentiment
polarity. Finally, the input sequence is uniformly denoted
as X , and the generated textual content is represented as
Z = {z1, z2, . . . , zNz

}. Consequently, the loss function for
the generation process is formulated as follows:

LZ = − 1

N

N∑
i=1

Nz∑
nz=1

logP (zi,nz
| ẑi,<nz

, X) , (23)

where zi,nz
is the ground truth token at position nz for

sample i, ẑi,<nz
represents the generated sequence up to

position nz−1 for sample i, and P (zi,nz
| ẑi,<nz

, X) denotes
the probability of generating token zi,nz

conditioned on
ẑi,<nz

and X . In this rationale-aware learning framework,
since all objectives are formulated as generative tasks, the
loss functions LSC , LSRG, and LIRG are all employ the
generative loss function, E.q. 23. Therefore, the objective
function in the proposed method is formulated as follows:

L = αLSC +
1− α

2
LSRG +

1− α

2
LIRG + λLalign, (24)

where α, λ ∈ (0, 1) are tradeoff hyperparameters that reg-
ulate the relative contributions of each generative loss and
the patch-token alignment.

4 EXPERIMENTS
In this section, we provide a comprehensive description of
the experimental settings and evaluate the proposed method
on three publicly available MASC datasets, benchmarking it
against state-of-the-art methods. Furthermore, we perform
an extensive series of studies to thoroughly analyze the
effectiveness of the proposed approach.

4.1 Experimental Settings
4.1.1 Datasets
We utilize three widely recognized benchmark datasets for
MASC [13], [83]: Twitter-2015, Twitter-2017, and the Political
Twitter dataset. Each sample within these datasets com-
prises a user-generated multimodal image-text pair, includ-
ing an image, a textual sentence, and one or more specific
targets. Each aspect is annotated with a sentiment label from
the set Positive, Negative, Neutral. The detailed statistics of
these datasets are presented in Table 3. Furthermore, we
incorporate semantic rationale (SR), impression rationale
(IR), aesthetic captions for the entire image (AC), facial
descriptions (FD), and aesthetic captions for objects (AO) for
each data point. The maximum length for facial descriptions
and aesthetic captions is constrained to 50 tokens.

4.1.2 Implementation Details
We adopt the seq2seq model Flan-T5 [84] as the backbone of
our generative framework. Specifically, the model is trained
for 10 epochs using the AdamW optimizer [85], with a batch
size of 4. A grid search is performed on the development set
to determine the optimal learning rate, α and λ for Flan-T5
across the three datasets. The selected values for learning
rate are 3e − 4, 3e − 4, 1e − 4, respectively, for the Twitter-
2015, Twitter-2017 and Political Twitter. The trade-off hyper-
parameter sets (α and λ) are 0.2, 0.1, 0.2 and 0.2, 0.5, 0.5,
respectively, for the Twitter-2015, Twitter-2017 and Political

Twitter. Consistent with prior research on MASC [13], [26],
we employ Accuracy (Acc) and F1 score (F1) as the evalua-
tion metrics. The model is implemented using PyTorch, and
experiments are conducted on an NVIDIA V100 GPU with
30 GB of memory.

4.2 Compared Baselines
We conducted a comprehensive comparative evaluation of
the proposed method against a range of robust baseline
approaches, which are classified into three categories. The
first category consists of image-only methods:

• Res-Target [86] leverages ResNet as its backbone to
extract visual features exclusively for predicting the
sentiment of the specified target.

The second category includes text-only approaches:

• MemNet [87] employs a stacked architecture of mul-
tiple memory networks to build deep memory net-
works.

• MGAN [88] is based on a multi-grained attention
architecture designed to adaptively capture both
coarse-grained and fine-grained interactions.

• BERT [89] is a powerful pre-trained language model
trained using a masked language modeling objective
and next sentence prediction.

Finally, this study incorporates the following advanced
image-text multimodal approaches:

• MIMN [90] comprises two customized interactive
memory networks designed to capture inter-modal
dynamics between different modalities and intra-
modal dynamics within each individual modality.

• ESAFN [14] is a target-sensitive interaction and fu-
sion network designed to adaptively capture interac-
tive features across modalities while also modeling
intra-modality features.

• TomBERT [13] utilizes BERT and ResNet as back-
bone models for encoding textual and visual content,
respectively. Cross-modal fusion is accomplished by
integrating these features into a BERT encoder.

• JML-MASC [46] jointly extracts the specific targets
and identifies their sentiment polarity by utilizing
a visual de-nosing mechanism and attention-based
fusion framework.

• EF-CapTrBERT [19] converts visual content into an
auxiliary sentence, which is then combined with
the input sentence and processed through a BERT
encoder for sentiment prediction.

• VLP-MABSA [16] is a task-specific pre-trained gen-
erative framework for multimodal aspect-based sen-
timent analysis, built on the BART architecture.

• FITE [25] is a translation-based approach, which
captures facial features in the image and translates
them into a corresponding facial description as an
auxiliary sentence for sentiment classification.

• CMMT-MASC [17] is a cross-modal multi-task
Transformer designed for MASC. Additionally, it em-
ploys multimodal gating mechanisms to dynamically
regulate the flow of textual and visual information
during interactions.
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TABLE 3
Detailed Statistics of Twitter-2015, Twitter-2017, and Political Twitter datasets. The ”#sentence” refers to the total number of sentences. ”#Avg.

Length” denotes the average length of sentences, while ”#Avg. Aspect” indicates the average number of aspects in a sentence. ”#Avg. Length of
SR”, ”#Avg. Length of IR”, ”#Avg. Length of AC”, ”#Avg. Length of FD”, and ”#Avg. Length of AO” correspond to the average lengths of semantic

rationales (SR), impression rationales (IR), aesthetic captions for the entire image, facial descriptions, and aesthetic captions for objects.

Label Twitter-2015 Twitter-2017 Political Twitter

Train Dev Test Train Dev Test Train Dev Test

Positive 928 303 317 1508 515 493 3318 570 176
Neutral 1883 670 607 1638 517 573 4697 823 368
Negative 368 149 113 416 144 168 887 166 305
Total 3179 1122 1037 3562 1176 1234 8902 1559 849
#Sentence 2101 727 674 1746 577 587 5105 900 407
#Avg. Length 16.72 16.74 17.05 16.21 16.37 16.38 16.62 16.67 16.59
#Avg. Aspect 1.51 1.54 1.54 2.04 2.04 2.10 1.74 1.73 2.09

#Avg. Length of SR 42.5 42.4 42.5 42.6 42.8 43.0 42.7 42.6 42.2
#Avg. Length of IR 56.7 56.0 55.7 55.5 56.1 55.4 55.9 56.1 56.3
#Avg. Length of AC 35.9 35.9 35.5 32.5 32.5 31.6 34.0 34.2 33.3
#Avg. Length of FD 39.2 38.5 37.8 38.9 38.5 39.3 39.0 38.4 38.7
#Avg. Length of AO 29.1 29.7 30.3 28.9 29.4 28.9 29.1 29.1 31.3

• HIMT [91] is a Transformer framework that incorpo-
rates a hierarchical interaction component to model
the relationships between specific aspects and the
input sentence.

• IMT [15] is a coarse-to-fine-grained multimodal
matching network that predicts image-target rele-
vance and performs object-target alignment to sup-
port sentiment polarity identification.

• CoolNet [21] is a fine-grained cross-modal alignment
approach that aligns textual and visual content from
both semantic and syntactic perspectives.

• UnifiedTMSC [92] introduces a descriptive prompt
paraphrasing paradigm to generate paraphrased
prompts, while optimizing image vectors within the
multimodal space of vision and language.

• VEMP [93] decodes the semantic of visual elements
by utilizing textual tokens in the image, target-aware
adjective-noun pairs, and image captions.

• Atlantis-MASC [24] is a trident-shaped, aesthetics-
driven approach for joint MABSA, which integrates
image aesthetic and achieves effective alignment of
vision and text across multiple granular levels.

• MDCA [26] is a generative framework proposed to
provide explicit rationales to explain why specific
content conveys certain sentiment.

4.3 Main Results
The main results are presented in Table 4. Given that the
two additional rationale generation tasks contribute to im-
proving sentiment prediction by providing explanations for
the underlying causes of sentiment, we select the prediction
results from sentiment classification ŷsc as the primary out-
comes for accuracy and F1 score evaluation. As presented
in Table 4, the proposed method demonstrates competitive
performance on both Twitter datasets compared to strong
baselines from both text-only and multimodal approaches.

Specifically, it achieves the highest accuracy (81.61%) and
F1 score (77.98%) on the Twitter-2015 dataset, as well as the
best accuracy (75.62%) and a near-optimal F1 score (74.59%)
on the Twitter-2017 dataset. Compared to the image-only
approach (Res-Target), the proposed method achieves a
remarkable improvement of over 21.73% in accuracy on the
Twitter-2015 dataset. Similarly, when compared to the best-
performing text-only method (BERT), the proposed method
demonstrates a substantial performance gain, with a 7.46%
increase in accuracy and a 9.12% improvement in F1 on
Twitter-2015. These observations underscore the limitations
of single-modality approaches in capturing subtle sentiment
cues from multimodal content. Moreover, the proposed
method consistently outperforms recent multimodal mod-
els, such as UnifiedTMSC, Atlantis-MASC, and MDCA. For
instance, UnifiedTMSC adopts a paraphrasing-based ap-
proach to enrich textual features but lacks explicit modeling
of visual aesthetic-driven affective impact. On Twitter-2017,
the proposed method achieves comparable F1 performance
(74.59 vs. 74.70) while delivering higher accuracy (75.62
vs. 75.40), which highlights the complementary benefits of
aesthetic affective resonance modeling. Although Atlantis-
MASC incorporates image aesthetics, it mainly relies on
global alignment techniques, which may overlook the in-
tricate relationships between aspects and objects. The pro-
posed method surpasses Atlantis-MASC by 1.58% in accu-
racy on Twitter-2017, underscoring the efficacy of its patch-
token level and object-level alignment in capturing aspect-
specific visual details. While MDCA incorporates reasoning
and direct causality to explain sentiment causes, it primarily
emphasizes textual semantic reasoning, which restricts its
ability to capture visual content and the corresponding aes-
thetic affective resonance. In contrast, the proposed method
surpasses MDCA with a 0.90% improvement in accuracy
and a 0.83% increase in F1 on the Twitter-2015 dataset. This
gain shows the benefits of jointly modeling semantic and
affective resonance in sentiment causality.
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TABLE 4
The main results (%) are presented with the best-performing results highlighted in bold and the second-best values indicated with underlined text.

Modality Model Venue Twitter-2015 Twitter-2017 Political Twitter

Acc F1 Acc F1 Acc F1

Image Only Res-Target CVPR 2016 59.88 46.48 58.59 53.98 60.21 58.42

Text Only
MemNet EMNLP 2016 70.11 61.76 64.18 60.90 - -
MGAN EMNLP 2018 71.17 64.21 64.75 61.46 67.37 62.78
BERT NAACL 2019 74.15 68.86 68.15 65.23 69.41 64.25

Image and Text

MIMN AAAI 2019 71.84 65.69 65.88 62.99 70.52 65.39
ESAFN TASLP 2019 73.38 67.37 67.83 64.22 69.22 64.66
TomBERT IJCAI 2019 77.15 71.15 70.34 68.03 69.65 62.35
JML-MASC EMNLP 2021 78.70 - 72.70 - 70.14 68.37
EF-CapTrBERT ACM MM 2021 78.01 73.25 69.77 68.42 69.04 64.94
VLP-MABSA ACL 2022 78.60 73.80 73.80 71.80 70.32 69.64
CMMT-MASC IPM 2022 77.90 - 73.8 - - -
FITE EMNLP 2022 78.49 73.90 70.90 68.70 68.64 65.83
HIMT TAFFC 2022 78.14 73.68 71.14 69.16 - -
IMT IJCAI 2022 78.27 74.19 72.61 71.97 69.92 67.86
CoolNet IPM 2023 79.92 75.28 71.64 69.58 70.91 70.25
UnifiedTMSC EMNLP 2023 79.80 76.30 75.40 74.70 - -
VEMP EMNLP 2023 78.88 75.09 73.01 72.42 - -
Atlantis-MASC INFFUS 2024 79.03 - 74.20 - 69.83 68.97
MDCA TNNLS 2024 80.71 77.15 73.91 72.37 71.38 70.94

Ours Chimera TAFFC 2025 81.61 77.98 75.62 74.59 72.56 72.32

4.4 Results on Political Twitter

The Political Twitter dataset differs significantly from
Twitter-2015 and Twitter-2017, especially due to its challeng-
ing domain shift between training, development, and test
sets. Such domain differences create substantial barriers to
generalization, which makes the task particularly suitable
for advanced models that can comprehend subtle causality
and context shifts.

From Table 4, it can be observed that the proposed
Chimera demonstrates distinct advantages over existing
approaches on the Political Twitter dataset. Compared to
the third best performing method CoolNet, which achieved
71.32% accuracy and 69.64% F1 score, Chimera showcases
a significant improvement. Similarly, MDCA, which per-
formed with an accuracy of 71.38% and an F1 score of
70.94%, still lags behind Chimera. Additionally, we ob-
served that the discrepancy between accuracy and F1-score
significantly narrows as accuracy increases, particularly
when accuracy surpasses 70%.

We hypothesize that the underlying cause may lie in the
relatively balanced class distribution of sentiment categories
(e.g., positive, neutral, negative) within the Political Twitter
test set (as shown in Table 3). At higher accuracy levels, the
ratios of false positives to false negatives exhibit increasing
symmetry across models. This equilibrium consequently
reduces the divergence between precision and recall metrics,
thereby causing the F1-score – defined as their harmonic
mean – to naturally converge with accuracy.

4.5 Ablation Study
To systematically investigate the influence of the linguistic-
aware semantic alignment module, including semantic and
impression rationale reasoning as well as object-level fine-
grained alignment, on sentiment prediction, we conducted
ablation studies and the results are shown in Table 5. As pre-
sented in Table 5, the exclusion of semantic rationale (”w/o
SRG”) results in a noticeable performance decline across all
three datasets. This effect is particularly pronounced on the
Twitter-2017 and Political Twitter datasets, where nearly all
evaluation metrics, including accuracy and F1 score, exhibit
a reduction of approximately 2%. Similarly, the absence
of impression rationale reasoning (”w/o IRG”) results in
performance fluctuations on the Twitter-2015 and Political
Twitter datasets. However, the most noticeable effect is
observed on the Twitter-2017 dataset, where the model’s
performance exhibits a significant degradation, particularly
in the sentiment classification task, with nearly a 4% drop in
both accuracy and F1 score. The results (”w/o IRG & AC”)
reveal consistent performance degradation in both Accuracy
and F1-score across all three datasets. Particularly note-
worthy is the model’s inferior performance on Twitter-2017
and Political Twitter datasets compared to the baseline(w/o
IRG). However, an unexpected performance improvement
emerges in Twitter-2015, surpassing even the configuration
retaining aesthetic captions as input. This phenomenon may
be attributed to dataset-specific characteristics in sample
distribution.
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TABLE 5
The results (%) of the ablation study for our Chimera model are presented. The top-performing values emphasized in bold and the second-best

values distinguished using underlined text. The notations “w/o SRG,” “w/o IRG,” and “w/o SRG & IRG” denote the exclusion of the respective
generative tasks. “w/o IRG & AC” refers to the removal of IR generation task and replace the aesthetic caption (AC) with general caption. “w/o

LSA” represents the removal of the Linguistic-aware Semantic Alignment branch, while “w/o OD” indicates the exclusion of object-level
descriptions (e.g., facial descriptions and object-level aesthetic captions) from the input sequence.

Method
Twitter-2015 Twitter-2017 Political Twitter

Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1

SC SRG IRG SC SRG IRG SC SRG IRG

Chimera 81.61 77.98 81.12 77.11 77.56 73.55 75.62 74.59 75.09 73.64 71.96 68.23 72.56 72.32 71.69 71.40 69.30 68.95

w/o SRG 80.52 76.10 - - 75.83 70.96 73.50 72.49 - - 70.66 67.20 70.43 69.88 - - 68.25 67.58
w/o IRG 80.23 75.22 80.03 75.42 - - 71.88 70.16 72.6 70.73 - - 71.15 70.70 71.01 70.52 - -
w/o IRG & AC 80.67 76.03 80.11 76.46 - - 71.59 69.83 72.25 70.33 - - 70.62 70.06 71.04 70.47 - -
w/o SRG & IRG 77.24 71.82 - - - - 71.23 68.98 - - - - 67.88 67.20 - - - -
w/o LSA 80.54 77.03 79.75 76.22 76.52 72.03 73.72 70.96 74.38 72.26 71.36 67.88 71.86 71.37 70.92 70.55 68.43 67.99
w/o OD 79.96 76.08 80.09 76.32 77.12 72.84 73.06 70.85 74.37 72.36 71.11 67.53 71.64 71.12 71.12 70.77 68.55 68.07
w/o Aes-cap 80.03 75.27 79.94 76.05 75.69 71.08 72.36 71.64 72.28 71.21 69.28 65.44 69.43 68.94 69.37 69.00 67.85 67.27

Fig. 2. Results (%) on hyper-parameter of α and λ.

As detailed in Table 3, Twitter-2015 exhibits a signifi-
cantly higher proportion of neutral-class samples compared
to Twitter-2017 and Political Twitter. When the Chimera
model is deprived of its reasoning abilities for both semantic
and impression rationales (“w/o SRG & IRG”), its perfor-
mance on sentiment classification declines to the lowest
levels across all datasets. Specifically, a consistent reduction
of approximately 4-5% is observed in nearly all metrics,
underscoring the essential role of rationale-based reasoning
in enhancing the effectiveness and accuracy of sentiment
analysis tasks. These results show that the influence of ratio-
nale reasoning differs across datasets. For Twitter-2017, with
its balanced sentiment distribution (see Table 3), impression
rationale has a greater impact on sentiment analysis. In
contrast, both semantic and impression rationales contribute
to the other two datasets, but neither is dominant.

The LSA branch plays a pivotal role in the Chimera
model by bridging the semantic gap between textual and vi-
sual modalities, ensuring effective alignment of information
across visual and textual data. Its removal (w/o LSA) con-
sistently leads to a significant decline in performance across
all datasets, as evident in the ablation study. For instance,
on Twitter-2015, the accuracy drops from 81.61% to 80.54%,

and the F1 score decreases from 77.98% to 77.03%. Similarly,
for Twitter-2017, accuracy, and F1 score dropped to 73.72%
and 70.96%, respectively. By aligning linguistic and visual
features, the branch allows the model to effectively interpret
semantic overlaps and contrasts, enabling more accurate
sentiment predictions.

Object-level descriptions (e.g., facial expressions and
object-level aesthetic captions) enrich the input sequence by
providing object-level detailed visual context. The ablation
study reveals that removing OD (w/o OD) causes notice-
able performance drops. On Twitter-2015, accuracy drops
by 1.65 percentage points, and the F1 score decreases by
1.90 percentage points. Similarly, on Twitter-2017, accuracy
is reduced by 2.56 percentage points, while the F1 score
drops by 3.74 percentage points. Without the OD, the model
loses access to these fine-grained visual features, leading
to diminished interpretability and accuracy, particularly in
datasets where visual information plays a crucial role in
determining sentiment. Additionally, the aesthetic caption
is excluded from the input sequence to assess its impact on
performance (w/o Aes-cap). As demonstrated in Table 5,
the absence of aesthetic features results in a noteworthy
decline in performance across all datasets, particularly in
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TABLE 6
The evaluation resutls (%) of rationale quality. The best-performing

results highlighted in bold.

Rationale Source Twitter-2015 Twitter-2017 Political

Acc F1 Acc F1 Acc F1

Semantic Rationale

Ground-Truth 99.04 99.04 98.54 98.54 97.64 97.64
Chimera 80.91 80.83 75.04 74.93 70.20 70.14

Impression Rationale

Ground-Truth 69.91 69.90 72.77 72.71 76.8 76.87
Chimera 63.45 63.65 61.67 59.38 60.54 60.12

the impression rationale generation (IRG) task. This leads
to Chimera exhibiting the poorest sentiment classification
performance for IRG on the Twitter-2017 and Political Twit-
ter datasets, which underscore the importance of aesthetic
captions in guiding the model to generate coherent and
emotionally nuanced impressions.

4.6 Hyper-parameter Analysis

We conduct a hyperparameter analysis to explore the impact
of α and λ on the Chimera model’s performance across
the Twitter-2015, Twitter-2017, and Political Twitter datasets.
Hyperparameter α regulates the balance between sentiment
classification (SC) and rationale generation components (se-
mantic and impression rationales, SRG, and IRG), while
λ controls the weight of patch-token alignment within the
overall loss function. As shown in Figure 2, for all datasets,
a lower α, which assigns greater weight to rationale gen-
eration, generally improves model performance, with val-
ues around 0.1 to 0.2 achieving the highest accuracy and
F1 scores. This emphasizes the significance of integrating
semantic and impression rationales in MASC. As α in-
creases, favoring SC loss, performance plateaus or declines,
particularly for the Political Twitter dataset, indicating that
reduced emphasis on rationale generation diminishes the
model’s ability to capture fine-grained sentiment context
effectively. Moreover, the results indicate that increasing
λ initially enhances model performance, with diminishing
returns beyond a certain threshold. For the Twitter-2015
and Political Twitter datasets, moderate λ values [0.2, 0.5]
achieve optimal accuracy and F1 scores, while higher values
(λ > 0.6) lead to performance stabilization or slight decline.
This observation indicates that balanced alignment between
visual and textual features enhances the model’s inter-
pretability and accuracy and excessively high λ values may
negatively impact performance, likely due to overemphasis
on alignment at the expense of core sentiment classification.
For Twitter-2017, a similar trend is observed, although per-
formance variations are less pronounced.

5 IN-DEPTH ANALYSIS

5.1 Quality Analysis of Rationale

Table 6 provides an evaluation of the sentiment rationale
quality for both the ground-truth and Chimera-generated

Fig. 3. Human evaluation of factuality, clarity and fluency for SR and IR.

content, aiming to analyze their impact on sentiment anal-
ysis. A pre-trained sentiment classification model [94] is
employed to assess the intuitive sentiment quality of these
rationales across three test datasets by inputting the ra-
tionales into the model and analyzing the sentiment pre-
dictions. For both SR and IR, the results in the Ground-
Truth row represent the upper performance bound. It is
evident that the ground truth performance for SR signifi-
cantly exceeds that of IR, indicating that semantic rationales
are more critical for this task than impression rationales.
We hypothesize that two factors contribute to this discrep-
ancy. Firstly, as illustrated in Table 3, semantic rationales
are shorter in length and straightforward, facilitating easy
comprehension, while the emotions elicited by images are
inherently more abstract and multifaceted. Secondly, the
IR’s reliance on visual cues contrasts sharply with the
Twitter dataset’s text-centric sentiment distribution. Prior
research has shown that a considerable majority of targets
(around 58%) are absent from images [15], and most targets
(93% in Twitter-2015) exhibit emotional coherence with their
textual counterparts [95]. This misalignment underscores
the dataset’s limitations in evaluating IRs and necessitates
a nuanced understanding of the interplay between visual
and textual sentiment representations.

A total of 180 samples were randomly selected for hu-
man evaluation, with 100 samples drawn from the training
set, 40 from the testing set, and 40 from the validation set of
both the Twitter-2015 and Twitter-2017 datasets. Four native
English speakers with Master’s degrees in the arts were
recruited to assess the quality of the rationale data based
on three criteria: (1) factuality, evaluating whether the ratio-
nale is grounded in accurate and verifiable information; (2)
clarity, assessing the logical structure and comprehensibility
of the rationale; and (3) fluency, measuring the grammat-
ical accuracy and smoothness of the language used. The
Fleiss’ Kappa (κ) values for the initial evaluation across the
four raters were as follows: factuality κ = 0.922, clarity
κ = 0.945, and fluency κ = 0.960. In cases of disagreement,
the evaluators engaged in discussions to reach a consensus.
Figure 3 presents the results of the human evaluation. It

can be observed that SR consistently exhibits higher quality
across all metrics, which verifies that the employed LLM is
capable of generating appropriate rationale data for specific
tasks when provided with concrete ground-truth labels. In
comparison to SR, IR demands a more in-depth understand-
ing of visual content and is inherently more subjective.
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Fig. 4. Assessment of sentiment intensity for SR and IR in both ground truth data and Chimera-generated content.

Consequently, IR is more prone to issues of factuality and
clarity, as interpreting the abstract aesthetic and emotional
elements conveyed by an image often involves subjective
reasoning, which may lead to misalignment with objective
ground truths or human expectations.

5.2 Quantitative Analysis of Rationale
We conduct a quantitative analysis on the test sets of ground
truth and Chimera-generated content to examine the impact
of varying levels of sentiment intensity in cognitive ratio-
nales on the accuracy of sentiment prediction, including
their potential to amplify or diminish predictive perfor-
mance. As illustrated in Figure 4, the sentiment intensity
distributions of Twitter-2015 and Twitter-2017 reveal distinct
patterns. Specifically, the sentiment intensity of IR demon-
strates a noticeable bias toward positive values, whereas
the sentiment intensity of SR aligns more closely with the
sentiment polarity label distribution presented in Table 3.

This observation suggests that IR demonstrates a bias
toward positive samples, increasing the model’s confidence
in predicting positive instances. While this bias may be
beneficial for datasets with a higher proportion of positive
samples (e.g., Twitter-2017), it could lead to additional bias
in datasets with a limited representation of positive samples.
This finding is further corroborated by the ablation study
results, which reveal that the performance of the Chimera
model without IR is worse on Twitter-2017 compared to its
performance on Twitter-2015. Another notable observation
is that, for the ground truth of the Political Twitter dataset,
the sentiment intensity distribution of IR is relatively uni-
form across all ranges. In contrast, the Chimera-generated
content for IR exhibits a more distinguishable sentiment
intensity distribution compared to the ground truth, which
further validates the quality of SR, the effectiveness of the
proposed Chimera training paradigm, and the robustness of
Chimera’s performance.

5.3 Impact of Aesthetic Attributes on Sentiment
To investigate the impact of image aesthetic attributes on
sentiment analysis, we visualize the frequency of aesthetic-
related words within the impression rationales generated

(a) Chimera on Twitter2015 (b) Chimera “w/o Aes-cap” on Twitter2015

(c) Chimera on Twitter2017 (d) Chimera “w/o Aes-cap” on Twitter2017

Fig. 5. Visualization of the top 15 most frequent aesthetic-related words
in generated IR.

by our proposed Chimera model and its variant “Chimera
w/o Aes-cap” on the Twitter-2015 and Twitter-2017 test sets.
Specifically, we visualize the top 15 most frequent aesthetic-
related words within the generated IR, based on the aes-
thetic attributes defined by Milena et al. [96]. As shown in
Figure 5, the frequency analysis of aesthetic-related words
for Chimera on Twitter-2015 and Twitter-2017 reveals that
“visual,” “vibrant,” “focus,” and “design” prominently ap-
pear across both datasets. These terms, associated with
visual clarity, expressive quality, image composition, and
cohesiveness, align with the model’s improved accuracy and
F1 scores. However, excluding the aesthetic caption from the
input results in subtle shifts in the frequency distribution
of these aesthetic-related terms. For Twitter-2015, the over-
all frequency distribution of aesthetic-related terms shows
minimal change, with a slight increase in “focus” and a
decrease in “vibrant”. In contrast, for Twitter-2017, “focus”
shows a significant increase, while “visual” and “vibrant”
decrease notably. Combined with the ablation study results
in Table 5, the absence of aesthetic captions in the input
leads to the worst sentiment analysis performance across all
datasets on IRG. This highlights the critical role of aesthetic
captions in enhancing the model’s understanding of image
aesthetics, particularly in datasets like Twitter-2017 with bal-
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The sentiment towards Joanne Stiger in the given text and image is 
positive, because the text highlights her as the first same-sex 
couple to be married in Broward, and the image shows her smiling 
and looking happy, which conveys a sense of pride and joy.

The image depicts two individuals who appear relaxed and happy, with one person 
appearing content and relaxed. The overall impression is one of happiness and 
contentment. The setting and body language suggest a sense of happiness, together with a 
pleasant and celebratory atmosphere.

Because the tweet simply reports on a factual event without 
expressing any emotional response towards Joanne Stiger. The use 
of the word "first" suggests that the author is excited about the 
news and is highlighting the fact that Stiger and Keller are the first 
same-sex couple to be married in Broward. Overall, the tweet does 
not provide enough information to determine a positive or negative 
sentiment towards JoAnn Stiger herself.

Because joanne stiger and Melissa keller are the first same - sex couple to be married in 
bronward.

RT @ MiamiHerald : [Joanne 
Stiger]POS and Melissa Keller are 
the first same - sex couple to be 
married in Broward :

Aesthetic caption: 
The body language of the two 
people shows that they are in a 
v e r y  d i f f e r e n t  w a y .  t h e 
background shows a room with a 
lot of people and the cameraman 
is in the background.

Chimera

MDCA

Positive

Neutral

Input image-text pair & 
Auxiliary sentences Method

Semantic Rationale (SR of GT, Chimera and ChatGPT-4o)/
Reasoning Cause(RC of MDCA)

Impression Rationale (IR of GT and Chimera)/
Direct Cause(DC of MDCA) Sentiment

Ground 
Truth (GT)

Based on the image-text pair, the sentiment towards Joanne Stiger 
in the given text and image is positive, because the text highlights a 
historic and celebratory event of her marriage, and the image 
shows people smiling and appearing joyful, indicating happiness 
and approval.

The image emanates a joyous and celebratory atmosphere, highlighted by the smiling 
faces and relaxed postures of the individuals present. The presence of photographers and 
the gathering of people around the couple enhance the sense of an important and positive 
milestone being reached. Overall, the visual conveys happiness, love, and a significant 
moment being warmly embraced by all involved.

Pr im ary  Foo tba l l  Cup  .  [ S t 
Bede]N E U  '  s  v St Augustines 
friendly . . . . both out but now for 
the friendly # sportsmanship

Aesthetic caption: 
The  pos i t i on  o f  t he  cam era 
captures the players in action, as 
they are engaged in a game of 
soccer. the position of the camera 
captures the players in action, and 
t h e  p o s i t i o n  o f  t h e  c a m e r a 
captures the players in action.

Chimera

MDCA

Ground 
Truth

Based on the image-text pair, the sentiment towards St Bede in the 
given text and image is neutral, because the text describes the 
event as a friendly match with a focus on sportsmanship, and the 
image shows a regular football game without any emotional or 
evaluative expressions towards St Bede.

The image depicts a friendly football match between St Bede's and St Augustine's on a 
lush green field under a partly cloudy sky. The overall scene conveys a sense of 
camaraderie and sportsmanship, aligning well with the neutral sentiment label. The focus 
appears to be on enjoying the game and fostering friendly competition in a relaxed 
atmosphere.

Neutral

The sentiment towards St Bede in the given text and image is 
neutral, because the text simply states that St Bedé is participating 
in a friendly match without expressing any positive or negative 
emotions, and the image shows a standard football match scene 
without any clear emotional cues.

The image of the St Bede vs. St Augustines football match conveys a sense of camaraderie 
and sportsmanship. The players are engaged in a moment of play, suggesting a positive 
and supportive atmosphere. The neutral sentiment label aligns with the overall feeling of 
cambered athleticism and teamwork, without evoking strong emotions.

Neutral

Because the writer is promoting the team's friendly football match 
with St. Albans, which suggests that they are a fan of the team. 
The use of the hashtag #sportmanship also suggests that the writer 
has a positive opinion of St. Bede. Overall, the language and tone 
of the tweet suggest that the sentiment towards St.Bede is positive.

It is a friendly football cup. Positive

[Michae l  Oher ] N E G  i s  l a t e s t 
reminder that NFL pain lasts 24 / 
7 / 365

Michael Oher appears to have a 
serious or intense expression. The 
eyebrows are slightly furrowed, 
and the mouth is set in a straight 
l i n e ,  w h i c h  c o u l d  i n d i c a t e 
concentration, determination, or a 
readiness to face a challenge. 
There is no clear smile or frown.

Chimera

MDCA

GPT-4o

Ground 
Truth

Because the tweet does not express any clear positive or negative 
opinion towards him. The tweet simply states that he is a reminder 
that NFL pain lasts for a specific time period. There is no 
indication of any emotional attachment or opinion towards 
Michael Oher in the tweet, and the language used is informative 
rather than emotional. Therefore, the sentiment towards Michael 
Oer in this tweet is neutral.

He is reminder that NFL pain lasts 24 / 7 / 365.

The sentiment towards Michael Oher in the given text and image 
is negative, because the text highlights that his recent reminder 
that NFL pain lasts 24/7/365, which is a serious and distressing 
reminder.

The image of Michael Oher exudes a sense of determination and focus, aligning with the 
negative sentiment label. His serious expression and the context of NFL pain underscore a 
feeling of exhaustion and exhaustion, which complements the idea of prolonged pain and 
the accompanying reminder that "no matter how much you love it," evoking a negative 
feeling.

Based on the image-text pair, the sentiment towards Michael Oher 
in the given text and image is negative, because the text highlights 
the constant and enduring pain associated with his NFL career, 
implying a prolonged and difficult experience.

The image of Michael Oher in his NFL uniform, combined with the sentiment label 
"negative," conveys a sense of enduring struggle and fatigue. His posture and facial 
expression suggest a feeling of exhaustion or frustration, which aligns with the text's 
implication that the pain and challenges of an NFL career are relentless and unforgiving. 
The overall impression is one of continuous physical and emotional burden.

Negative

Negative

Neutral

Based on the image-text pair, the sentiment towards Joanne Stiger 
in the given text and image is Positive, because both the faces of 
Joanne Stiger and Melissa Keller, as well as the individuals around 
them, display expressions of happiness and joy, indicating a 
celebratory and momentous occasion.

Positive

Based on the image-text pair, the sentiment towards Michael Oher 
in the given text and image is Negative, because the text 
highlights the unending pain associated with NFL careers, using 
Michael Oher as an example, and alludes to the physical and 
possibly emotional toll he endures.

Negative

Based on the image-text pair, the sentiment towards St Bede in the 
given text and image is Positive, because the text highlights a 
friendly and sportsmanlike attitude despite both teams being out of 
the competition, and the image shows players engaging in the 
match, fostering a positive environment.

Positive

Positive

GPT-4o

GPT-4o

Facial description:

Fig. 6. Three examples showcasing the predictions generated by Chimera, MDCA, and GPT-4o are presented for analysis. During the evaluation
process, GPT-4o exclusively produces the semantic rationale (SR). The input image-text pair and auxiliary sentences are utilized solely by Chimera.
For MDCA, the reasoning cause (RC), direct cause (DC), and sentiment prediction are derived through direct inference.

anced sentiment distributions. Specifically, attributes such
as “visual” and “vibrant” positively contribute to sentiment
analysis performance, whereas “focus” appears to signifi-
cantly impair it. We speculate that since ”focus” emphasizes
specific image elements, potentially leads to an unbalanced
interpretation of visual content. This localized emphasis can
narrow the model’s analytical scope, prioritizing details at
the expense of broader context and compositional harmony.
Consequently, the model may struggle to capture holistic
aesthetic and emotional cues essential for accurate senti-
ment classification.

5.4 Comparison with Large Language Models

We evaluate the GPT-4o on the MASC task under a zero-shot
setting. As shown in Table 7, GPT-4o achieves an accuracy
of 46.87% and an F1 score of 47.47%, which is substantially
lower than Chimera, which reports 81.61% accuracy and
77.98% F1 score. On the Twitter-2017 dataset, GPT-4o shows
an improvement with an accuracy of 56.08% and an F1 score
of 53.28%. However, this performance still trails behind
Chimera, which reports 75.62% accuracy and 74.59% F1
score. Surprisingly, removing the image input results in an
improvement in the model’s accuracy and F1 score, reaching
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TABLE 7
The experimental results (%) of GPT-4o on the MASC task under a

zero-shot setting are presented. The best-performing results
highlighted in bold. The term “dis” refers to the percentage of samples
where the sentiment polarity associated with a specific aspect cannot

be discerned.

Method Twitter-2015 Twitter-2017

Acc F1 Dis Acc F1 Dis

Chimera 81.61 77.98 - 75.62 74.59 -

GPT-4o 46.87 47.47 0.2 56.08 53.28 0.5
GPT-4o w/o image 67.02 62.38 - 59.64 60.35 -

67.02% and 62.38% on the Twitter-2015 dataset, respectively.
This observation contrasts sharply with the phenomenon
observed in the baseline model. Similarly, in the Twitter-
2017 dataset, the performance of GPT-4o without image
input is slightly better than with the image input. We spec-
ulate that in task-specific models, incorporating image data
typically improves sentiment classification performance, as
these models are fine-tuned to leverage multi-modal inputs
effectively. However, in a zero-shot setting, GPT-4o operates
based on its general pre-trained knowledge, which may not
be fully optimized for combining textual and visual inputs
for sentiment analysis. In this setting, adding image input
may introduce noise rather than meaningful information.
Moreover, GPT-4o has a low Dis value on both datasets,
which slightly decreases to 0 when the image input is
removed. This further suggests that the model’s ability to
distinguish sentiment polarity is, to a certain extent, influ-
enced by the inclusion of the visual modality.

5.5 Case Study

An additional case study is performed to provide a more
comprehensive evaluation of the effectiveness of the pro-
posed Chimera model. Figure 6 illustrates three represen-
tative examples, each corresponding to positive, neutral,
and negative samples, respectively. As illustrated in the first
example, MDCA is the sole model to predict “Neutral” for
the target “Joanne Stiger,” whereas the other three models
accurately predict “Positive”. This result is primarily due
to the RC and DC generated by MDCA, which lack the
expression of positive or negative sentiment. Notably, the
RC predominantly emphasizes the textual content, over-
looking the joyful atmosphere conveyed through the image.
In the second example, an intriguing observation is that
the situation is the exact opposite of the previous case.
Here, only Chimera correctly predicts the sentiment polar-
ity of the specific target, “St. Bede” as “Neutral” whereas
both GPT-4o and MDCA incorrectly classify it as “Posi-
tive”. It is observed that the SR of GPT-4o and the RC
of MDCA both convey a positive sentiment, largely due
to an overinterpretation and extrapolation of the textual
content. In contrast, Chimera demonstrates accurate predic-
tion by appropriately integrating a balanced understanding
of the image content and its aesthetic attributes. In the
final example, both Chimera and GPT-4o accurately identify
the sentiment polarity of “Michael Oher” as “Negative”.

MDCA’s incorrect prediction of ”Neutral” may be attributed
to its generated RC and DC failing to account for the in-
dividual’s expression, thereby overlooking critical semantic
cues present in the visual content. With the aid of facial
descriptions, Chimera effectively captures and aligns fine-
grained emotional cues from visual content, enabling it to
generate coherent SR and IR and achieve accurate predic-
tions. The above representative instances further verify that
incorporating cognitive and aesthetic sentiment causality
enhances sentiment classification accuracy in MABSA.

6 CONCLUSION

In this paper, we propose a cognitive sentiment causality
understanding framework tailored for multimodal aspect-
based sentiment classification. The framework, which is
novel in its approach, consists of four primary components:
linguistic-aware semantic alignment, a translation module,
rationale dataset construction, and rationale-aware learning.
The linguistic-aware semantic alignment component facili-
tates visual patch-token level alignment through dynamic
patch selection and semantic patch calibration. The transla-
tion module transforms holistic image and object-level vi-
sual information into corresponding emotion-laden textual
representations. The rationale dataset construction involves
designing refined prompts and leveraging LLMs to generate
semantic and impression rationale. Finally, rationale-aware
learning incorporates semantic explanations and affective-
cognitive resonance to enhance the model’s capacity to un-
derstand cognitive sentiment causality. Experimental results
on three Twitter datasets demonstrate that the proposed
Chimera achieves performance gains over SOTA baselines.
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