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A B S T R A C T

This survey presents an in-depth review of the transformative role of Natural Language Processing (NLP)
in finance, highlighting its impact on ten major financial applications: (1) financial sentiment analysis, (2)
financial narrative processing, (3) financial forecasting, (4) portfolio management, (5) question answering,
virtual assistant and chatbot, (6) risk management, (7) regulatory compliance monitoring, (8) Environmental,
Social, Governance (ESG) and sustainable finance, (9) explainable artificial intelligence (XAI) in finance and
(10) NLP for digital assets. With the integration of vast amounts of unstructured financial data and advanced
NLP techniques, the study explores how NLP enables data-driven decision-making and innovation in the
financial sector, alongside the limitations and challenges. By providing a comprehensive analysis of NLP
applications combining both academic and industrial perspectives, this study postulates the future trends
and evolution of financial services. It introduces a unique review framework to understand the interaction of
financial data and NLP technologies systematically and outlines the key drivers, transformations, and emerging
areas in this field. This survey targets researchers, practitioners, and professionals, aiming to close their
knowledge gap by highlighting the significance and future direction of NLP in enhancing financial services.
. Introduction

In the rapidly evolving landscape of finance, the integration of Nat-
ral Language Processing (NLP) technologies has emerged as a trans-
ormative force, unlocking new dimensions of data-driven decision-
aking and innovation. This survey aims to explore the multifaceted

pplications of NLP techniques within the financial sector, highlighting
ts profound impact on areas such as financial sentiment analysis,
atural language-based financial forecasting, portfolio management,
inancial narrative processing, question answering, virtual assistant and
hatbot, risk management, regulatory compliance, ESG and sustainable
inance, explainable AI in finance and NLP for digital assets from both
cademic and industrial research perspective. As financial institutions
ncreasingly rely on vast amounts of unstructured data, from corporate
eleases to news articles and reports to social media and beyond,
he capability to efficiently process, understand, and act upon this
nformation has become a competitive necessity. In the field of NLP
n finance, Fisher et al. [1] executed a thorough exploration, mainly
oncentrating on tasks related to classification and prediction. Chen
t al. [2] presented a broad review of financial application areas,
ncluding three categories: Know Your Customer (KYC), Know Your
roduct (KYP), and Satisfy Your Customer (SYC).

∗ Corresponding author.
E-mail addresses: zidong001@e.ntu.edu.sg (K. Du), yazzhao@visa.com (Y. Zhao), rui.mao@ntu.edu.sg (R. Mao), xing@nus.edu.sg (F. Xing),

ambria@ntu.edu.sg (E. Cambria).

While prior reviews have often leaned towards NLP or finance,
our survey seeks to provide an all-encompassing review that connects
recent research across both dimensions. Crucially, our study involves
a detailed investigation of the latest advancements in NLP within the
finance sector, providing insights from both the perspectives of NLP
methodologies and financial applications. Moreover, we systematically
analyze NLP in finance by considering financial textual data, NLP
techniques, and financial applications, along with emerging trends in
both NLP techniques, such as large language models (LLMs), as well as
financial applications, including NLP for ESG and sustainable finance.

This survey begins with an overview of NLP’s foundational concepts
and techniques, providing a solid groundwork for understanding its ap-
plication in finance. It then delves into specific applications where NLP
has been successfully implemented, together with the financial data
adopted, illustrating the technology’s versatility and power. Further, it
addresses the challenges and limitations of applying NLP in the finance
sector, including issues related to data quality, privacy concerns, and
the need for highly specialized models. It also explores the future
trajectory of NLP technologies in finance, considering advances in
AI and computational linguistics that promise to further enhance the
sophistication and effectiveness of financial services.
ttps://doi.org/10.1016/j.inffus.2024.102755
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Fig. 1. NLP in finance: Financial textual data, NLP techniques, and financial applications.
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Through this comprehensive exploration, we aim to provide aca-
demics, industry professionals, and technology enthusiasts with a thor-
ough understanding of the current state and future potential of NLP
in the financial domain. By showcasing the technology’s significant
contributions and pondering its future directions, the survey aims to
foster a deeper appreciation for the role of NLP in shaping the next gen-
eration of the financial sector. Specifically, this study aims to answer
the following three groups of research questions:

1. What are the key drivers behind the increasing importance of
NLP in the finance sector, and how do these drivers address the
unique challenges and opportunities within this industry?

2. What emerging areas of application for NLP in finance are being
explored, and what potential do these areas hold for the future
of financial services?

3. What are the prevailing trends in NLP research within the fi-
nance sector, and how do these trends reflect the evolving
challenges and opportunities in the field?

Our contributions can be outlined in the following three aspects:

1. We presented a detailed literature review on NLP techniques
in finance, bridging a significant gap by providing a definitive
reference for researchers and practitioners. It encapsulates the
evolution and diverse applications of NLP across both academic
research and industrial implementations.

2. We developed a comprehensive review framework for NLP in
finance, which maps the relationship between data, NLP tech-
niques, and financial applications. We identified ten key finan-
cial application areas that are potentially revolutionized by NLP,
and our framework provides a systematic overview to compre-
hending the intricacies of financial data, NLP techniques, and
their real-world applications in the finance industry.

3. We analyzed key research contributions that have significantly
influenced NLP’s application in the finance sector, highlighting
2 
transformative effects on services, products, and operations. This
includes insights into practical challenges and the transformative
potential of these technologies.

The remainder of this survey is structured as follows: Section 2 de-
scribes the literature review framework; Section 3 conducts an in-depth
eview of studies on NLP in finance by financial application areas;

Section 4 demonstrates the research findings of this review includ-
ing trends, challenges, opportunities, and future directions; Section 5
provides concluding remarks.

2. Literature review framework

Fig. 1 presents our literature review framework, focusing specifi-
cally on the financial textual data, NLP techniques, key players and
financial applications. We started with a review of a study on AI
in finance conducted by the International Monetary Fund (IMF) [3].
We then zoomed into each potential application area, examining the
elevant literature. We also summarized the data sources available
n finance. The financial data can be broadly categorized into three
ypes: corporate data, public news and announcements, and social

media data. Corporate data includes data produced by corporations
uch as financial transactions, financial statements, customer feedback,
isclosures, annual reports, filings, press releases, earnings calls, and
onference calls etc. The public news and announcements category
ncompasses financial and economic news, government policies, and
nalyst reports, among others. Social media data consists of information
rom social media platforms, e.g., X, StockTwits, and various online
orums. Subsequently, we defined the scope of our study to include

retail banking, investment banking, investment management, govern-
ment institutions, exchanges and clearing houses, payment processors,
and insurance providers. We proposed key financial application areas
significantly enhanced by adopting various NLP techniques in the
finance sector. This includes financial sentiment analysis, financial fore-
casting, portfolio management, financial narrative processing, question
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Table 1
Key words for literature search.

Research topic Key words

Financial sentiment analysis financial sentiment analysis
Financial narrative processing finance AND (summarization OR information extraction OR information retrieval OR financial narrative processing)
Financial forecasting (nlp OR text mining OR news OR tweet) AND (market prediction OR financial forecasting)
Portfolio management (nlp OR text mining OR news OR tweet) AND portfolio AND (selection OR optimization OR management)
Question answering, virtual assistant and chatbot (question answering OR virtual assistant OR chatbot) AND (finance OR financial services)
Risk management (nlp OR text mining OR news OR tweet) AND (risk management OR risk prediction OR credit risk OR fraud detection)
Regulatory compliance monitoring (nlp OR text mining) AND (regulatory compliance OR anti-money laundering)
ESG and sustainable finance (nlp OR text mining) AND (esg OR (sustainable finance) OR (environmental AND social AND governance))
Explainable artificial intelligence (XAI) in finance (nlp OR text mining) AND (explainable artificial intelligence OR explainable AI OR explainability) AND finance
NLP for digital assets (nlp OR text mining OR news OR tweet) AND (digital asset OR cryptocurrency OR non-fungible token OR blockchain)
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answering, virtual assistant and chatbot, risk management, regulatory
compliance monitoring, explainable AI in finance, ESG and sustainable
finance and NLP for digital assets. Additionally, we examine how these
applications are adopted across businesses in the finance sector in
subsequent sections.

Following PRISMA guidelines, we designed a three-step process,
amely identification, screening and inclusion, to select the literature
or review. Firstly, leveraging industry experience, we defined key-
ords, as illustrated in Table 1, which closely align with the topics

from the International Monetary Fund’s (IMF) study on AI in finance.
ubsequently, we used these keywords to perform targeted searches on
eb of Science and Google Scholar, prioritizing relevance as defined

y the database. Our aim is to ensure the coverage of the range of
LP tasks applicable to this field. We assessed each article by screening

hrough the abstracts to ascertain their relevance and contribution,
hich determined their inclusion in the review. We balanced the

breadth of coverage to prevent overwhelming the review given the
broad topic. Our focus extended to the coverage of tasks, the recency of
the research, and its impact within the field. This methodical approach
not only ensured the thoroughness of our review but also presented
the status and achievements of AI applications in specific fields, laying
 foundation for future research directions.

The number of publications across the ten research topics are pre-
sented in Fig. 2. The fields are ranked by the volume of publications,
in descending order, as follows: risk management, question answering,
virtual assistant and chatbot, financial sentiment analysis, financial
narrative processing, financial forecasting, NLP for digital assets, port-
folio management, ESG and sustainable finance, regulatory compliance
monitoring and explainable AI in finance. All fields have demonstrated
an increasing trend in publication volume over the past decade, high-
lighting a growing interest in NLP applications within the finance
sector. Notably, emerging fields such as ESG and sustainable finance,
regulatory compliance monitoring and explainable AI in finance are
also drawing significant scholarly attention.

3. An in-depth review of NLP in finance

NLP in finance refers to the broader application of NLP techniques
to the financial sector, which generally includes corporate data, public
financial news and announcements, and social media data such as
StockTwits. It encompasses a wide array of tasks aimed at understand-
ing, interpreting, and extracting information from textual data in the
financial domain. This includes processing corporate data, public news
and announcement and social media data, and any other form of textual
data that can impact financial markets and decision-making. NLP in
inance leverages techniques such as sentiment analysis, information

extraction, named entity recognition, language modeling, LLMs and
ore, to analyze financial texts for various purposes like financial

entiment analysis, financial forecasting, portfolio management, finan-
ial narrative processing, question answering, virtual assistant and
hatbot, risk management, financial regulatory compliance monitoring,
xplainable AI in finance, ESG and sustainable finance and NLP for

igital assets.

3 
3.1. Financial sentiment analysis

Financial Sentiment Analysis (FSA) is one of the widely adopted
NLP techniques in the finance domain due to the advancements of
entiment analysis in the general domain [4–7]. Du et al. [8] has

conducted a comprehensive survey on FSA which categorizes FSA into
two principal research tracks. The FSA techniques concentrate on iden-
tifying specific tasks such as document-level [9], paragraph-level [10],
sentence-level [11] and aspect-level [12] sentiment analysis and aim
o propose methodologies to improve the performance of different
SA tasks by using human-annotated datasets. The FSA applications
mphasize the application of financial sentiments, whether direct or
ndirect, in subsequent applications within financial markets, attracting
reater research attention.

Presented in Table 2, we explore the advancement of research in
FSA techniques, tracing a path from the lexicon-based method, through
traditional machine learning models, to the deep learning and pre-
trained language models. Notably, a majority of FSA research has
converged on the established benchmarks of PhraseBank [13], SemEval
2017 Task 5 [14], and FiQA Task 1 [15] for evaluation purposes. The
construction of financial lexicons remains a focal point for researchers,
nd lexicons can be employed either independently or in conjunction
ith learning-based methods for FSA [16]. A notable shift in lexicon

development moves from simplistic single-word expression to complex,
multi-word, and context-aware phrases, a critical adaptation for the
inancial sector where the implication of terms can dramatically change

with context. At the same time, there is a trend towards automated
pproaches, highlighted by studies such as Oliveira et al. [17] and Du
t al. [18], which contrasts with the traditional manual compilation
f lexicons, demanding significant expert input. In the context of ma-
hine learning models, the process of feature engineering stands out

as a pivotal stage, with the categorization into lexicon-based, linguis-
tic, domain-specific, and word embedding features, etc. Among these,
domain-specific attributes, especially numerical data or combinations
of keywords with numerical values, though not extensively examined,
have shown their potential in FSA. An example is the term ‘‘revenue’’
coupled with a positive sign and a numerical value, indicating a posi-
tive financial forecast. Furthermore, the forefront of FSA includes deep
learning approaches, notably through the use of Convolutional Neural
Networks (CNN) and Long Short-Term Memory (LSTM) networks, as
well as pre-trained language models, which have significantly improved
FSA performance. Specifically, a BERT variant tailored for the financial
sector, known as FinBERT [19,20], has been developed through the
ncorporation of a variety of data sources including Reuters Corpora,

Yahoo Finance, and financial reports, marking a significant leap in FSA
research methodologies. The latest study by Du et al. [16] achieved
unparalleled results on FiQA Task 1 and SemEval 2017 Task 5 by
integrating the knowledge into the process of fine-tuning language
models such as RoBERTa, thus pushing the performance boundaries of
FSA technique research further.

The development of domain-specific transformer models, with no-
table examples, including FinBERT [19,20], has significantly enhanced
FSA. However, the potential and applicability of autoregressive decoder
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Fig. 2. Number of publications in the field of NLP in finance.
architectures such as Generative Pre-trained Transformer (GPT) [21]
in the context of FSA have not been thoroughly investigated yet [22].
In recent studies, Fatouros et al. [23] adopted zero-shot prompting to
examine multiple ChatGPT prompts on a curated dataset comprised
of forex-related news headlines, measuring performance using a range
of metrics such as precision, recall, F1-score, which outperforms Fin-
BERT. Zhang et al. [24] presented a framework that integrates a
retrieval-augmented mechanism with LLMs specifically for FSA. The
framework consists of two key modules which are instruction-finetuned
LLMs and a retrieval-augmented module. The performance metrics,
specifically accuracy and F1 score, are significantly improved, under-
scoring the efficacy of the framework in FSA. Fatemi and Hu [22]
conducted a thorough comparative analysis to examine the effective-
ness of fine-tuning LLMs versus employing few-shot learning techniques
in the context of FSA. In particular, the in-context learning is adopted
on GPT-3.5-turbo and the fine-tuning is performed on Flan-T5. The
study highlights the remarkable capabilities of LLMs, even smaller mod-
els, in both in-context learning and fine-tuning for the FSA task. Zhang
et al. [25] introduced a novel approach named Instruct-FinGPT, which
transforms a limited subset of supervised FSA data into instruction
data to fine-tune a general-purpose LLM. The Instruct-FinGPT approach
has demonstrated significant advancements in its ability to perform
zero-shot generalization across other financial datasets. Hu et al. [26]
conducted a study to evaluate the sentiment of management’s dis-
cussion and analysis disclosures using three distinct methods: GPT-3,
FinBERT, and the dictionary-based method. The findings reveal that
GPT-3 surpasses the dictionary-based method in its effectiveness for
financial sentiment classification tasks. However, it was observed that
GPT-3 slightly underperforms when compared to FinBERT. Deng et al.
[27] implemented a semi-supervised learning approach using LLMs to
generate weak sentiment labels for Reddit posts and then used that data
to train a small model which is to be served in production. Additionally,
Bloomberg has introduced BloombergGPT [28], an LLM tailored for
financial contexts, which has demonstrated superior performance in
financial NLP tasks, including FSA, named entity recognition, news
4 
classification, question answering, among others. Du et al. [29] pro-
posed a prompting framework to evaluate the reasoning capabilities
of LLMs for FSA by identifying six specific financial attributes that
potentially influence financial sentiment. Xing [30] designed special-
ized LLM agents for FSA, based on guiding knowledge. Mao et al.
[31] analyzed the market sentiment perception from the perspective
of cognition, and they employed MetaPro [32,33] to parse concept
mappings from metaphorical expressions, and then detected the distinct
cognitive patterns during different market conditions. Manro et al. [34]
examined the influence of CEOs’ cognitive states on stock price trends
by analyzing the opinions expressed in their letters to shareholders
using MetaPro.

3.2. Financial forecasting

The primary application of FSA is to investigate the causality and
correlation between financial sentiment and financial markets, and
to perform financial forecasting [8]. Natural language-based financial
forecasting was brought up by Xing et al. [50] with a focus on the
stock market. Subsequently, Du et al. [8] broadened the scope of review
to include the FOREX and cryptocurrency markets. Additionally, Du
et al. [8] brought attention to the interconnected relationship between
financial sentiment, investor sentiment, and market sentiment, arguing
that financial forecasting is an essential application of FSA. This is
because financial sentiment, whether used implicitly or explicitly, is
crucial in predicting financial market movements. Natural language-
based financial forecasting serves to augment algorithmic trading by
leveraging NLP to analyze news articles and social media, thereby
informing automated trading decisions, enabling algorithms to parse
and interpret vast amounts of textual data in real time and enhancing
decision-making processes and market responsiveness.

Predicting market movements in financial markets is notably chal-
lenging, attributed to their volatile and unpredictable nature. The
foundation of earlier financial market prediction research rests on his-
torical trading data, technical indicators, and macroeconomic variables,
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Table 2
FSA techniques.

Literature Dataset Task Method Performance

Park et al. [35] PhraseBank Sentence-level FSA Lexicon Precision: 0.8238, Recall: 0.8128
F1-Score: 0.8105

Du et al. [18] PhraseBank, SEntFiN, etc. Sentence-level FSA Lexicon Accuracy: 0.7619, F1-Score: 0.7216

Krishnamoorthy [36] PhraseBank Sentence-level FSA Machine learning Precision:
Pos: 0.83, Neg: 0.93, Neut: 0.86
Recall:
Pos: 0.82, Neg: 0.93, Neut: 0.81
F1-Score:
Pos: 0.83, Neg: 0.93, Neut: 0.83

Araci [37] PhraseBank, FiQA Task 1 Sentence-level FSA Pre-trained language model PhraseBank
(Accuracy: 0.86, F1-Score: 0.84)
FiQA Task 1 (MSE: 0.07)

Liu et al. [20] PhraseBank Sentence-level FSA Pre-trained language model Accuracy: 0.94, F1-Score: 0.93
Zhao et al. [38] CCF BDCI, CCKS Sentence-level FSA Pre-trained language model Accuracy: 96.774%
Wu et al. [28] PhraseBank, FiQA Task 1 Sentence-level FSA LLMs PhraseBank: 0.5107

FiQA Task 1: 0.7507
Du et al. [29] PhraseBank, Fin. News Sentence-level FSA LLMs PhraseBank: (Accuracy: 0.9639)

Fin. News: (Accuracy: 0.8234)
Xing [30] PhraseBank, Fin. News, etc. Sentence-level FSA LLMs PhraseBank:

Accuracy: 0.8048, F1-Score: 0.8141
FiQA:
Accuracy: 0.9391, F1-Score: 0.9522
SEntFiN:
Accuracy: 0.7745, F1-Score: 0.7693

Jiang et al. [39] SemEval 2017 Task 5 Targeted, Sentence-level FSA Machine learning WCS (News: 0.7779, Microblogs: 0.7107)
Schouten et al. [40] SemEval 2017 Task 5 Targeted, Sentence-level FSA Machine learning WCS (News and Microblogs: 0.7050)
Dridi et al. [41] SemEval 2017 Task 5 Targeted, Sentence-level FSA Machine learning WCS (News: 0.655, Microblogs: 0.726)

Akhtar et al. [42] SemEval 2017 Task 5 Targeted, Sentence-level FSA Hybrid approach WCS (News: 0.786, Microblogs: 0.797)
Ghosal et al. [43] SemEval 2017 Task 5 Targeted, Sentence-level FSA Hybrid approach WCS (News: 0.697, Microblogs: 0.751)
Mao et al. [44] SemEval 2017 Task 5 Targeted, Sentence-level FSA Metaphor Paraphrasing Accuracy: 0.696, F1-Score: 0.696
Xiang et al. [45] SemEval 2017 Task 5 Targeted, Sentence-level FSA Pre-trained language model WCS (News: 0.8441, Microblogs: 0.8333)
Sinha et al. [46] SemEval 2017 Task 5 Targeted, Sentence-level FSA Pre-trained language model Accuracy: 0.9429, F1-Score: 0.9327
Du et al. [16] SemEval 2017 Task 5 Targeted, Sentence-level FSA Pre-trained language model WCS (News: 0.8483, Microblogs: 0.8122)

de França Costa and
da Silva [47]

FiQA Task 1 Targeted, Aspect-level FSA Machine learning Aspect Extraction:
F1-Score (News: 0.4240, Post: 0.5775)
Sentiment Analysis:
MSE (News: 0.1052, Microblogs: 0.1281)

Piao and Breslin [48] FiQA Task 1 Targeted, Aspect-level FSA Deep learning Aspect Extraction: F1-Score (0.6530)
Sentiment Analysis: MSE (0.0926)

Xiang et al. [45] FiQA Task 1 Targeted, Aspect-level FSA Pre-trained language model MSE (0.0717), R2 (0.4878)
Du et al. [16] FiQA Task 1 Targeted, Aspect-level FSA Pre-trained language model MSE: 0.0490

Luo et al. [49] Financial documents Document-level FSA Hierarchical Query-driven Attention Accuracy: 0.9446, F1-Score: 0.9449
Mao et al. [31] Financial news Perception-level FSA MetaPro and Statistical Analysis
Manro et al. [34] Letters to shareholders Perception-level FSA MetaPro and Statistical Analysis
s

c
t

a
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with recent advancements incorporating financial textual data using
LP techniques for enhanced financial forecasting [50–53]. Established

financial news providers, including Bloomberg and Thomson Reuters,
ave been at the forefront of offering commercial FSA service [52,

54]. Mudinas et al. [52] highlighted that financial institutions e.g., D.
E. Shaw and Two Sigma have integrated sentiment signals from fi-
nancial texts with traditional structured transaction data, to enhance
their machine learning models for algorithmic trading. Convention-
ally, fundamental analysis and technical analysis are the two principal
approaches in stock market analysis [55]. Financial forecasting us-
ng natural language can be classified as part of technical analysis,
ince it does not alter the intrinsic value of assets. Tables 3 and 4

showcase studies in financial forecasting in stock and FOREX markets,
respectively, demonstrating the effectiveness of incorporating financial
textual information. The financial forecasting for the cryptocurrency
market is reviewed in Section 3.10 NLP for Digital Assets.

Investor sentiment, or the deviation of investors’ beliefs about future
irm valuations from fundamental information, significantly impacts
tock prices and market activities [56]. Research in stock market pre-

diction spans various methodologies, including time series models,
achine learning, deep learning, and reinforcement learning, focusing

n aspects like stock indexes, prices, movements, return rates, and
olatility. Notable approaches include the use of neural tensor net-
orks for event-driven predictions [57], combining news and event
5 
tuple features with trading data [58], and integrating sentiment in-
dicators with technical analysis for enhanced price prediction [59].
Novel strategies also involve parsing earnings calls, which are shown to
influence short-term investor sentiment and predict stock returns [60–
63]. Further advancements include the application of Graph Convo-
lutional Neural Networks to incorporate company relationships [64],
utilizing social media texts [65], and employing transformers and
self-supervised learning for dynamic market prediction and improved
stock forecasting accuracy [53,66,67]. Additionally, combining various
sentiment sources through Principal Component Analysis and Kalman
Filter has proven effective for generating robust daily sentiment indica-
tors, crucial for accurate market predictions [54]. Event-driven trading
trategies have also been developed to capitalize on corporate events

detected in news articles, offering substantial returns [68]. Investor
sentiment not only influences time-series returns but also affects the
ross-section of stock returns, with certain stocks being more suscep-
ible to sentiment-driven fluctuations [69]. Recently, Du et al. [70]

proposed a dual-graph neural network, which dynamically generates
nd integrates price relationships and semantic relationships between
ompanies for stock price movement prediction.

The focus on predicting stock market trends has been significant,
with the FOREX market receiving less attention. Early research ex-
plored the link between macroeconomic fundamentals and short-term
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Table 3
Financial forecasting in stock market.

Literature Data source Method Task Performance

Ding et al. [57] Thomson Reuters, CNN Price prediction Accuracy: 0.6548, MCC: 0.41
Bloomberg S&P500 prediction Accuracy: 0.6421, MCC: 0.40

Nguyen and Shirai [71] Yahoo Finance SVM Price movement prediction
Message Board

Oliveira et al. [54] Twitter MR, NN, SVM, RF, Ensemble Daily return NMAE: NDQ, 7.58
Daily trading volume NMAE: DJIA, 5.84
Daily volatility NMAE: DJIA, 2.79

Liu et al. [58] Thomson Reuters SVM, LSTM Price movement prediction Accuracy: 0.5544, F1-Score: 0.7133
Xu and Cohen [72] Twitter GRU, VAEs Price movement prediction Accuracy: 0.5823, MCC: 0.080796
Wu et al. [73] Twitter Cross-modal attention-based Price movement prediction Accuracy: 0.5915

Hybrid RNN
Guo and Li [74] Twitter Linear Regression Price prediction Accuracy: 0.6722
Keith and Stent [63] Earning calls Ridge/Logistic Regression Change in target price Regression (MSE: 0.00137, 𝑅2: 0.1718)

LSTM, Ensemble Classification (Accuracy: 0.482, F1-Score: 0.475)
Jin et al. [75] Stocktwits Empirical Mode Price prediction Accuracy: 0.7056, MAPE: 1.65%, MAE: 2.39

Decomposition-based LSTM
Sawhney et al. [65] Twitter Graph Attention Network Price movement prediction F1-Score: 0.605, Accuracy: 0.608, MCC: 0.195
Zhou et al. [68] PRNewswire Multi-class Classification Price movement prediction Trade at End Strategy: Average Return: 1.74%

Businesswire with MLM Loss Trade at Best Strategy: Average Return: 9.11%
Wu et al. [76] EastMoney.com CNN, LSTM Price prediction MAE: 2.38, MSE: 7.27, RMSE: 2.69
Soun et al. [67] Twitter Attentive LSTM Price movement prediction Accuracy (BIGDATA22: 54.81%, ACL18: 58.72%,

CIKM18: 55.86%)
MCC (BIGDATA22: 0.0952, ACL18: 0.2065,
CIKM18: 0.0899)

Ma et al. [53] Hundsun Electronics Pre-training, BiLSTM Price movement prediction Accuracy: 0.6726, MCC: 0.3452
and GCN

Du et al. [70] Twitter Attentive LSTM, GATs Price movement prediction Accuracy (BIGDATA22: 0.5833, CIKM18: 0.5730)
MCC (BIGDATA22: 0.1556, CIKM18: 0.0389)
Table 4
Financial forecasting in FOREX market.

Literature Data source Method Task Performance

Jin et al. [77] Bloomberg Linear Regression Change in currency value and
generate warning messages

Precision (Argentina: 0.18, Brazil: 0.28, Chile:
0.33, Colombia: 0.25)
Recall (Argentina: 0.60, Brazil: 0.63, Chile: 1,
Colombia: 1)

Nassirtoussi et al. [55] MarketWatch.com
Google RSS

SVM FOREX price movement
prediction

Accuracy: 0.8333, Precision (Pos: 0.6667, Neg:
0.8889)
Recall (Pos: 0.6667, Neg: 0.8889)

Seifollahi and Shajari [78] MarketWatch.com SVM FOREX price movement
prediction

Accuracy: 0.5926, Precision: 0.5710, Recall: 0.5735

Semiromi et al. [79] Forexfactory.com, SVM, RF, XGB FOREX price movement
prediction

Accuracy (EUR/USD: 0.638, GBP/USD: 0.663)

First Word FX News Accuracy (USD/CHF: 0.631, USD/JPY: 0.641)
Xing et al. [80] Dow Jones Newswire SVM FOREX price movement

prediction
Accuracy: 0.503, F1-Score: 0.538
m
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exchange rate volatility using the Flexible Fourier Form regression,
focusing on the impact of macroeconomic announcements (e.g., interest
rates, GDP, consumer confidence indexes) on USD/EUR volatility [81].
Findings from data segmented into 5-min intervals over a few months
indicated that such news significantly affects exchange rate volatility
immediately post-announcement, with the impact varying by news
type and country. Subsequent studies confirmed that macroeconomic
news influences currency markets over time, with immediate absorp-
tion of the direct price impact but delayed total reflection [82]. The
Forex-foreteller (FF) model was introduced to forecast currency market
movements using news articles, language models, topic clustering, and
entiment analysis in conjunction with historical data, proving effective

for generating predictive signals [77]. Other approaches have leveraged
ext mining of news headlines, such as TF–IDF weighted by sentiment
cores using SentiWordNet, to predict FOREX market movement [55].

Further advancements include sentiment analysis of news headlines
for predicting EUR/USD directional movement with enhanced accu-
racy [78], incorporating news story events from the economic calendar
o forecast currency pair movements with SVM, RF, and XGBoost
lgorithms [79], and evaluating high-frequency news sentiment with-

out other semantic features, where a FinBERT-based model showed
 m

6 
that news sentiment alone offers predictive value, albeit limited, for
FOREX price movements [80]. Lastly, researchers and practitioners are
expanding their focus to include other financial forecasting areas, like
option pricing and IPO pricing [83], and firm value [84] etc.

3.3. Portfolio management

Portfolio optimization is an important element of portfolio manage-
ent, which involves strategies to identify the optimal investment mix

o maximize expected returns for a given risk level, or to minimize
isk for a targeted return. The use of NLP in this field is innovative,
ocusing on enhancing decision-making by analyzing qualitative data
see Table 5). In portfolio optimization, NLP helps by capturing se-

mantic relations of investment targets [85] or incorporating opinions
rom investor posts for better stock market investments [86]. This shift
owards utilizing financial sentiment in portfolio management has led

to various approaches, including Follow-the-Loser strategies, based on
stock microblogs [87], and models predicting the quality of investment
pinions for portfolio creation [88].

Moreover, techniques like Gaussian inverse reinforcement learning,
odel market dynamics and investor sentiment for trading systems that
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Table 5
Portfolio management.

Literature Data source Method Performance

Tu et al. [88] StockTwits Linear regression for opinion quality score Cumulative return: 30%
Koyano and Ikeda [87] Yahoo! JAPAN textream MLP, Follow-the-Winner/Loser strategy Cumulative return: 1.151
Sun et al. [98] Sina Guba, Eastmoney Guba, RESSET Probabilistic Neural Network Accuracy: 86.3%
Yang et al. [89] Thomson Reuters Gaussian inverse reinforcement learning Return: 17.39%, Sharpe ratio: 0.85

Sterling Ratio: 0.76
Malandri et al. [86] Financial and sentiment data EW, LSTM, MLP, RF Wealth of the portfolio (LSTM + Sentiment)

Five portfolios: 2.23, 2.72, 2.30, 2.81 and 1.65
Xing et al. [85] Company profiles Doc2vec, covariance matrix correction CAGR: 0.2368, Sharpe ratio: 1.01
Ye et al. [91] Financial news State augmented reinforcement learning Portfolio value improved (Bitcoin: 140.9%,

HighTech: 15.7%)
Sharpe ratio (Bitcoin: 14.78, HighTech: 7.73)

Du and Tanaka-Ishii [92] Wall Street Journal (WSJ), Reuters,
Bloomberg

Deep learning Average realized annual gain (WSJ: 17.2%, R&B:
35.5%)

Chen et al. [94] RESSET database DT, LR, SVM, RF Accuracy: 79.6%, Holding Period yield: 5.41
Sawhney et al. [95] Twitter, Wind.com.cn Time-aware LSTM (t-LSTM) US S&P 500: Return ratio: 1.34, Sharpe ratio: 0.96

China and Hong Kong: Return ratio: 1.44, Sharpe
ratio:1.19

Koratamaddi et al. [93] Wharton Research Data Services Deep reinforcement learning Sharpe ratio: 2.07, Annualized return: 22%
Ghosh et al. [99] Bloomberg RF, LSTM Daily return (LSTM: 0.64%, RF: 0.54%)
Hung et al. [96] Reuters, CNBC GRU, Black–Litterman Annualized return: 46.6262%, Sharpe ratio:

13.02%
Sortino ratio: 17.96%, MDD: 4.45%, Turnover:
68.35%

Ma et al. [97] RESSET, Qichacha, Hundsun Electronics Multitask learning, pre-training IRR: 0.3923, Sharpe ratio: 2.0334, MDD: 0.0754
r
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filter out noisy signals [89]. Strategies e.g., PROFIT (Policy for Return
Optimization using FInancial news and online Text) leverages financial
news and social media for trading decision optimization, showing sig-
nificant performance improvements over benchmarks [90]. Similarly,
tate Augmented Reinforcement Learning (SARL) integrates diverse

data sources for learning portfolio management strategies, achieving
superior results [91]. Stock embedding, representing stocks as neu-
al network-generated vectors from news and price history, enhances
ortfolio optimization beyond price prediction [92]. Including on-

line public mood in models has proven to consistently outperform
equal-weighted strategies, highlighting the performance benefits of
ncorporating financial sentiment [86]. Sentiment-aware models for
aily portfolio allocation demonstrate the robustness and higher re-

turns compared to benchmarks [93]. Additionally, sentiment-based
models adapted to market volatility, like those for Chinese stocks,
yield superior returns [94]. Time-aware LSTM models, which capture
market trends and rank stocks, based on predicted returns, outperform
tate-of-the-art methods in both intra-day situations and risk-adjusted
eturns [95]. Hung et al. [96] constructed a portfolio using news

sentiment measured by BERT and demonstrated that Black–Litterman
ortfolio model with GRU model to predict stock price yields the

highest performance. Ma et al. [97] developed a multi-task learning
framework, learning risk and return factors, simultaneously, for port-
folio optimization. The framework also leveraged data from multiple
sources, e.g., news, numerical features, and company relationships.

3.4. Financial narrative processing

Financial Narrative Processing (FNP) [100], is a subset of NLP in
inance with a specific focus on analyzing narrative content within
inancial documents. While NLP in finance has a broader application
ange, encompassing any textual analysis that can inform financial de-
isions and strategies, FNP is more specifically focused on the narrative
nd qualitative aspects of financial texts. It involves understanding
he stories and qualitative disclosures that companies and financial

analysts provide, such as management’s discussion and analysis sec-
ion in annual reports, earnings call transcripts, analyst reports, and
inancial news. The key objective is to extract insights from narrative
exts that are not readily quantifiable but have significant implications
or financial decision-making. El-Haj et al. [100] has organized the
7 
FNP workshop since 2018.1 Moreover, the automation of financial
eporting [101] and financial statement analysis [102] using NLP,

particularly with LLMs, has also emerged as a promising area of re-
search. In our review, we focus on the financial text summarization
nd information extraction task.

3.4.1. Financial text summarization
Companies generate a multitude of reports incorporating both tex-

tual narratives and numerical data throughout their financial year, such
as financial annual reports, earnings announcements, and conference
calls. The information encapsulated within these financial reports holds
significant importance for both companies and investors. It serves to
showcase company accomplishments, garner support from shareholders
in the stock market, as well as unveil risks and opportunities crucial for
investor decision-making. Moreover, it plays a pivotal role in the due
diligence procedures during mergers, acquisitions, and audit processes.
However, the vast volume of financial data poses challenges in terms of
avigation, management, and monitoring. Consequently, there arises a

critical need for automated financial text summarization.
Financial text summarization endeavors to generate succinct, infor-

ative, and non-repetitive summaries from either single or multiple
nput texts. This objective can be pursued through two distinct method-
logies: the extractive approach and the abstractive approach. The
xtractive method involves the identification and ranking of pertinent
ubsets within the input text [103]. Conversely, the abstractive ap-

proach generates summaries from scratch, based on the contents of the
nput document [104].

Table 6 showcases a variety of techniques and methods ranging
from traditional machine learning techniques to high-performing deep
learning models and word embeddings. The majority of techniques
have converged on the established benchmark dataset from FNS Shared
Tasks since 2020 [105–107], with a focus on producing concise sum-
maries for annual financial reports of firms listed on the stock ex-
changes of the UK, Greece, and Spain. Extractive summarizer continues
o be dominant on either sentence-level or section-level text summa-

rization within the FNS shared Task dataset. El-Haj and Ogden [108]
proposed to use the TF–IDF representations of the sentence and K-

eans clustering model to rank the importance of sentences, and com-
ine them into a final summary. As deep learning models have demon-
trated effectiveness in generating pertinent text features, the approach

1 http://wp.lancs.ac.uk/cfie.

http://wp.lancs.ac.uk/cfie
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Table 6
Financial text summarization.

Literature Dataset Type of summarization Method Performance

El-Haj and Ogden [108] FNS Shared Task Extractive at sentence level TF–IDF + Clustering Rouge-1F (English: 0.317,
Spanish: 0.448, Greek: 0.334)

Gokhan et al. [109] FNS Shared Task Extractive at sentence level SentenceBERT-based Clustering Rouge-1F: 0.48
La Quatra and Cagliero [110] FNS Shared Task Extractive at sentence level BERT Rouge-1F: 0.424
Abdaljalil and Bouamor [111] FNS Shared Task Extractive at sentence level BERT Rouge-1F: 0.38
Orzhenovskii [112] FNS Shared Task Extractive at sentence level T5 Rouge-1F: 0.54
Shukla et al. [114] FNS Shared Task Extractive at section level LR, k-maximal word Rouge-1F: 0.508

allocation, top-k summarizer
Shukla et al. [115] FNS Shared Task Extractive at section level GPT3.5 Rouge-1F (English: 0.45,

Spanish: 0.41, Greek: 0.12)
Li et al. [116] Financial News Abstractive Transformer-BiLSTM encoder, Rouge-1F (LCFNS: 0.3814,

Graph attention decoder Fin-LCSTS, 0.3669, CNN/Daily Mail: 0.4164)
Liu et al. [117] FINDSum Abstractive BART-large Rouge-1F (FINDSum-ROO: 0.5390,

FINDSum-Liquidity: 0.5412)
Zmandar et al. [118] FNS Shared Task Hybrid Reinforcement learning Rouge-1F: 0.52
Singh [119] FNS Shared Task Hybrid Pointer Network + T5 Rouge-1F: 0.466
Mukherjee et al. [120] ECTSum Hybrid FinBERT + T5 Rouge-1F: 0.467
a
f

d
O
t

of fine-tuning language models has been employed to produce sentence-
evel embeddings customized for specific financial contexts. Gokhan
t al. [109] introduced a sentence-BERT methodology, leveraging BERT
o generate sentence-level embeddings and subsequently clustering
hese embeddings using the K-means model. Additionally, both BERT
nd T5 have been utilized through fine-tuning processes to enhance
erformance in ranking the importance of sentences [110–112].

Financial reports, comprising financial statements and extensive
nformation, often suffer from repetitiveness, posing a challenge when

summarizing them at the sentence level. Rather than summarizing the
entire report, a strategy has been adopted to identify key narrative
sections within the report and generate summaries, based on these iden-
tified sections. As outlined by Litvak et al. [113], financial documents
typically feature 13 predefined narrative section titles. Abdaljalil and

ouamor [111] employed a similar approach for section extraction. It
compares BERT embeddings of reference sections to extracted ones,
aming the extracted sections after the closest reference sections by
osine similarity. A frequency counter is then utilized to determine the
eight of each section in reference summaries. Following a clustering
rocess to identify the top three sections for each document, the section
ith the highest frequency weight is retained, and the top 1000 words
f that section are included in the final summary. Shukla et al. [114]
uilt an annotated dataset to define sections as ‘‘narrative’’ or ‘‘non-
arrative’’. Tables of content within the report are parsed to extract
ection features: section name, page number, and length. Utilizing these
eatures, a classification model is employed to categorize each section
s narrative (‘‘true’’) or non-narrative (‘‘false’’), based on the annotated
ataset. The weight of a section is defined as the probability of it being
arrative, as assigned by the model. Subsequently, it adopts the ‘‘K-
aximal Word Allocation’’ approach, which optimally distributes the

equired number of words among sections, based on their weights and
he number of available words in each section. The final summary
f the report is then generated, based on a set of pairs consisting of
arrative sections and the number of words to be generated. Guided by
iMSum framework [114], Shukla et al. [115] showcased the signifi-

cant enhancement in financial report summarization quality through
the utilization of LLMs. It employs Retrieval Augmented Generation
(RAG) to generate few-shot examples from the DiMSum annotated
ataset, facilitating LLM-based few-shot classification to identify nar-

rative sections and determine their weights. Subsequently, the LLM
summarizer generates summaries, based on section name, content, and
word count.

In scenarios where gold summaries have been removed from orig-
nal annual reports, abstractive models offer the potential for greater
onciseness by generating summaries from scratch. Sequence-to-
equence model [121] and RNN-based encoder–decoder technique
122] have demonstrated effective performance in generating succinct
8 
summaries for short input and output sequences in the abstractive
summarization task. Building upon these techniques, Li et al. [116]
introduced an enhanced Seq2Seq model named TLGA. TLGA utilizes a
hierarchical Transformer-BiLSTM encoder to capture long-range inter-
actions and sequential semantics, while employing a Graph Attention-
based decoder to leverage historical information of decoded tokens and
capture key causal relations. This approach captures both qualitative
nd quantitative information as well as latent causal relationships from
inancial news.

Several other studies [123,124] have suggested integrating extrac-
tive and abstractive methodologies to enhance performance. Zmandar
et al. [118] proposed a reinforcement learning model utilizing the
standard policy gradient method to construct an end-to-end train-
able computation graph that combines both extractor and abstractor
agents. Singh [119] implemented pointer networks to extract important
narrative sentences, subsequently using T5 to paraphrase extracted
sentences into a concise yet informative sentence. Shukla et al. [115]
introduced a novel approach to enhance the summarization of financial
reports, the first instance of applying LLMs to the financial narrative
summarization task. The emergence of various formats of financial
text data has ignited research interest in techniques for financial text
summarization. Mukherjee et al. [120] presented ECTSum,2 a novel
benchmark dataset for telegram-style bullet-point summarization of
long transcripts of earning calls (ECT). Additionally, ECT-BPS is pro-
posed, a hybrid approach that fine-tunes FinBERT to identify the most
relevant sentences from the input ECT documents, followed by fine-
tuning T5 [125] to paraphrase these sentences to the telegram-style
format of target summary sentence. Liu et al. [117] proposed FINDSum,
a large-scale dataset encompassing both long text and multiple tables,
enabling extractive summaries to incorporate quantitative descriptions
of critical metrics in tables. The model processes long text by adopting
the Maximum Marginal Recall Gain (MMRG) method to select salient
text segments as inputs, while transforming each table cell into a tuple
and treating tuple selection as a binary classification task for tabular
content. Three types of methods are evaluated on FINDSum dataset.3
1. combine-and-generate (CG) concatenates selected text segments and
tuples as two types of input to a sequence-to-sequence summarizer 2.
generate-and-combine (GC) parallelly generates summary on selected
text segments and tuples, and concatenate two summaries as one. 3.
generate-combine-and-generate (GCG) adopts a tuple-to-text generator
to produce text descriptions of input tuples, concatenate tuples’ text
escriptions with selected text segments, and generate a final summary.
verall, CG and GCG methods demonstrate superior performance over

ext-only baselines on FINDSum’s two subsets.

2 https://github.com/rajdeep345/ECTSum.
3 https://github.com/StevenLau6/FINDSum.

https://github.com/rajdeep345/ECTSum
https://github.com/StevenLau6/FINDSum
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Table 7
Information extraction.

Literature Type of extraction Method Performance

Xiao et al. [126] Corporate event FLAN-T5, FLAN-UL2, FLAN-Alpaca F1-Score (Acquisition: 0.70, SEO: 0.79, CBI: 0.61)
Jacobs and Hoste [127] Corporate event BERT, RoBERTa, XLM, and XLNet Precision: 0.737, Recall: 0.564, F1-Score: 0.591
Jacobs et al. [128] Corporate event SVM, RNN-LSTM Precision: 0.80, Recall: 0.71, F1-Score: 0.73
Ein-Dor et al. [129] Corporate event BERT Precision: 0.93, Recall: 0.95, F1-Score: 0.94
Carta et al. [130] Corporate event Hierarchical clustering Silhouette Coefficient: 0.3, Dunn Index: 0.46
Guo et al. [131] Corporate event GNN + Transformer Precision: 0.844, Recall: 0.791, F1-Score: 0.817
Cheng et al. [132] Corporate event and relation OpenIE, Bidirectional LSTM Macro-F1: 0.7686, Micro-F1: 0.7515,

Weighted-F1: 0.7527
Zhou et al. [68] Corporate event Bi-level event detector Win Rate: 0.545 Big Win Rate: 0.342
Balashankar et al. [133] Causal relationship Predictive causal graph RMSE: 0.020
Izumi and Sakaji [134] Causal relationship Causal-chain search algorithm F1-Score (Financial Summaries: 0.71, Newspaper: 0.83)
Takayanagi et al. [135] Causal relationship ChatGPT FinCausal (Precision: 0.646, Recall: 0.795, F1-Score: 0.713)
Rajpoot and Parikh [136] Relation extraction LLMs F1-Score: 0.718
Hillebrand et al. [137] Relation extraction KPI-BERT F1-Score: 0.7032
Zhang and Zhang [138] Entity extraction FinBERT-MRC F1-Score: (ChFinAnn: 0.9278, AdminPunish: 0.9680)
Oral et al. [139] Entity extraction BiLSTM-CRF Macro-F1: 0.8925, Micro-F1: 0.9223
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3.4.2. Information extraction
Information Extraction (IE) focuses on identifying specific types

f entities, relationships, events, and other factual information from
unstructured textual sources [140]. IE is extensively used in the finance
sector, particularly for the identification and detection of entities,
orporate events, relations, causal relationships, financial document
tructure, etc (see Table 7). Event extraction is a fundamentally chal-

lenging task in NLP, extensively applied to manage vast and rapidly
expanding collections of financial corpus which often contain multiple
events with their elements scattered and mixed across the documents,
complicating the extraction process [131]. In terms of event extrac-
ion from financial texts, Jacobs et al. [128] demonstrated that a
eature-engineered linear kernel SVM approach obtains better perfor-
ance than RNN-LSTM word-vector in the identification of corporate

vents from news articles. Jacobs and Hoste [127] proposed SEN-
TiVENT, an annotated English economic news corpus of fine-grained
company-specific events at the sentence level, and performed text
classification using pre-trained BERT, RoBERTa, XLM, and XLNet mod-
els. Xiao et al. [126] fine-tuned the FLAN series of models to evaluate
he effectiveness of LLMs in the context of corporate event prediction. A
eakly supervised approach has also been adopted for event extraction.
or example, Ein-Dor et al. [129] leveraged information contained
n Wikipedia to generate a weakly labeled sentence dataset, demon-
trating its effectiveness for company-specific events in news articles.
n terms of unsupervised approaches, Carta et al. [130] proposed a
ierarchical clustering-based approach that integrates news articles and
tockTwits messages to detect corporate events.

The construction of knowledge graphs and their integration into
vent extraction has garnered significant attention from researchers.
uo et al. [131] enhanced the document-level event extraction by

ntegrating a knowledge graph capturing entity relations and their at-
ributes. Specifically, the proposed model employed a graph encoder to
mbed knowledge graph information for entities, applied named entity
ecognition to identify potentially relevant entities, and incorporated a
ransformer and linear layer to integrate the graph embeddings of the
xtracted entities into the event extraction model. Cheng et al. [132]
ntroduced an event embedding framework, based on a knowledge
raph, which not only extracts structured events from unstructured
exts, but also builds the knowledge graph using the entities and re-
ations mentioned therein, and then incorporates the knowledge graph
nformation into the objective function of an event embedding learning
odel using a joint model. The learned representations serve as inputs

or subsequent quantitative trading strategies. Meanwhile, Zhou et al.
68] presented a bi-level event detection model to detect corporate

events from news articles which are subsequently used to predict
stock movement for the event-driven trading strategy. The model in-
ludes low-level and high-level event detectors. The low-level detector
dentifies specific event-describing sub-sequences by classifying each
9 
token, while the high-level takes the predicted results and integrates
them with the global contextual information from the input article
o predict the probabilities of each event’s existence. The multi-task

learning approach is also explored in identifying financial events. For
instance, Li and Zhang [141] introduced a unified model for financial
vent classification, detection, and summarization. Specifically, the
odel leveraged pre-trained BERT to encode financial documents, with

the encoded information shared across the event type classification,
detection, and summarization components. A transformer structure
serves as the decoder for the event summarization task. Alongside the
input document encoded by BERT, the decoder incorporates predicted
event types and cluster information, enabling it to focus on specific
aspects of the event type during the summary generation.

Extraction of relations and causality [142,143] represents a promi-
nent research domain within information extraction. Relation extrac-
tion stands as a pivotal task within NLP, focusing on identifying and
ategorizing connections between entities referenced in text. Rajpoot

and Parikh [136] proposed GPT-FinRE, which explored the poten-
tial of GPT with two retrieval strategies, KNN and Efficient Prompt
Retrieval (EPR), on the financial relation extraction task on REFinD
dataset [144]. Hillebrand et al. [137] introduced a novel model that
ncludes three main building blockers, a BERT-based sentence en-

coder, a named entity recognition decoder, and a relation extrac-
ion decoder, to extract and link key performance indicators from
inancial reports. Causality detection, meanwhile, seeks to unveil the
ausal relationships between entities, with applications ranging from
tock movement prediction [133] and supporting financial informa-
ion services [134]. For example, Balashankar et al. [133] proposed

the Predictive Causal Graph by discovering the influence between
words, based on temporal co-variance and demonstrated that PCG
outperforms other graph-based methods in stock market prediction.
To assess GPT’s performance in causal reasoning, Takayanagi et al.
[135] conducted a comprehensive evaluation of ChatGPT’s causal text

ining capabilities and observed that causal hallucination is evident
n the low precision on the FinCausal dataset when implementing
hatGPT to detect causality relationship. Sharma et al. [145] released

FinRED,4 a relation extraction dataset curated from financial news and
earning call transcripts containing relations from the finance domain.
astly, Becquin [146] formulates the causality extraction into a span

extraction and sequence labeling task. Span extraction aims to extract
text spans, such as words or phrases, from plain texts [147]. Specif-
ically, features are generated from an input text using transformers
with high-performance tokenizers, and question-answering state-of-the-
rt architecture is implemented with two spans extracted (cause, effect)
airs. The architecture not only can extract cause and effect but also
redict the number of cause/effect relationships in a document.

4 https://github.com/soummyaah/FinRED.

https://github.com/soummyaah/FinRED
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Financial named entity recognition (FinNER), which refers to the
rocess of identifying and categorizing specific entities, such as compa-
ies, currencies, dates, and numerical values, within financial texts, is
 challenging task in financial text information extraction [138]. Zhang

and Zhang [138] proposed a new model termed FinBERT-MRC by
ormulating FinNER task as a machine reading comprehension (MRC)
roblem, and achieved competitive performance. Oral et al. [139]
xtracted named entities with a BiLSTM-CRF architecture from text-
ntensive and visually rich scanned documents and predicted binary re-
ations for each entity pair using a graph-based MLP architecture. Shah
t al. [148] proposed a novel domain-specific model named FLANG (Fi-

nancial LANGuage) which enhances masking using financial keywords
and phrases, incorporating span boundary objective and in-filing ob-
jective. Together, an open-source comprehensive suite of benchmarks
for the financial domain, named Financial Language Understanding
Evaluation (FLUE), is released. It includes new benchmarks across NLP
tasks which are sentiment analysis, FinNER, financial structure bound-
ary detection, and financial question answering. The source dataset for
FinNER is from [149].

Lastly, researchers also explored financial information extraction
asks such as financial document structure extraction [150], which

extracts table-of-contents (TOC) from financial documents by detecting
he document titles and organizing them hierarchically into a TOC,
nd structure boundary detection [151], an extension of boundary

detection, which extracts the boundaries of sentences, lists and list
tems, including structure elements like header, footer and tables.

3.5. Question answering, virtual assistant and chatbot

Question answering systems, virtual assistants, and chatbots lever-
aging NLP techniques serve distinct yet overlapping roles in the realm
of dialogue interactions. Question answering systems are optimized for
recision and are adept at fetching exact answers from structured and
nstructured data, primarily used in settings requiring high accuracy
uch as academic research or customer support [152]. Virtual assistants

are crafted for a wide range of functionalities, from managing daily
ctivities to handling enterprise processes. These systems prioritize user

interaction and strive to simplify and enhance the user experience.
Chatbots, particularly those integrated with LLMs, focus on simulating
conversational human interactions to enhance customer engagement
and service with responses that are context-aware and increasingly per-
sonalized. Despite their differences, all these technologies interpret and
espond to human language, tailoring their functionalities to specific
ser needs and contexts.

3.5.1. Question answering
Question Answering (QA) involves designing a system that can

answer questions posed by humans in natural language. It requires
the integration of several fundamental components, such as tokeniza-
tion, entity extraction, intent detection, and more. Key challenges
include understanding the intent behind the query and retrieving the
most relevant information from a set of documents [153]. In addi-
tion to general QA which answers natural language questions [15],
the finance domain requires complex numerical reasoning and un-
derstanding of heterogeneous representations [154]. Recent research
n QA has delved into various aspects, including the development of
atasets [155] that challenge the reading comprehension abilities of
odels, like SQuAD [156] and TriviaQA [157] and the enhancement

of reasoning capabilities necessary for answering questions more ac-
curately (see Table 8). Numerical reasoning capability is another area
f focus for QA in finance. Chen et al. [158] propose ConvFinQA, a
ew large-scale dataset aiming to study the chain of numerical rea-
oning in conversational question answering. Li et al. [159] introduced

FinMath, which injects a tree-structured neural model to perform multi-
tep numerical reasoning, aiming to improve the numerical reasoning

capacity of the model. Chen et al. [154] released a new large-scale
10 
dataset, FINQA, for numerical reasoning over financial reports. Other
areas of focus include open-domain question answering [160], which
involves extracting answers from large, unstructured datasets using so-
phisticated retrieval and reading strategies. The quest for sophisticated
QA systems in finance also extends to the ability to handle hybrid data,
combining both tabular and textual content. For example, Zhu et al.
[161] introduced TAT-QA, a benchmark leveraging both tabular and
textual content, demonstrating the importance of context in finance-
elated queries, and further proposed a novel QA model termed TAGOP,
hich is capable of reasoning over both tables and text. Deng et al.

[162] also presented the PACIFIC dataset to facilitate conversational
question answering (CQA) over hybrid contexts in finance. Further, the
nowledge-enhanced QA system, which enables information retrieval
rom an external knowledge base or knowledge graph, has improved
he performance on QA tasks [163,164]. Lastly, the evaluation of LLM’s
apability including mathematical reasoning for QA over financial
ocuments has also attracted researchers’ attention significantly [165,

166].

3.5.2. Virtual assistant and chatbot
Unlike research in QA, which primarily leverages golden datasets,

virtual assistant and chatbot are more application-oriented, spanning
various functions in finance such as customer service [167], personal
finance advice [168], cryptocurrency [169], and anti-fraud [170] etc.

irtual assistants are designed to perform tasks, based on user re-
quests. These tasks can range from finding information online, like
the best local restaurants, to more complex activities such as schedul-
ing appointments. The effectiveness of a virtual assistant hinges on
its ability to accurately parse the user’s intent and to retrieve and
interact with the relevant information effectively. Research in this
domain often focuses on enhancing the assistants’ understanding of
ser intents through improved dialogue management systems [171,

172] and by refining the query processing capabilities that help in
better understanding and actioning user requests. The development
of LLMs has significantly influenced the evolution of chatbots. These
models, trained on vast text collections, are capable of generating
responses that mimic human conversation and handle a wide range
of linguistic tasks. The quality of these responses is heavily dependent
on the context provided. Major tech companies like OpenAI, Meta,
and Google primarily oversee these sophisticated models. Factors such
as high computational costs, extensive data collection requirements,
specialized expertise and labor, infrastructure and maintenance needs,
licensing and intellectual property costs, and substantial energy con-
sumption make it prohibitively expensive for corporations to develop
and train these models from scratch. Consequently, practical appli-
cations of LLMs often involve methods like fine-tuning or advanced
context management strategies. Recent innovations in this field include
RAG techniques [173], which bolster the domain-specific abilities of
chatbots, and developments like MEM-GPT [174], which approach
LLMs as operating systems capable of both long and short-term memory
management to efficiently update and manage context. Furthermore,
the infinite attention mechanism [175] employs transformers to dynam-
ically manage context length, addressing the inherent token limitations
of LLMs. Additional research has concentrated on model fine-tuning
strategies such as parameter-efficient fine-tuning (PEFT) by Xu et al.
[176] and LOw Rank Adoption (LORA) by Hu et al. [177], which
rain LLMs through low-rank parameterization or in computationally
fficient ways. Recent alignment efforts in LLMs include techniques
ike Reinforcement Learning with Human Feedback (RLHF) by Kauf-

mann et al. [178] and Supervised Fine-Tuning (SFT) by Mecklenburg
et al. [179]. Reinforcement Learning with Generative Adversarial Feed-
back [180] provides an alternative alignment method that overcomes
the challenges posed by RLHF, which is constrained by the expertise
and productivity limitations of human evaluators, and SFT, which relies
on additional, carefully selected expert demonstrations.
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Table 8
Question answering, virtual assistant and chatbot.

Literature Data sources Method Performance

Li et al. [159] TAT-QA RoBERTa-large, Auto-regressive sequence-to-tree model Exact Match: 0.586, numeracy-focused F1: 0.641
Zhu et al. [161] TAT-QA RoBERTa, Sequence tagging, aggregation operator, scale prediction Exact Match: 0.501, numeracy-focused F1: 0.580
Chen et al. [158] CONVFINQA RoBERTa-large, FinQANet Execution accuracy: 0.6890, program accuracy: 0.6824
Chen et al. [154] FinQA RoBERTa-large, FinQANet Execution accuracy: 0.6124, program accuracy: 0.5886
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Lastly, the trends and characteristics of chatbot development in
finance include personalization [181], decentralization [182], and
ntology-based approaches [183], among others. As chatbots become

more integral to finance operations, ensuring they operate reliably and
ethically is crucial. This involves designing systems that are not only
accurate but also trustworthy and free from biases. Current research
[184] is exploring how to implement safety features and ethical guide-
ines to prevent the generation of harmful or misleading responses.
hese guardrails are essential for maintaining user trust and ensuring
hat interactions are both helpful and safe.

3.6. Risk management

3.6.1. Financial risk prediction
Research in financial risk prediction leverages a variety of data

sources including financial reports [185–188], financial news [187,
188] and earning calls [189] (see Table 9). Wang et al. [186] explored
he impact of sentiment words on financial risk, by establishing a
egression model to predict future real-value risk, based on sentiment

analysis and a ranking model to assess risk levels, using financial re-
orts i.e., management’s discussion and analysis of financial conditions

and results of operations in the 10-K Form. The findings reveal that
models developed using sentiment words outperform those trained on
riginal texts, underscoring the significance of financial sentiment lex-

icons in predicting financial risk. Furthermore, the results also indicate
 strong correlation between financial risk and financial sentiment
ords. Wang and Hua [189] defined financial risk as stock price

volatility in the subsequent week and investigated its relationship
ith earnings calls. It utilized uni-grams, bi-grams, part-of-speech tags,

named entities, and probabilistic frame-semantic features to construct
 Gaussian copula model, evaluated by Kendall’s tau and Spearman’s

correlation. The research examined three datasets consisting of tran-
scribed quarterly earnings calls from the U.S. stock market during the
period of the Great Recession. The datasets were categorized into three
periods: pre-2009 (2006–2008), which marks the onset of the economic
downturn; 2009, capturing the global spread of the financial crisis; and
post-2009 (2010–2013), during the global economic recovery. It has
demonstrated the potential of using quarterly earnings calls to predict
short-term stock volatility. Another study by Rekabsaz et al. [190]
xplored volatility forecasting using SVM with Radial Basis Function
RBF) by employing textual features extracted from financial disclo-

sures, such as Term Count (TC), Term Frequency (TF), TF–IDF, and
M25, combined with a dimension reduction strategy using Principal

Component Analysis (PCA). Additionally, the study integrated market
features like current volatility and sector specifics from factual market
data. This sentiment analysis approach notably surpassed existing lead-
ing methods, demonstrating that data from 10-K reports are valuable
for predicting volatility. Xing et al. [191] introduced the Sentiment-
Aware Volatility Forecasting (SAVING) model, combining symbolic and
ub-symbolic AI approaches by infusing grounded knowledge into neu-

ral networks. This model uses market sentiment to enhance predictions
of stock return fluctuations. It surpasses traditional statistical models
like GARCH and its variants, the Gaussian-process volatility model, and
the latest neural stochastic volatility model and variational recurrent
neural networks. In a separate study, Deveikyte et al. [192] developed
 classifier for market volatility using Latent Dirichlet Allocation for
opic modeling. The study demonstrates a significant negative corre-
ation between positive social media sentiments, such as tweets, and
11 
the subsequent day’s market volatility, by analyzing the relationship
between financial news, tweets, and the FTSE100 index. The findings
also highlight that the accuracy of the model depends on the selected
number of topics.

3.6.2. Fraud detection
Fraud detection in finance is a broad field that encompasses various

trategies and methodologies to identify unusual patterns that may
ndicate fraudulent activities. In the finance sector, fraudulent activities
an be categorized into transaction fraud, mortgage fraud, corporate
nd financial statement fraud, money laundering fraud, securities and
ommodities fraud, insurance fraud, and cryptocurrency fraud [193].

The advent of NLP techniques marks a significant transformation in
etecting and preventing fraudulent activities. By leveraging NLP’s
ower to sift through vast amounts of unstructured data, ranging
rom customer correspondences and transaction narratives to financial
tatements and digital social interactions, financial institutions are now
etter equipped to identify suspicious patterns and inconsistencies that
ay indicate fraud.

The primary research focus of NLP in fraud detection centers on
identifying fraudulent transactions as well as detecting fraud within
corporate and financial statements (see Table 10). Rodríguez et al.
[194] presented a novel approach for fraud transaction detection, based
on the transformer model. Boulieris et al. [195] proposed FraudNLP,
the first anonymized dataset accessible to the public for detecting
online fraud, and benchmarked both machine learning and deep learn-
ng techniques with multiple evaluation measures. Additionally, they
rgue that online behaviors adhere to patterns similar to natural lan-
uage, suggesting that natural language processing techniques can
ffectively address these phenomena. Yang et al. [196] introduced

FinChain-BERT, demonstrating a successful application of BERT models
in detecting financial fraud and showing effectiveness in handling
complex financial text information. In terms of corporate and finan-
ial statement fraud, Chen et al. [197] employs a fusion of NLP,

Queen Genetic Algorithm (QGA), and SVM techniques to create a novel
approach for identifying fraudulent content within the narratives of
annual reports. Dong et al. [198] automatically captures various signals
including sentiment and emotional attributes, topic characteristics,
exical features, and social network dynamics from financial social

media data, which are subsequently integrated into machine learning
lassifiers to detect corporate fraud. Craja et al. [199] detects fraud

from financial statements using a hierarchical attention network (HAN)
to extract text features from annual reports including the management’s
discussion and analysis section. Achakzai and Peng [200] proposed
 Dynamic Ensemble Section (DES) algorithm to detect fraudulent
irms. A novel approach involves integrating a knowledge graph for
raud detection. Specifically, Mao et al. [201] developed a related-

party transactions (RPTs) knowledge graph, by using techniques such
s information extraction, entity extraction, relation extraction, and
ttribute extraction, to detect financial fraud.

3.6.3. Credit scoring
This section explores how NLP can enhance the qualification and

quantification of an individual’s creditworthiness. Traditional credit
scoring methods rely heavily on factors such as credit history, income,
and outstanding debts. However, NLP techniques offer an alternative
approach by analyzing an individual’s digital footprint, including so-
cial media messages, website interactions, and online browsing and
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Table 9
Financial risk.

Literature Data source Method Performance

Wang et al. [186] 10-K reports SVR Regression (MSE: 0.14894),
Ranking (Kendall’s Tau: 0.60458, Spearman’s Rho: 0.63403)

Wang and Hua [189] Earning calls Linear Regression, Linear SVM, Spearman (Pre-2009: 0.425, 2009: 0.422, Post-2009: 0.375)
Gaussian SVM, Gaussian Copula Models Kendall: (Pre-2009: 0.315, 2009: 0.310, Post-2009: 0.282)

Oliveira et al. [54] Twitter MR, NN, SVM, RF, Ensemble Daily return (Lowest NMAE: NDQ, 7.58)
Daily trading volume (Lowest NMAE: DJIA, 5.84)
Daily volatility (Lowest NMAE: DJIA, 2.79)

Rekabsaz et al. [190] 10-K reports GARCH, SVM MSE: 0.111, 𝑅2: 0.527
Xing et al. [191] StockTwits SAVING, (E)GARCH, TARCH, GJR, Negative Log-Likelihood (NLL): −3.0642

GP-vol, VRNN, NSVM, LSTM, s+LSTM
Deveikyte et al. [192] RavenPack, Twitter, Logistic Regression Accuracy (Headlines: 65%, Tweets: 65%, Stories: 67%)

Thomson Reuters F1-Score (Headlines: 64%, Tweets: 64%, Stories: 63%)
Table 10
Fraud detection.

Literature Task Method Performance

Rodríguez et al. [194] Fraudulent transactions RF, IF, SVM, KNN, LSTM, transformer F1-Score: 0.830, MCC: 0.801, AUC: 0.871
Yang et al. [196] Fraud detection from financial texts FinChain-BERT Precision: 0.97, Recall: 0.96, Accuracy: 0.97
Boulieris et al. [195] Fraudulent transactions LR, RF, KNN, SVM, LSTM, CNN, TCN AUPRC: 0.404, F1 Score: 0.467
Craja et al. [199] Financial statement fraud LR, RF, SVM, XGB, ANN, HAN, GPT-2 w/ Attn AUC: 0.9264, F1-score: 0.7500
Chen et al. [197] Financial statement fraud QGA-SVM Accuracy: 0.852482
Achakzai and Peng [200] Financial statement fraud Dynamic ensemble selection algorithm AUC: 0.763, MCC: 0.354, AP: 0.443
Seemakurthi et al. [202] Financial statement fraud LR, SVM, NN, LDA, Ensemble Accuracy: 0.887, Specificity: 0.58, AUC: 0.72
Dong et al. [198] Corporate fraud detection SVM, NN, DT, LR Accuracy: 0.8000, Recall: 0.8304,

F1-Score: 0.7908, AUC: 0.8503
Mao et al. [201] Corporate fraud detection LR, DT, RF, XGB Accuracy: 0.8502, AUC: 0.7508
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purchasing behaviors, to assess their ability to repay debts. NLP-based
credit scoring has the potential to provide financial solutions to un-
banked communities that may not have access to traditional credit
evaluation methods. By leveraging alternative data sources, NLP tech-
niques can enhance the assessment of an individual’s creditworthiness
without the need for intrusive data collection methods, thereby offering
 more accessible and inclusive approach (see Table 11). In the realm

of business credit scoring, the extensive corpus of texts issued by or
elated to companies, including management reports, news articles, and
ocial media content, offers significant opportunities for gaining deeper
nsights into a company’s financial health [203].

Markov et al. [204] reviewed recent trends and considerations,
oting a sustained increase in research focused on credit scoring. The

research on NLP application in credit scoring can be broadly cate-
gorized into consumer credit scoring [205–207] such as default risk
and business credit scoring [208–210] such as default risk, corporate
distress and bankruptcy prediction [211]. Within the consumer credit
scoring category, the focus is predominantly on peer-to-peer (P2P)
lending, Wang et al. [205] proposed a novel consumer credit scoring
pproach using attention-based LSTM by incorporating the sequence

of events in the online user operation behavior data, outperforming
odels without the operation behavior data, suggesting the value of
ser actions for improved credit risk assessment. Kriebel and Stitz [206]
dopted machine learning and deep learning methods to predict the
isk of default using user-generated text such as the brief description of
hemselves and the reason for their loan request and the results indicate
hat the text provided by users is valuable for predictions. Netzer et al.
207] implemented text mining and machine learning techniques to
utomatically process and analyze raw text in loan requests, and the
indings indicated that incorporating textual information from the loan
nto the predictive model significantly enhances the prediction of loan

defaults. In terms of business credit scoring, Stevenson et al. [208] pro-
posed a deep learning approach using BERT to demonstrate the value of
ext for small business default prediction. Matin et al. [209] predicted
orporate distress using deep learning of text segments in annual re-
orts and Mai et al. [210] predicted corporate bankruptcy forecasting

using textual disclosures in annual reports. The credit scoring task is
formulated into a classification problem. The machine learning models
such as Multilayer Perceptron (MLP), Linear Discrimination Analysis
12 
(LDA), Logistic Regression (LR), Support Vector Machine (SVM), Ran-
dom Forest (RF) and XGBoost (XGB), and deep learning models, such
as Average Embedding Neural Networks (AE), CNN, RNN, LSTM, BERT
nd RoBERTa, are widely adopted.

3.7. Financial regulatory compliance monitoring

The potential of AI in enhancing financial regulatory compliance
monitoring is significantly bolstered by NLP technologies [216]. The
integration of NLP into financial regulatory compliance monitoring
as become increasingly transformative, potentially reshaping the land-
cape of regulatory compliance management [217]. Despite these ad-

vancements, research in specific application areas remains sparse. NLP
is applied to analyze communications within financial institutions to
ensure compliance with regulatory requirements. It examines emails,
chats, and documents for any suspicious content or language that
might suggest manipulative actions or insider trading, boosting the
surveillance effectiveness and proactively preventing potential breaches
of compliance [218]. Additionally, Al-Shabandar et al. [219] empha-
ized the importance of real-time monitoring of transaction data, the
dentification of anomalies, and the application of NLP to align reg-
latory rules with institutional data. Furthermore, Abualhaija et al.
220] introduced an automated approach for monitoring and analyzing
hanges in financial regulations.

3.8. Explainable AI in finance

The notion of explainability holds tremendous importance in highly
regulated domains such as finance where decisions can have significant
consequences [221,222]. Yeo et al. [223] has categorized the expla-
nation procedure into feature relevance, simplification, by example,
isual, and textual. Most studies in NLP in finance, such as credit scor-

ing, financial forecasting, and FSA, emphasize explainability through
visual, feature relevance, and simplification procedures. Specifically, in
visual explanation, Kumar et al. [224] introduced a method called Class
Enhanced Attentive Response (CLEAR), which utilizes deconvolution
on the penultimate layer before the output to create a visual attention
map. This method graphically highlights the periods with the highest
degree of attention by the stock-picking agent, along with a separate
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Table 11
Credit scoring.

Literature Data source Method Performance

Wang et al. [205] Online operation behavior data of borrowers Attentive LSTM AUC: 0.672, KS: 0.28
for peer-to-peer (P2P) lending

Kriebel and Stitz [206] Text such as brief description of themselves and RF, XGB, CNN, RNN, AE, BERT, AUC (Incl. text: 0.712,
the reason for their loan request provided by users Convolutional RNN, and RoBERTa Excl. text: 0.702)

Yang et al. [212] Personality mining from social media LDA, NB, SVM, MLP, and LR Precision: 0.8325, Recall: 0.9437
information of borrowers F1-Score: 0.8830, Accuracy: 0.8757

Stevenson et al. [208] Short description of the applicant’s business LR, RF, BERT AUC (New: 0.86, Existing: 0.88)
context, the requirement of the loan etc.

Netzer et al. [207] Text in loan requests LR, RF AUC: 0.7260
Gao et al. [213] Written description of the borrower’s financial Hypothesis testing Marginal effects are reported to

situation and purpose of the loan show statistical significance
Matin et al. [209] Corporate distress prediction using annual CNN-LSTM, XGB, LR AUC: 0.844, Log score: 0.1064

reports and financial
Mai et al. [210] Corporate bankruptcy prediction using textual CNN, LR, SVM, RF Accuracy: 0.712, AUC: 0.856

disclosures in annual reports
Ahmadi et al. [203] Corporate bankruptcy prediction using business Dependency Sensitive Cohen’s Kappa: 0.6544,

management reports Convolutional Neural Networks Accuracy: 0.8414, F1-Score: 0.8760
El-Qadi et al. [214] Comments including company description, LR, SVM, RF, XGB, LightGBM, F1-Score: LR-0.209, Accuracy: MLP-0.923

business context, and activities MLP Precision: RF-0.340
Nguyen and Huynh [215] Assess manager’s reflections towards company LR Pseudo R2: 0.2008

performance in financial reports
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plot corresponding to the sentiment class of the stock. Deng et al. [225],
on the other hand, applied knowledge graphs to visually link event
entities that are extracted from stock news, offering a graphical repre-
sentation of the relationships between features and their corresponding
predictions. In terms of feature relevance, Carta et al. [226] explored
he explainability of feature relevance by adopting various configura-
ions of a permutation importance technique to prune less significant
echnical indicators, followed by the implementation of decision tree
echniques for predicting stock market trends. The proposed method
as found to be more reliable than LIME. Similarly, Ong et al. [227]
sed aspect-based sentiment analysis to investigate the correlation

between stock price movements and key aspects identified in tweets,
determining the sentiment of each aspect through a SenticNet-based
graph convolutional network (GCN) [228]. This approach mirrors the
feature relevance technique, with its focus on identifying key con-
tributing aspects and their associated polarity values, emphasizing
the interplay among financial variables rather than direct financial
forecasting. For simplification procedure, Bandi et al. [229] combined
sentiment analysis and technical analysis to develop a random forest
model for stock forecasting, explained through LIME. Moreover, Gite
et al. [230] employed LIME together with the LSTM-CNN model to
ffectively identify keywords that align with the target sentiment. In

related work, Yuan and Zhang [231] adopted GPT-2 [232] for generat-
ing text explanations, incorporating specific keywords in the generated
text. The presented method, named SC-DBA (soft-constrained dynamic
beam allocation), uses a distinct network designed for analyzing news
titles to extract keywords associated with different tiers of anticipated
market volatility. The efficacy of the proposed method is evaluated,
based on the fluency and practical relevance of the generated expla-
nation. Specifically for NLP, Danilevsky et al. [233] categorized XAI
for NLP into local versus global and self-explaining versus post-hoc,
with explainability techniques including feature importance, surro-
gate model, example-driven and provenance-based, and declarative
induction.

3.9. ESG and sustainable finance

Lim [234] conducted an extensive review of ESG and AI in the
finance sector. However, our primary interest lies in the application of

LP techniques within this domain. While research like that of Capelli
t al. [235], which integrates structured ESG data into financial fore-

casting, falls within the broader category of ESG and AI in finance,
it does not align with our specific focus on NLP methodologies. The
NLP research in ESG and sustainable finance encompasses two primary
 a

13 
streams, which have attracted researchers from both academia [236]
and industry [237–240]. The first focuses on ESG disclosure, measure-
ment, and governance including the identification of ESG topics and
issues [236,241–245], addressing how NLP can enhance transparency,
accuracy, and effectiveness in reporting and managing ESG criteria.

he second stream explores the integration of ESG factors into broader
inancial applications, seeking innovative ways to incorporate ESG con-
iderations into sentiment analysis [246], portfolio management [247],

and risk management [248–251] etc. This distinction emphasizes the
role of NLP in enhancing the ESG reporting framework and its potential
to weave ESG considerations into the broader landscape of financial
decision-making and product development.

Table 12 presents the research on NLP in ESG and sustainable
finance. From the standpoint of NLP techniques, the fine-tuning of
transformer-based models for ESG criteria has emerged as a prominent
area of research [239,244,251]. Specifically, Raman et al. [240] used
pre-trained BERT, XLNet, and RoBERTa to analyze the transcripts of
corporate earning calls and detect historical trends of ESG discus-
sions. Mehra et al. [251] proposed ESGBERT for classification tasks
related to corporate ESG practices. Chen et al. [236] adopted BERT-
like language models with data augmentation for multi-lingual ESG
ssue identification. The same ESG issue identification task is per-
ormed by Glenn et al. [237] using synthetic data and transfer learning

and Wang et al. [238] by contrastive learning with BERT.

3.10. NLP for digital assets

Another promising application of NLP in finance is within the realm
f digital assets. NLP for digital assets is a distinct area of application,
eflecting our belief in NLP’s potential to significantly influence the
andscape of digital assets. Over the past decade, there has been an

explosion of digital assets and digitalization of financial services [258].
Cryptocurrencies and Non-Fungible Tokens (NFTs) represent two of
the most significant types of digital assets. Cryptocurrencies, or digital
currencies, leverage cryptographic techniques to offer secure and de-
centralized financial transactions. Bitcoin (BTC) and Ethereum (ETH)
are the most well-known cryptocurrencies. On the other hand, NFTs,
hare the digital token format with cryptocurrencies but differ signif-
cantly in their nature and usage. Unlike cryptocurrencies, which are
ungible and can be exchanged on a one-to-one basis like traditional
oney, NFTs are inherently unique and cannot be exchanged on a like-

or-like basis. This uniqueness allows NFTs to represent ownership of
pecific, often one-of-a-kind digital items such as artwork, collectibles,
nd even real estate in virtual worlds. Both cryptocurrencies and NFTs
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Table 12
NLP in ESG and sustainable finance.

Literature Task Method Performance

Guo et al. [248] Predict stock volatility BERT, Bayesian Model Ensemble RMSE (MSCI-US: 0.289, AC-EU: 0.281)
MAE (MSCI-US: 0.249, AC-EU: 0.241)

Apel et al. [249] Approximate changes in transition risk
from climate-related news events

BERT and multivariate regression Significance is observed for pure-play
and decarbonized indices

Jan [250] Detect information asymmetry for RNN, LSTM Accuracy: 0.9488, F1-Score: 0.9231,
sustainable development AUC: 0.9586

Mehra et al. [251] Classify environmental score change BERT Accuracy for Change/No Change: 0.6709
Accuracy for Positive/Negative: 0.793

Sandwidi and Mukkolakal [246] ESG aspect-oriented sentiment analysis RoBERTa, ESG fine-tuning,
Attention Augmentation

Accuracy: 0.9130, F1-Score: 0.9020

Koloski et al. [241] Classify financial texts as sustainable or
unsustainable

Knowledge-based latent heterogeneous
representation

Precision: 0.90, Recall: 0.89, F1-Score:
0.89

Chen et al. [236] Identify multi-lingual ESG issue BERT-like models with data
augmentation

F1-Score (English: 0.69,

French: 0.78, Chinese: 0.392)
Haase and Sassen [252] Uncover lobbying strategies in

sustainable finance disclosure regulations
Pre-trained hierarchical topic model Metadata helps to identify stakeholders

and lobbying strategies
Kouloukoui et al. [243] Analyze tweets and identify the network

of ESG topics and their trend
Structural topic model The popularity of Twitter as a platform

to discuss CSR and ESG issues, clean
and cleaner production has increased
significantly

Lee et al. [253] Classify E, S, or G using ESG documents
and calculate ESG rating

BERT, RoBERTa, ALBERT Accuracy: 0.8030, Recall: 0.79,
Precision: 0.79, F1-Score: 0.79

Schimanski et al. [254] Classify Environment, Social, Governance FinBERT-ESG Accuracy: (E: 0.957, S: 0.934, G: 0.897)
Sokolov et al. [255] ESG categorization BERT AUC: 0.88 to 0.97, AUPR: 0.19 to 0.76
Pasch and Ehnes [239] Classify ESG behavior Fine-tuning transformer models for ESG Accuracy: 0.79, F1-Score: 0.78
Raman et al. [240] Detect historical trends of ESG discussion BERT, XLNet and RoBERTa Accuracy: 0.782, F1-Score: 0.784
Nugent et al. [244] Detect ESG topics BERT, Data Augmentation Precision: 0.84, Recall: 0.84, F1-Score:

0.84
Huang et al. [256] Classify ESG-related discussion FinBERT Accuracy: 0.895, Precision: 0.90

Recall: 0.895, F1-Score: 0.896
Fan and Wu [257] Study effect of environmental regulations

on firm valuation and policies
Multivariate regression Stricter EPA regulations reduce pollution

and increase firm innovation, especially
green innovation
operate on blockchain technology, ensuring transparency, security, and
ermanence in transactions and ownership records.

Research in NLP for digital assets primarily focuses on predict-
ng trends in the cryptocurrency market and providing insights into
he NFTs market. Cryptocurrencies have seen unprecedented value

growth, surpassing significant historical bubbles [259]. Recent studies
have deep-dived into cryptocurrency market dynamics, as shown in
Table 13, focusing on causality and correlation to understand behav-
or over time [260–262]. It has been shown that investor sentiment
lays a crucial role in predicting returns of major cryptocurrencies,

with nonlinear effects [263]. A hidden Markov Model was developed
to predict market trends, based on sentiment, trading volume, and
rice, finding that markets react differently to sentiments depend-
ng on the overall market condition; however, this research focused
olely on Bitcoin [264]. Another study employed an LSTM-based RNN
odel to analyze Chinese social media sentiment’s impact on cryptocur-

ency prices, showing improved precision and recall over traditional
utoregressive models [265].

In terms of market insights for NFTs, Leitter and Cambria [266]
nalyzed 200,000 tweets about NFTs using state-of-the-art neurosym-

bolic AI tools, which aims to decode the drivers of online conversations
and sentiments surrounding NFTs, thereby uncovering factors that
contribute to their perceived value. Additionally, Meyns and Dalipi
[267] examined the human perceptions of, or attitudes towards, NFTs,
pecifically aiming to identify concerns expressed by social media users
ngaged with NFTs on Twitter.

3.11. Benchmarks and evaluation metrics

We summarize the common benchmark datasets and evaluation
metrics for various applications in Table 14. The first type of met-
rics measures the closeness between the predicted value and ground
truth in the context of a regression task. The popular metrics include
14 
Weighted Cosine Similarity (WCS), Mean Squared Error (MSE), Mean
Absolute Percentage Error (MAPE), and coefficient of determination or
R-squared (𝑅2).

WCS =
|𝑃 |
|𝐺|

×
∑𝑛

𝑖=1(𝐺𝑖 × 𝑃𝑖)
√

∑𝑛
𝑖=1(𝐺

2
𝑖 ) ×

√

∑𝑛
𝑖=1(𝑃

2
𝑖 )

(1)

where P is the vector of scores predicted by the model and G is the
vector of ground truth scores.

MSE = 1
𝑛

𝑛
∑

𝑖=1
(𝑦𝑖 − 𝑦𝑖)2 (2)

MAPE = 1
𝑛

𝑛
∑

𝑖=1
|

𝑦𝑖 − 𝑦𝑖
𝑦𝑖

| (3)

where 𝑦𝑖 is the gold standard score and 𝑦𝑖 is the score predicted by the
model.

𝑅2 = 1 −
∑𝑛

𝑖=1(𝑦𝑖 − 𝑦𝑖)
∑𝑛

𝑖=1(𝑦𝑖 − 𝑦𝑖)
(4)

where 𝑦𝑖 is the gold standard score and 𝑦𝑖 is the score predicted by the
model.

The second type of metrics measures the categorical accuracy be-
tween predicted value and ground truth in the context of classification
tasks. The popular metrics include Accuracy, Matthews Correlation
Coefficient (MCC), Area Under the Curve (AUC), F1-Score, and the
more generalized 𝐹𝛽 -Score where 𝛽 can be 1 and 2 for instance.

Accuracy = 𝑇 𝑃 + 𝑇 𝑁
𝑇 𝑃 + 𝐹 𝑃 + 𝑇 𝑁 + 𝐹 𝑁 (5)

MCC = 𝑇 𝑃 × 𝑇 𝑁 − 𝐹 𝑃 × 𝐹 𝑁
√

(𝑇 𝑃 + 𝐹 𝑃 ) × (𝑇 𝑃 + 𝐹 𝑁) × (𝑇 𝑁 + 𝐹 𝑃 ) × (𝑇 𝑁 + 𝐹 𝑁)
(6)

TPR = TP
TP + FN (7)

FP
FPR = FP + TN (8)
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Table 13
NLP for cryptocurrency market.

Literature Data source Method Task Performance

Shen et al. [260] Twitter Granger causality test Volume, return and realized volatility Significant for Bitcoin RV and volume
Vector Autoregression

Kraaijeveld and De Smedt [261] Twitter Granger causality test Cryptocurrency price return Significant predictive power (p < 0.05) on
Bitcoin, Bitcoin Cash and Litecoin

Gao et al. [268] Twitter Regression Return and volatility Sentiment from Twitter can predict Bitcoin
returns and volatility, based on significance level

Kim et al. [264] Google Trends Hidden Markov Model Market movement prediction Accuracy: 54%, AUC: 52%
Twitter

Huang et al. [265] Sina-Weibo Autoregression, LSTM Market movement prediction Precision: 87%, Recall: 92.5%
Saha et al. [269] Twitter LSTM Financial sentiment, Sentiment: Accuracy: 0.8352, F1-Score: 0.8515

BTC volume correlation BTC Volume: Pearson’s R: 0.1584
Oikonomopoulos et al. [262] Twitter Granger causality test Price MAPE: 0.0038

Vector Autoregression
Table 14
Benchmarks and evaluation metrics.

Research topic Benchmark dataset Common evaluation metrics

Financial sentiment analysis PhraseBank, SemEval 2017 Task 5, Accuracy, MCC, F1-Score, WCS, MSE, 𝑅2

FiQA Task 1, StockSen, SentiEcon GS-1000,
SEntFiN, FinLin, Twitter Financial News

Financial forecasting BIGDATA22, ACL18, CIKM18, EDT Accuracy, MCC, F1-Score, WCS, MSE, MAE, 𝑅2

Portfolio management No public benchmark dataset has been identified MAE, Accuracy, MCC, Return, Sharpe ratio, Sterling Ratio, Sortino Ratio
Financial narrative processing FNP, FINDSum, ECTSum, EDT, ROUGE, F1-Score, Precision, Recall, Silhouette Coefficient, Dunn Index

CGRAPH, REFinD, Chinese FinNER
Question answering, virtual assistant ConvFinQA, FinQA, TAT-QA, PACIFIC Accuracy, Exact Match, Numeracy-focused F1-Score, ROUGE
and chatbot
Risk management No public benchmark dataset has been identified Accuracy, F1-Score, Precision, Recall, AUC, AUPRC, Kendall’s Tau,

Spearman’s Rho, 𝑅2, MSE, NMAE, NLL, Cohen’s Kappa
Regulatory compliance monitoring No public benchmark dataset has been identified No common metrics has been identified
ESG and sustainable finance FinSim-ESG Accuracy, AUC, F1-Score, Precision, Recall, RMSE, MAE
Explainable AI in finance No public benchmark dataset has been identified No common metrics has been identified
NLP for digital assets No public benchmark dataset has been identified Accuracy, AUC, F-Score, MAPE, Pearson’s Correlation Coefficient
b
e
F

c
d

AUC = ∫

1

0
TPR 𝑑(FPR) (9)

Recall = TP
TP + FN (10)

Precision = TP
TP + FP (11)

F1-Score = 2 × Precision × Recall
Precision + Recall (12)

𝐹𝛽 -Score = (1 + 𝛽2) × Precision × Recall
(𝛽2 × Precision) + Recall

(13)

In addition, Recall-Oriented Understudy for Gisting Evaluation
ROUGE) is widely employed in assessing the quality of automatic

summarization, machine translation and question answering. ROUGE-
 evaluates the overlap of individual words between the generated
ext (i.e., candidate) and a reference. ROUGE-2, on the other hand,
easures the overlap of bigrams. ROUGE-N generalizes this approach

o N-grams, which can include both unigrams (one word) and bigrams
(two words). Lastly, ROUGE-L focuses on the Longest Common Subse-
quence, assessing the longest sequence of words that appears in both
the generated text and the reference in the same order. Given candidate
𝐶 and reference 𝑅, 𝑂_𝑐 𝑟 represents the number of overlapping N-grams,
𝐿_𝑐 𝑟 represents the longest common subsequence, 𝑁_𝑐 is the number of
N-grams in candidate and 𝑁_𝑟 is the number of N-grams in reference,
ROUGE-N and ROUGE-L metrics can be calculated as follows:

Recall𝑅𝑂 𝑈 𝐺 𝐸−𝑁 = 𝑂_𝑐 𝑟
𝑁_𝑟 (14)

Precision𝑅𝑂 𝑈 𝐺 𝐸−𝑁 = 𝑂_𝑐 𝑟
𝑁_𝑐 (15)

F1-Score𝑅𝑂 𝑈 𝐺 𝐸−𝑁 = 2 × Precision𝑅𝑂 𝑈 𝐺 𝐸−𝑁 × Recall𝑅𝑂 𝑈 𝐺 𝐸−𝑁
Precision𝑅𝑂 𝑈 𝐺 𝐸−𝑁 + 𝑅𝑒𝑐 𝑎𝑙 𝑙𝑅𝑂 𝑈 𝐺 𝐸−𝑁

(16)

Recall = 𝐿_𝑐 𝑟 (17)
𝑅𝑂 𝑈 𝐺 𝐸−𝐿 𝑁_𝑟

15 
Precision𝑅𝑂 𝑈 𝐺 𝐸−𝐿 = 𝐿_𝑐 𝑟
𝑁_𝑐 (18)

F1-Score𝑅𝑂 𝑈 𝐺 𝐸−𝐿 = 2 × Precision𝑅𝑂 𝑈 𝐺 𝐸−𝐿 × Recall𝑅𝑂 𝑈 𝐺 𝐸−𝐿
Precision𝑅𝑂 𝑈 𝐺 𝐸−𝐿 + 𝑅𝑒𝑐 𝑎𝑙 𝑙𝑅𝑂 𝑈 𝐺 𝐸−𝐿

(19)

Exact-match accuracy (EM) and numeracy-focused F1 are intro-
duced into the evaluation of question answering. EM is set to 1 when
the characters of the prediction exactly match the characters of (one of)
the true answer(s), otherwise will be 0. Numeracy-focused F1 defines
F1 to be 0 when there is a number mismatch between the gold and
predicted answers, regardless of other word overlap. In addition to
execution accuracy, Chen et al. [154] also proposed program accuracy,
y replacing all the arguments in a program with symbols, and then
valuating if two symbolic programs are mathematically equivalent.
or example, the following two programs are equivalent programs:

add(𝑎1, 𝑎2), add(𝑎3, 𝑎4), subtract(#0, #1)
add(𝑎4, 𝑎3), add(𝑎1, 𝑎2), subtract(#1, #0)

For ranking tasks, Kendall’s Tau (𝜏) and Spearman’s Rho (𝜌) are
ommonly used non-parametric metrics to measure the strength and
irection of the association between two ranked variables.

𝜏 =
𝑛𝑐 − 𝑛𝑑
1
2 𝑛(𝑛 − 1)

(20)

where 𝑛 represents the sample size, 𝑛𝑐 is the number of concordant
pairs, and 𝑛𝑑 is the number of discordant pairs.

𝜌 = 1 − 6
∑𝑛

𝑖=1 𝑑
2
𝑖

𝑛(𝑛2 − 1) (21)

where 𝑑𝑖 is the difference in rankings for each object 𝑖, 𝑖 ∈ {1, 2,… , 𝑛}.
Portfolio management involves comparing the returns of an in-

vestment against its associated risks. Commonly used metrics for this
purpose include the Sharpe ratio, Sterling Ratio, and Sortino Ratio,
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which are employed to evaluate the effectiveness of the proposed
portfolio selection strategy. Given 𝑅𝑝 the return of a portfolio, 𝑅𝑓 the
risk-free rate, 𝜎𝑝 the standard deviation of the portfolio’s excess return,
and 𝜎𝑑 the standard deviation of the downside.

Sharpe Ratio =
R𝑝 − R𝑓

𝜎𝑝
(22)

The Sterling Ratio evaluates the risk-adjusted returns of an invest-
ent by focusing on drawdowns rather than volatility.

Sterling Ratio =
R𝑝 − R𝑓

Average Annual Max Drawdown (23)

The Sortino ratio, a modified version of the Sharpe ratio, dis-
tinguishes detrimental volatility from overall volatility by using the
tandard deviation of negative returns in a portfolio.

Sortino Ratio =
R𝑝 − R𝑓

𝜎𝑑
(24)

4. Main findings

The application of NLP in the financial sector has been transfor-
ative across various facets, from enhancing operational efficiencies

o enabling more personalized customer engagements and improving
trategic decision-making processes. We summarize our main findings
rom the following aspects.

4.1. Growing importance of NLP in finance

To address our first research question: What are the key drivers
behind the increasing importance of NLP in the finance sector, and how
do these drivers address the unique challenges and opportunities within
this industry? The growing importance of NLP in the finance sector is
driven by several key factors. First, the exponential growth in data,
including unstructured data from financial documents, news, reports,
social media, etc, necessitates sophisticated tools like NLP for efficient
data processing and insight generation. Second, the advancement of
NLP technologies, particularly from pre-trained language models to
large language models, plays a crucial role in propelling the use of NLP
in finance. NLP enables enhanced financial forecasting and sentiment
analysis, allowing firms to make more informed decisions. Additionally,
the complexity and volume of financial regulations demand advanced
solutions for compliance monitoring, where NLP can automate and
streamline the extraction and management of pertinent information.
Moreover, as financial services increasingly move towards digital in-
terfaces, NLP-powered virtual assistants and chatbots are essential for
improving customer interaction and service efficiency. Lastly, the need
for transparency and better risk management prompts the integration
of NLP in areas like fraud detection and financial risk prediction, help-
ing firms identify potential threats faster and with greater accuracy.
These drivers collectively address the unique challenges of managing
vast amounts of diverse data, ensuring compliance, enhancing user
engagement, and bolstering security in the finance industry.

4.2. Stages of maturity and adoption of NLP in finance

To address our second research question: How has NLP transformed
financial services and products from the past to the present, and what
are the anticipated future developments in this area? What emerging
areas of application for NLP in finance are being explored, and what
potential do these areas hold for the future of financial services? We
assess the stages of maturity and adoption of various NLP applications
in finance as shown in Fig. 3. We aim to evaluate their potential to
address real-world business challenges and to identify new opportuni-
ies for innovation and growth within the financial sector. Currently,
 i

16 
NLP in XAI in finance, portfolio management, ESG and sustainable
finance, and financial forecasting are at the initial awareness stage, and
have garnered significant enthusiasm for their potential to drive tech-
nological breakthroughs, although their practical impact may not yet be
ully realized. Generative AI, particularly promising in wealth manage-
ent, has the capability to revolutionize the industry by synthesizing

nformation and creating personalized advisory services and investment
trategies. Meanwhile, NLP applications in financial risk prediction,
inancial regulatory compliance monitoring, fraud detection, and credit
coring are now undergoing a more realistic assessment of their chal-
enges and limitations during operational integration, striving to meet
he expectations for accuracy and reliability of early adopters. NLP

technologies, such as financial sentiment analysis, information extrac-
tion, financial text summarization, QA systems, and virtual assistants,
and chatbots, are beginning to demonstrate clear benefits for enter-
prises and are becoming more widely understood, analyzing financial
documents and markets, supporting decision-making processes across
the finance sector.

4.3. Trends, challenges, and opportunities

To address our third research question: What are the prevailing
trends in NLP research within the finance sector, and how do these
trends reflect the evolving challenges and opportunities in the field? We
summarize the trends, challenges, and opportunities from the following
key perspectives.

4.3.1. Increasing reasoning capabilities
The ability to perform complex numerical reasoning and understand

eterogeneous representations is particularly important in the finance
omain. Financial data encompasses a broad spectrum of formats and
ontent types, from numerical tables to varied textual documents. As
uch, NLP models operating within the finance domain must not only
arse and interpret the data but also reason across. Applications such

as QA demand the ability to infer answers from fragmented or implicit
data, while FSA requires models to assess the sentiment and potential
market impacts of nuanced textual information. Similarly, tasks like
financial textual summarization and information extraction call for the
capacity to distill and synthesize essential information from extensive
textual and numerical data efficiently. Hence, increasing the reasoning
capabilities of NLP models is crucial, as it enhances their ability to
make informed decisions and predictions by effectively navigating and
integrating the complex, multi-faceted landscape of financial data.

4.3.2. Understanding tabular and textual data
The application of NLP in finance demands adept handling of both

tabular and textual data, reflecting the complex nature of financial
information which encompasses both structured numerical data and
unstructured textual content. Tabular data, which includes financial
atios, stock prices, and transaction histories, provides essential quan-
itative insights fundamental to financial analysis. On the other hand,
extual data from news articles, financial reports, and regulatory fil-
ngs introduces qualitative information that can profoundly influence
arket movements and investment strategies. This combination of

apabilities enables NLP to not only extract meaningful insights from
he vast and varied data streams but also enhance more nuanced
nd context-aware financial decision-making. Current research in fields
uch as QA, FSA, and FNP focus on advancing these capabilities,
mproving how models comprehend and integrate both forms of data
n financial contexts.
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Fig. 3. Stages of maturity and adoption of NLP in finance.
c

4.3.3. Leveraging large language models
Generative AI, particularly LLMs, is revolutionizing the financial

sector by automating complex decision-making processes, personalizing
customer experiences, synthesizing information, generating financial
insights, and providing advisory services [270]. By leveraging vast
tructured and unstructured datasets, they not only enhance opera-
ional efficiency but also drive the creation of innovative financial

products and services, transforming banking into a more agile and
ustomer-centric industry. LLMs are reshaping the landscape of NLP

in finance [271–273], influencing areas from FSA, FNP to QA, Virtual
ssistant and Chatbot. Advancements in prompt engineering, retrieval-
ugmented generation (RAG), and multi-agent systems are demon-
trating significant potential for use in industry. Additionally, ongoing
esearch is addressing challenges faced by LLMs, such as hallucination,
nhancing the ability of NLP systems to generate contextually relevant
nd highly precise responses in complex financial scenarios.

4.3.4. Capturing the sustainability wave
Leveraging NLP to sift through the massive volumes of ESG data

facilitates informed decision-making for sustainability investments and
nsures compliance with evolving regulatory frameworks. This critical
pplication of NLP is pivotal in aligning financial strategies with global

sustainability objectives. By focusing primarily on the utilization of NLP
methodologies within the finance sector, we identify two main research
treams in the domain of ESG and sustainable finance. The first stream

emphasizes ESG disclosure, measurement, and governance, spotlighting
the role of NLP in enhancing transparency, accuracy, and effectiveness
in reporting and managing ESG criteria. The second stream delves into
he integration of ESG factors into broader financial applications such
s sentiment analysis, portfolio management, and risk management.
his highlights the transformative potential of NLP to embed ESG
onsiderations seamlessly into the financial decision-making process
17 
and product development, thereby promoting a more sustainable and
transparent financial landscape.

4.3.5. Transforming portfolio management
NLP is potentially revolutionizing the field of portfolio management

by enhancing the speed and intelligence of decision-making processes.
It enables real-time data processing and analysis, offering predictive
insights that refine investment strategies using current market data and
trends. An essential application of NLP is in portfolio optimization,
where it analyzes quantitative and qualitative data to identify the best
investment mix to maximize returns or minimize risk. Techniques such
as Gaussian inverse reinforcement learning are employed to model
investor sentiments and market dynamics, enabling the development
of trading systems that effectively filter out market noise. Additionally,
strategies, e.g., PROFIT and SARL utilize financial news and social me-
dia to optimize trading decisions, showing marked improvements over
traditional benchmarks. Furthermore, NLP models incorporate senti-
ments from investor posts and public moods online, enhancing stock
market investments and portfolio allocations. This sentiment-driven
approach not only aligns with dynamic market conditions but also con-
sistently outperforms equal-weighted strategies. Advanced models, e.g.,
time-aware LSTM and those using BERT for sentiment analysis, have
proven their efficacy by significantly surpassing conventional methods
in predicting stock returns and managing portfolio risks. The integra-
tion of these innovative NLP strategies into portfolio management is
setting new standards for achieving superior financial outcomes.

4.3.6. Improving risk management and regulatory compliance monitoring
NLP is transforming the landscape of financial risk management and

regulatory compliance monitoring. By leveraging the rich information
ontained in various financial documents, such as earnings calls, finan-

cial reports, and social media data, NLP facilitates more precise and
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predictive risk assessment models. In financial risk prediction, studies
have leveraged sentiment analysis and textual features from financial
reports, news, and earnings calls to forecast stock volatility and fi-
nancial risk with notable accuracy. For instance, models that utilize
sentiment from financial statements have shown strong correlations
with financial risk indicators, thereby improving prediction capabilities
over traditional models. In fraud detection, NLP techniques analyze
vast arrays of unstructured data, such as transaction narratives and
corporate financial statements, to identify suspicious patterns indicative
of fraudulent activities. Innovative NLP applications like transformer
models and knowledge graphs have demonstrated enhanced effec-
tiveness in detecting complex financial fraud scenarios. Furthermore,
NLP has introduced new methodologies in credit scoring by assessing
individuals’ digital footprints, providing inclusive financial solutions
especially beneficial to unbanked populations. Additionally, in the
realm of regulatory compliance, NLP has been instrumental in moni-
toring internal communications within financial institutions, ensuring
adherence to regulatory norms, and proactively preventing compliance
breaches. Through these applications, NLP not only enhances the pre-
cision and efficiency of risk and compliance management processes but
also supports more informed decision-making in the finance sector.

4.3.7. Augmenting algorithmic trading
Natural language-based financial forecasting augments the land-

cape of algorithmic trading by enabling the rapid processing and
ntegration of financial documents, news, and social media content,

thereby improving model performance. This allows trading systems to
quickly capitalize on market movements driven by real-time events,
significantly enhancing the speed and effectiveness of trading strate-
gies. Natural language-based financial forecasting in this area includes
forecasting in stock, foreign exchange, cryptocurrency, options pricing,
firm valuation, etc. A significant trend involves incorporating com-
pany relationships into financial forecasting models, refining methods
for preprocessing textual data, and enhancing data representation. By
analyzing textual data from diverse sources, NLP helps in identifying
sentiment and key information that directly impacts financial markets,
and predict market signals, enabling algorithmic traders to execute
more timely and informed trades, based on the latest news and social
media trends, leading to potentially higher returns and more robust
trading strategies. From this perspective, NLP serves as a powerful tool
in the arsenal of modern algorithmic trading, bridging the gap between
unstructured data and actionable trading insights.

4.3.8. Enhancing financial narrative processing
Financial text summarization and information extraction are two

rimary application areas of FNP, each significantly enhancing oper-
ational efficiency. A prominent trend in financial text summarization
is the increasing reliance on both extractive and abstractive tech-
iques, with extractive methods particularly dominant in sentence
r section-level summarization using pre-trained language models. A
ey challenge in this field stems from the repetitiveness and density
f financial texts, which complicate the summarization process. To
ddress this, researchers have proposed models that focus on extracting
nd summarizing key narrative sections rather than entire reports, thus
mproving the relevance and utility of summaries. The integration of
xtractive and abstractive methods, capitalizing on the strengths of
oth, has shown considerable potential. Innovative approaches such as
einforcement learning models and pointer networks, which combine
he extraction of key sentences with advanced paraphrasing techniques,
re showing promise. Additionally, the use of LLMs for narrative sec-
ion identification and summarization is emerging as a powerful tool,
nhancing the quality of financial report summaries. There is also a
rowing interest in developing specialized datasets and methods for
ummarizing diverse financial document formats, such as earnings call
ranscripts, which could further refine the precision and applicability

f financial text summarization technologies.

18 
In the field of information extraction, a key trend is leveraging
re-trained language models like BERT, RoBERTa, and GPT for tasks
uch as event extraction and financial relation identification, which are
emonstrating promising results in improving the accuracy and depth

of extracted information, with knowledge graphs further enhancing
the models’ contextual understanding. The challenges include handling
the complex, dispersed information typical of financial texts and the
esource-intensive nature of creating well-annotated datasets necessary

for effective model training. However, there is potential for expanding
the use of weakly supervised and unsupervised learning methods to
reduce dependency on extensive labeled datasets. Exploring multi-
task learning frameworks that simultaneously perform classification,
detection, and summarization of financial events can lead to more
efficient processing of financial documents. Moreover, the development
of methods for detecting causality, such as those using predictive causal
graphs, offers new avenues for understanding the intricate dynamics of
financial markets, providing insights into cause-and-effect relationships
crucial for market prediction. Lastly, automated financial reporting and
financial statement analysis using NLP, particularly with LLMs, has also
emerged as a promising area of research.

4.3.9. Robustness and trustworthiness
NLP technologies have undergone significant advancements, be-

oming increasingly sophisticated to address the specialized linguistic
hallenges inherent in the financial sector. This progression enhances

precision and resilience, leading to reduced operational risks associ-
ated with errors and biases. As NLP systems evolve, their ability to
understand and process complex financial jargon and semantics im-
proves, thereby enhancing decision-making processes and compliance
monitoring in finance. Trustworthiness forms a crucial pillar in evalu-
ating AI systems within the financial industry. It measures the extent
o which AI models and algorithms can be relied upon to function
s expected, make decisions that are both accurate and ethical, and

mitigate potential adverse impacts. This concept is closely associated
with ‘‘Intention Awareness’’, which pertains to the AI’s capability to
align its operations with intended goals. However, trustworthiness also
encompasses explainability and interpretability, key aspects of what
is often referred to as XAI. In finance, XAI facilitates transparency
by enabling stakeholders to understand and trust the decision-making
processes of AI systems, thus bridging the gap between complex AI
operations and user-friendly outputs. These advancements signify a
pivotal shift towards more reliable and accountable NLP applications
in the financial sector, paving the way for broader acceptance and
integration of AI technologies in high-stakes environments. Lastly, the
presence of algorithmic bias, which inherits biases from the training
data, can lead to decisions that disproportionately impact certain indi-
viduals and groups such as credit scoring. Consequently, the pursuit of
fairness and equity in models is crucial within financial services. Lastly,
the robustness and trustworthiness also extend to considerations of data
privacy and security, especially when managing sensitive compliance-
related data, which requires robust measures to ensure data privacy and
prevent unauthorized access, safeguarding integrity and confidentiality.

4.3.10. NLP system implementation
This section zooms into the practical aspects of NLP system imple-

mentation, focusing on data and platform integration, process integra-
ion, risk management, regulatory compliance, data privacy, scalability
nd performance, ethics and fairness, and ROI estimation. Firstly, fi-

nancial institutions are expected to seamlessly integrate both structured
and unstructured data sources into their enterprise data platforms. This
requires the development of robust data ingestion and preprocessing
pipelines that cleanse, normalize, and prepare data for NLP systems.
Integrating these platforms necessitates compatibility with existing IT
infrastructures, which may require upgrading legacy systems or deploy-
ing new middleware solutions. Next, integrating NLP systems into the

routine workflows of financial institutions demands forward planning.
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It is crucial to synchronize NLP systems with established business
processes. Adopting change management strategies is essential to facili-
tate smooth transitions and foster user acceptance, ensuring the benefits
of NLP technologies are fully realized. Additionally, implementing NLP
systems introduces new risks associated with data accuracy, algorithmic
bias, and system reliability. Comprehensive risk management protocols
must be established to mitigate these issues. This includes continuous
model monitoring, periodic updates to models to reflect evolving data,
and implementing fallback mechanisms to prevent system failures.
Another key consideration is regulatory compliance, which requires
NLP systems to be developed with an awareness of the regulatory
frameworks governing financial institutions. Compliance with finan-
cial regulations, data protection laws, and international standards is
paramount. In terms of data privacy, financial institutions must pri-
oritize the safeguarding of sensitive information. NLP systems should
be designed to anonymize and secure personal data, ensuring com-
pliance with stringent data protection laws. Integrating robust data
privacy measures into system design and operations is essential, un-
derpinned by clear policies and procedures to prevent data breaches
and unauthorized access. Scalability and performance are also crucial
for NLP systems. As financial institutions manage ever-larger datasets
and require faster processing for timely decision-making, scalability
and performance are paramount. NLP systems must be designed to
efficiently handle scalability, ensuring they can accommodate increas-
ing data volumes without compromising performance. This involves
leveraging scalable cloud infrastructures, employing efficient data stor-
age solutions, and utilizing advanced algorithms capable of high-speed
data processing. Moreover, the deployment of NLP systems must also
consider ethical implications and strive for fairness in automated de-
cisions. Financial institutions should develop frameworks that ensure
NLP models are devoid of biases that may lead to discriminatory
treatment, based on demographic factors. Regular audits and updates
of models to identify and rectify biases, coupled with transparency
in decision-making processes, are essential for upholding fairness and
ethical standards in automated systems. Lastly, the ROI estimation and
economic value of NLP systems need to be measured, potentially from
perspectives of revenue impact and productivity gains.

4.3.11. Future directions
The landscape of NLP in finance is poised for transformative ad-

ancements with several emerging areas ripe for exploration. The
doption of time series transformers (TST) in financial forecasting
ignifies a significant advancement in the modeling of financial time
eries data. TST models, known for their ability to capture complex tem-

poral relationships, promise to greatly enhance forecasting accuracy,
especially in volatile financial environments. Reinforcement learning
is emerging as a potent tool for portfolio management, leveraging dy-
namic decision-making to optimize investment strategies in real time.
This approach could revolutionize portfolio management by continu-
usly learning and adapting to new market conditions. Neuro-symbolic
I presents a compelling frontier, integrating the interpretability of

symbolic AI with the learning capabilities of neural networks. This
hybrid approach is particularly promising for complex financial tasks
that require both deep learning for pattern recognition and symbolic
reasoning for rule-based decision-making. In the realm of QA systems,
nhancing numerical reasoning capabilities to interpret and answer
ueries involving textual and tabular data is crucial. This will im-
rove decision-making processes by providing precise and contextually
elevant answers to financially oriented questions. FNP is another
romising area, where the accuracy of information extraction and
ummarization from financial texts can be greatly enhanced. The in-
egration of knowledge graphs into NLP models could enable more so-
histicated processing of financial narratives, identifying relationships
nd insights that are not readily apparent.

Fine-grained FSA within financial documents can be targeted more
precisely with NLP, focusing on specific aspects such as market trends,
19 
corporate performance, or economic indicators, thus providing more
uanced sentiment insights that are crucial for investment decisions.

Lastly, in the realm of compliance, there is a growing need to demon-
strate the effectiveness of NLP applications. Explainable AI models
in particular are crucial in finance, where stakeholders require clear,
understandable explanations for automated decisions to ensure compli-
ance with regulatory standards and to build trust in AI-driven processes.
Overall, the application of NLP in finance is transitioning from its
initial, task-driven early stages to a more in-depth exploration and
adoption of innovative algorithms. This evolution enhances the sys-
tem’s ability to effectively handle complex data, thereby improving
functionality and precision in financial contexts.

5. Conclusion

This survey conducted a comprehensive review of research in NLP in
finance, targeting researchers, practitioners, and industry professionals.
We began with the basic structure of an IMF industry report and
expanded to include a detailed review of research literature. This
review serves as a reference for both researchers and practitioners,
highlighting the evolution and diverse applications of NLP across both
academic research and industrial implementations. Our review frame-
work systematically maps the relationships between financial data,
NLP techniques, key players, and financial applications, identifying ten
principal areas where NLP has potentially revolutionized the finance
sector. Additionally, we analyzed key research contributions that have
significantly influenced the application of NLP in finance, emphasizing
its transformative effects on services, products, and operations. This
survey not only addresses practical challenges but also highlights the
ransformative potential of NLP technologies in the finance industry.
astly, we summarized the current trends, challenges, and opportunities

from nine perspectives, and provided eight promising directions for
future research.

6. Limitations

This review is designed to explore broad themes within the field of
LP in finance. It does not include detailed data extraction, data quality
ssessment, and risk of bias evaluation due to the expansive nature of
LP’s application in finance. This is intended as part of the review’s
esign which allows for a more extensive discussion across a broader
rray of topics, which was deemed more beneficial for our intended
udience of researchers, practitioners, and professionals in the finance
ector. By delineating these boundaries, we aim to clarify this article’s
ntended scope and encourage readers to interpret the findings within
he context of an exploratory and thematic analysis.
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