
Vol.:(0123456789)

Artificial Intelligence Review (2023) 56:9115–9140
https://doi.org/10.1007/s10462-023-10400-y

1 3

Time expression recognition and normalization: a survey

Xiaoshi Zhong1 · Erik Cambria2 

Published online: 24 January 2023 
© The Author(s), under exclusive licence to Springer Nature B.V. 2023

Abstract
Time information plays an important role in the areas of data mining, information retrieval, 
and natural language processing. Among the linguistic tasks related to time expressions, 
time expression recognition and normalization (TERN) is fundamental for other down-
stream tasks. Researchers from these areas have devoted considerable effort in the last two 
decades to define the problem of time expression analysis, design the standards for time 
expression annotation, build annotated corpora for time expressions, and develop methods 
to identify time expressions from free text. While there are some surveys concerned with 
the development of time information extraction, retrieval, and reasoning, to the best of our 
knowledge, there is no survey focusing on the TERN development. We fill in this blank. 
In this survey, we review previous researches, aiming to draw an overview of the develop-
ment of time expression analysis and discuss the role that time expressions play in different 
areas. We focus on the task of recognizing and normalizing time expressions from free text 
and investigate three kinds of methods that researchers develop for TERN, namely rule-
based methods, traditional machine-learning methods, and deep-learning methods. We will 
also discuss some factors about TERN development, including TIMEX type factor, lan-
guage factor, and domain and textual factors. After that, we list some useful datasets and 
softwares for both tasks of TER and TEN as well as TERN and finally outline some poten-
tial directions of future research. We hope that this survey can help those researchers who 
are interested in TERN quickly gain a comprehensive understanding of the development of 
TERN and its potential research directions.
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1  Introduction

1.1 � Importance of time expression recognition and normalization

Time information plays an important role in the areas of data mining, information retrieval, 
and natural language processing  (Smith 1978; Enc 1986; Hinrichs 1987; Grishman and 
Sundheim 1996; Chinchor 1998a, b; Mani 2003; Wong et al. 2005; Lim et al. 2019; Leeu-
wenberg and Moens 2019). It is involved in many linguistic tasks, including time expres-
sion recognition and normalization  (Verhagen et  al. 2007, 2010; UzZaman et  al. 2013; 
Bethard et al. 2015, 2016, 2017; Zhong et al. 2017; Zhong and Cambria 2018), timeline 
construction (Do et al. 2012; Li and Cardie 2014; Minard et al. 2015), temporal relation 
extraction (Mani et al. 2006; Chambers et al. 2007; Verhagen et al. 2007), temporal infor-
mation retrieval (Alonso et al. 2011; Campos et al. 2014; Lin et al. 2014; Strotgen 2015; 
Rahoman and Ichise 2018; Khan et al. 2018), temporal event extraction and ordering (Ver-
hagen et al. 2007, 2010; UzZaman et al. 2013; Cheng and Miyao 2018; Lee et al. 2018; 
Naik et al. 2019; Niu et al. 2020; Liu et al. 2021; Breitfeller et al. 2021; Su et al. 2021), 
temporal reasoning (Leeuwenberg and Moens 2019; Qin et al. 2021), temporal graph min-
ing (Guillou et al. 2020), temporal query expansion Shokouhi and Radinsky (2012), and 
temporal question answering  (Jia et  al. 2018, 2021). Among these linguistic tasks, time 
expression recognition and normalization (TERN) is a crucial and fundamental task that 
significantly affects the downstream tasks. In this survey, we focus on reviewing the devel-
opment of this fundamental task: TERN.

The study of time expressions (also known as “temporal expressions” or “timex” in 
brief) could be dated back to 1978 when Carlota S. Smith analyzes the syntactic structures 
of time expressions and their semantic interpretation in English (Smith 1978). After that 
there are some works concerning different aspects of time expressions, such as referen-
tial analysis  (Enc 1986) and compositional semantics  (Hinrichs 1987). Extensive studies 
of time expressions start from the sixth and seventh Message Understanding Conference 
(MUC-6 and MUC-7), in which Grishman and Sundheim (1996) and Chinchor (1998a, 
1998b) formally define the task of identifying time expressions from free text, together 
with the tasks of identifying the entity names and number expressions as well as other 
information extraction tasks. After MUC-6 and MUC-7, researchers from diverse fields 
(e.g., data mining, information retrieval, natural language processing, and bioinformatics) 
have devoted tremendous effort to specify annotation standards for time expressions (Mani 
et al. 2001; Ferro et al. 2001; Ferro 2001; Pustejovsky et al. 2003a; Ferro et al. 2005; Puste-
jovsky et al. 2010; Styler et al. 2014; Laparra et al. 2018a; Kamila et al. 2018; Sakaguchi 
et al. 2018; Ocal et al. 2022a), develop annotated corpora for time expressions (Pustejovsky 
et al. 2003b; Mazur and Dale 2010; Styler et al. 2014; Hasanuzzaman et al. 2014; MacA-
vaney et  al. 2018; Kamila et  al. 2018; Sakaguchi et  al. 2018; Grabar and Hamon 2019; 
Aumiller et al. 2022; Ocal et al. 2022b), and organize shared tasks to address the problems 
of recognizing and normalizing time expressions from free text  (Chinchor 1998a, b; Negri 
and Marseglia 2004; Zhao et al. 2010; Verhagen et al. 2007, 2010; UzZaman et al. 2013; 
Bethard et al. 2015, 2016, 2017; Kuzey et al. 2016; Laparra et al. 2018b).

We present here a survey for previous researches about TERN, including early years’ 
syntactic and semantic analysis of time expressions and recent 26 years’ (from 1996 to 
2022) development of TERN. There are some surveys that concern the development of 
time information extraction, retrieval, and reasoning (Mani 2003; Wong et al. 2005; Alonso 
et  al. 2011; Campos et  al. 2014; Leeuwenberg and Moens 2019; Lim et  al. 2019). For 
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example, Mani (2003) broadly review the development of temporal information extraction 
up to 2003. Wong et  al. (2005) review the development of temporal information extrac-
tion and time aspect in artificial intelligence and its applications up to 2005. Alonso et al. 
(2011) highlight the challenges and opportunities in temporal information retrieval. Cam-
pos et al. (2014) review recent years’ research and its related applications in temporal infor-
mation retrieval. Lim et al. (2019) broadly review the development of extracting methods 
for temporal points (i.e., time expressions), events, and temporal relations. Leeuwenberg 
and Moens (2019) focus on surveying the development of temporal reasoning for vari-
ous temporal information extraction from unstructured text. However, these surveys either 
investigate the role that time expressions play in other linguistic tasks with an implicit 
assumption that time expressions have been precisely recognized and normalized or inves-
tigate a variety of linguistic tasks that are related to time information extraction, in which 
TERN occupies only a small part of the content, with a lack of focus on TERN. To the best 
of our knowledge, there is no survey that focuses on recent advances on the TERN task, 
especially no survey that reviews the challenges and implicit problems on TERN. This sur-
vey fills this blank. We review the development of TERN from early years to currently, 
with more attention on recent advances, highlight the challenges and bottleneck problems 
that limit a more advance on this task, and provide some insights on potential directions 
of future research for TERN. We hope that this survey can help those researchers who are 
interested in TERN quickly gain a comprehensive understanding of the development of 
TERN and its potential research directions. We also hope that TERN could be significantly 
improved in next few years so as to improve the accuracy of downstream tasks.

1.2 � Definition of time expression recognition and normalization

The time expressions we are concerned with in this survey are those expressions that 
explicitly express time information, such as “2022”, “early years”, and “26 years”. The 
“explicitly” means that we do not consider those expressions with implicit time informa-
tion, such as “The time Arnold reached Quebec City” and “the moment when I got my 
paper accepted” because these expressions are extremely descriptive. The most widely used 
scheme to categorize time expressions is the TimeML scheme with markups <TIMEX3> 
and </TIMEX3> to classifies time expressions into DATE, TIME, DURATION, and 
SET (Pustejovsky et al. 2003a). DATE includes complete or partial date expressions (e.g., 
“2022” and “September 1”) while TIME includes complete or partial expressions of time 
of the day (e.g., “13:25:43” and “this morning”); DURATION includes complete or partial 
expressions of intervening time between two end-points of a time interval (e.g., “30 days” 
and “26 years”) while SET includes complete or partial expressions of periodic temporal 
sets that represent times occurring frequently (e.g., “monthly” and “every Sunday”).

The TERN task aims to recognize those time expressions from unstructured text and 
then normalize the recognized time expressions to a standard format. For example, the fol-
lowing is a piece of text taken from the TimeBank corpus with the document create time 
(DCT) being March 22, 2013 (Pustejovsky et al. 2003b):

In that group, 177 out of every 100,000 were hospitalized with flu-related illness in 
the past several months. That’s more than 2 1/2 times higher than any other recent 
season. This flu season started in early December, a month earlier than usual, and 
peaked by the end of year. Since then, flu reports have been dropping off throughout 
the country.
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The TERN task aims to recognize the time expressions “the past several months”, “recent 
season”, “early December”, “a month”, and “the end of the year” occurring in the text, and 
normalize them to the standard format, as shown below. The recognition and normalization 
results are presented here with the TimeML format.

<?xml version=“1.0” ?>
<TimeML xmlns:xsi=“http://www.w3.org/2001/XMLSchema-instance”xsi:noName
spaceSchemaLocation=“http://timeml.org/timeMLdocs/TimeML_1.2.1.xsd”>
<DOCID>AP_20130322</DOCID> <DCT>
<TIMEX3 functionInDocument=“CREATION_TIME” temporalFunction=“false” 
tid=“t0” type=“DATE” value=“2013-03-22”>March 22, 2013</TIMEX3>
</DCT>
<TEXT>
In that group, 177 out of every 100,000 were hospitalized with flu-related illness in 
<TIMEX3 tid=“t1” type=“DURATION” value=“PXM”>the past several months</
TIMEX3>. That’s more than 2 1/2 times higher than any other <TIMEX3 tid=“t2” 
type=“SET” value=“XXXX-WI”>recent season </TIMEX3>. This flu season 
started in <TIMEX3 tid=“t3” type=“DATE” value=“2012-12”>early December</
TIMEX3>, <TIMEX3 tid=“t4” type=“DURATION” value=“P1M”>a month</
TIMEX3> earlier than usual, and peaked by <TIMEX3 tid=“t5” type=“DATE” 
value=“2012”>the end of year </TIMEX3>. Since then, flu reports have been drop-
ping off throughout the country.
</TEXT>
</TimeML>

The TERN task can be viewed as containing two sub-tasks, namely time expression rec-
ognition (TER) and time expression normalization (TEN). TER aims to recognize time 
expressions from unstructured text while TEN aims to normalize the recognized time 
expressions to standard format.

1.3 � Challenges of time expression recognition and normalization

There are several challenges in resolving the TERN problem, or the problems of TER and 
TEN. We discuss those main challenges and point out which ones have been solved or par-
tially solved and which ones are still unsolved. The challenges in solving the TER problem 
are listed below. 

(1)	 Collecting keywords that constitute time expressions (almost solved)
(2)	 Various written forms of time keywords and time expressions (partially solved)
(3)	 Countless of digit-based time expressions (partially solved)
(4)	 Inconsistent annotations, especially the boundary of time expressions (unsolved)

The challenges in solving the TEN problem are listed as follows. 

(1)	 Collecting keywords and their normalization forms of time expressions (partially 
solved)

(2)	 Ambiguous meaning of time elements that constitute time expressions (unsolved)
(3)	 Inconsistent annotations, especially the normalizing form of time expressions 

(unsolved)
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(4)	 Inconsistent reference dates within the same document (unsolved, not even be noticed)

1.4 � Structure of this survey

The survey is organized as follows. Section 1 overall describes the importance, definition, 
and challenges of TERN. Section 2 briefly depicts early years’ studies on syntactic struc-
tures and semantic interpretation of time expressions, which is fundamental for practic-
ing the recognition and normalization of time expressions. Section 3 covers the develop-
ment from 1996 to 2022, in the perspective of different factors. Section 5.1 summarizes 
the development of time expression recognition, in which we investigate three kinds of 
methods; after that Sect. 5.2 look at the development of time expression normalization, in 
which rule-based methods play a dominate role. Section 4 depicts the evaluations that are 
designed for the task TERN and Sect. 7 draw the conclusion and highlight the potential 
direction in future research.

2 � Interpretation of time expressions

This section introduces the study by Smith (1978) on syntactic structures and semantic 
interpretations of time expressions, which is fundamental for the practical development of 
time expression recognition and normalization.

2.1 � Three notions of time: speech time, reference time, and event time

Smith (1978) starts with Hans Reichenbach’s view that temporal specification involves 
three notions of time: speech time, reference time, and event time  (Reichenbach 1947). 
Speech time (ST) is the time at which a given sentence is uttered, that is, the moment of 
utterance. Reference time (RT) is the time indicated by a sentence, which need not be the 
same as speech time. Event time (ET) refers to the moment at which the relevant event or 
state occurs, which need not to be the same as reference time. In Example (1), Event time 
and reference time are the same, and they are prior to speech time.

Example 1  Marilyn won the prize last week.

Example 2  Marilyn had already won the prize last week.

In Example (2), all the three times are different: speech time is the moment of utterance, 
reference time is the last week, while event time is an unspecified time prior to last week.

To understand the temporal specification of a sentence, we need to know the values of 
the three kinds of times, and their relations to each other. Two times may be simultaneous, 
or one may precede the other: reference time may be (but need not to be) simultaneous with 
speech time, and event time may be (but need not to be) simultaneous with reference time.

2.2 � Three relational values: past, present, and future

Time expressions fall into three classes according to whether they indicate anteriority, 
simultaneity, or posteriority. The three classes correspond three relational values: past, 



9120	 X. Zhong, E. Cambria 

1 3

present, and future. For example, “right now” is simultaneous with speech time, indicating 
the present; “yesterday” precedes speech time, indicating the past; and “tomorrow” follows 
speech time, indicating the future. Table 1 briefly shows the three relational values of time 
expressions and their corresponding tenses, adverbials, and prepositions.

2.3 � Syntactic rules for temporal elements

The syntactic rules relevant to time expressions are few, mainly including phrase struc-
ture rules for time adverbials and the auxiliary, with the constraints on co-occurrence. The 
phrase structure rules, illustrated in Fig. 1, will generate the appropriate structures for time 
adverbials that are used in time expressions.

3 � Observations: 1996 to 2022

The computational research aiming at automatically recognizing time expressions from 
free text forms a numerous and heterogeneous pool of strategies, methods, and represen-
tations. This section reviews the development of TERN in terms of three factors: time 
expression types, languages, and domain and textual types.

3.1 � Timex type factor

3.1.1 � TIMEX

In the expression “Time Expression”, the word “Time” aims to restrict the task to 
those expressions involved in time information. The MUC-6 and MUC-7  (Grishman 
and Sundheim 1996; Chinchor 1998a, b) concern only two types of time expressions: 
DATE and TIME. DATE includes the complete or partial date expressions while TIME 
includes the complete or partial expressions of the time of day. The time expressions 

Table 1   Three relational values of time expressions

Anteriority Simultaneity Posteriority

Tense type Past tense Present tense Future tense
Adverbials Yesterday, - ago, last - Now, at this moment Tomorrow, next -, in -
Prepositions Before, etc At, on, etc After, etc
Reference-time type Past reference time Present reference time Future reference time

Fig. 1   Phrase structure rules for 
time adverbials in time expres-
sions
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in text are annotated by the pair of markups <TIMEX> and </TIMEX>. Following 
examples show the annotation format for the two types of time expressions.

•	 <TIMEX TYPE=“DATE”>February 1975</TIMEX>
•	 <TIMEX TYPE=“DATE”>third quarter of 1991</TIMEX>
•	 <TIMEX TYPE=“TIME”>5 p.m. EST</TIMEX>
•	 <TIMEX TYPE=“TIME”>twelve o’clock noon</TIMEX>

3.1.2 � TIMEX2

In 2001, Lisa Ferro et  al. from MITRE Corporation extend the work of Chinchor 
(1998a) to consider the meaning of time expressions by replacing the TYPE (i.e., 
DATE vs. TIME) categorization attribute with a set of attributes to represent the actual 
time indicated by the expressions  (Mani et  al. 2001; Ferro et  al. 2001; Ferro 2001; 
Ferro et  al. 2005). They use the pair of markups <TIMEX2> and </TIMEX2> with 
seven attributes (i.e., VAL, MOD, SET, COMMENT, PERIODICITY, GRANULAR-
ITY, and NON_SPECIFIC; they are described in Table 2 and some examples are given 
in the following example time expressions) to annotate time expressions in text, in 
which VAL is the most important attribute whose value follows the ISO 8601 time 
standard. Following examples show the TIMEX2 format.

•	 <TIMEX2 VAL=“1999-08-03”>two weeks</TIMEX2> from <TIMEX2 
VAL=“1999-07-20”>next Tuesday</TIMEX2>

•	 I tutored an English student <TIMEX2 VAL=“1998-WXX-4” SET=“YES” 
GRANULARITY=“G1D”>some Thursdays</TIMEX2> in <TIMEX2 
VAL=“1999”>1998</TIMEX2>.

•	 <TIMEX2 VAL=“PT30M” MOD=“LESS_THAN”>almost half an hour</
TIMEX2>

•	 <TIMEX2 VAL=“1998-SU”>Last summer</TIMEX2>, I went to the beach on 
<TIMEX2 VAL=“1998-WXX-6” SET=“YES” GRANULARITY=“G1D”> numer-
ous Saturdays</TIMEX2>.

Table 2   Seven attributes defined in the TIMEX2 annotation scheme

Attribute Description

VAL Indicate the value of a time expression
MOD Modifier in a time expression and is used in conjunction with other attributes
SET Indicate sets of times that recur regularly or irregularly
PERIODICITY Indicate sets of regularly recurring times
GRANULARITY Represent the unit of time denoted by each set member and applies to sets of 

both regularly and irregularly recurring times
NON_SPECIFIC Indicate the expression is non specific or concrete
COMMENT Intend to record annotator comments in reference annotations



9122	 X. Zhong, E. Cambria 

1 3

3.1.3 � TIMEX3

In 2003, Pustejovsky et  al. (2003a) introduce TimeML, a specification language that 
extends TIMEX and TIMEX2 to include both of time expressions and events and uses the 
pair of markups <TIMEX3> and </TIMEX3> to annotate the time expressions.1 TIMEX3 
includes four types of time expressions, namely DATE, TIME, SET, and DURATION, 
with value attribute (and some other attributes). Following shows some examples of the 
TIMEX3 annotation format.

•	 Shot down the plane on <TIMEX3 tid=“t1” type=“DATE” value=“1994-04-
06” temporalFunction=“false” functionInDocument=“NONE”>April 6, 1994 </
TIMEX3>.

•	 A Brooklyn woman was killed <TIMEX3 tid=“t2” type=“TIME” value=“1998-
02-12TEV” temporalFunction=“true” functionInDocument=“NONE” 
anchorTimeID=“t0”>Thursday evening</TIMEX3> when...

•	 The official Iraqi News Agency gives the <TIMEX3 tid=“t3” type=“SET” 
value=“XXXX-XX-XX”>daily</TIMEX3> tally of inspections.

•	 In <TIMEX3 tid=“t4” type=“DURATION” value=“PT1H” mod=“LESS_THAN” 
temporalFunction=“false” functionInDocument=“NONE”>less than one hour </
TIMEX3>

Both TIMEX2 and TIMEX3 are developed as the annotation guidelines for creating nor-
malized representations of time expressions (and their connection to events) in free text. 
Although they are complex and require much effort to master them well, they has been 
widely accepted as standards and extensively applied to the research related to time expres-
sions in many languages. Up to now, we find in the literature that time expressions receive 
attentions in at least 23 languages.

3.2 � Language factor

The majority of research in TERN is devoted to the study of English  (Chinchor 1998a; 
Pustejovsky et al. 2003a, b; Negri and Marseglia 2004; Ferro et al. 2005; Kolomiyets and 
Moens 2009; Pustejovsky et al. 2010; Styler et al. 2014; Mazur and Dale 2010; Verhagen 
et  al. 2007, 2010; UzZaman et  al. 2013; Bethard et  al. 2015, 2016, 2017; Laparra et  al. 
2018a, b). Besides English, a proportion of research concerns the language independence 
and multilingualism problems. In the TempEval-2 shared task (Verhagen et al. 2010), six 
languages are of interest to investigate, and they include Chinese, English, Italian, French, 
Korean, and Spanish.

Outside the shared tasks, Chinese is well studied and presented in English and Chinese 
literature (Wu et al. 2005a, b; He et al. 2007, 2008; Wu et al. 2010; Li et al. 2014; Yin and 
Jin 2017; Pan et al. 2020). Similarly, French, Italian, and Korean are strongly represented 
and boosted in series of works (Vazov 2001; Baldwin 2002; Jang et al. 2004; Lavelli et al. 
2005; Im et al. 2009; Caselli et al. 2011; Bittar et al. 2011; Moriceau and Tannier 2014; 

1  Besides TIMEX3, TimeML also contains other three data structures: LINK, EVENT, and SIGNAL. This 
survey focuses on TIMEX3; for other three data structures, please refer to  (Pustejovsky et  al. 2003a) for 
details.
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Manfredi et al. 2014; Nzali et al. 2015; Jeong et al. 2016; Lim and Choi 2017, 2019). Many 
other languages receive attention as well: Arabic (Boudaa et al. 2018), Basque (Altuna et al. 
2017), Brazilian (de Azevedo et al. 2018a, b), Catalan (Taule et al. 2008), Croatian (Sku-
kan et al. 2014), Dutch (van de Camp and Christiansen 2012), German (Strötgen and Gertz 
2011), Hindi (Kamila et al. 2018), Persian (Mansouri et al. 2018), Portuguese (Costa and 
Branco 2012; de Azevedo et al. 2018a, b; Tissot et al. 2019), Romanian (Forascu and Tufis 
2012), Russian Funkner and Kovalchuk (2020), Spanish (Saquete et al. 2002; Taule et al. 
2008; Sauri et al. 2010; Strötgen et al. 2013; Najafabadipour et al. 2019; de-la Cuadra et al. 
2019; Navas-Loro and Rodríguez-Doncel 2020), Swedish (Berglund 2004), Turkish (Emi-
rali and Karslıgil 2022), Uyghur (Murat et al. 2018), Ukrainian (Grabar and Hamon 2018, 
2019), and Vietnamese (Strötgen et al. 2014). Some works concern the TERN problem in 
multilingual text  (Wilson et al. 2001; Saquete et al. 2004; Negri et al. 2006; Taule et al. 
2008; Llorens et al. 2010; Strotgen and Gertz 2013, 2015; Strötgen et al. 2013, 2014; Starý 
et al. 2020; Lange et al. 2020, 2022; Cao et al. 2022).

Table 3 summarizes the languages that researchers conduct researchers on TERN. Cur-
rently, there are only about 21 languages that researchers construct useful datasets for 
TERN. The number 23 is not low, indicating that there exist enough useful datasets and 
algorithms for researchers who are interested in TERN in different languages especially 
low-resource languages. But the number 23 is still not high, in comparison with the whole 
languages used in the world, indicating that TERN and its downstream tasks need research-
ers from more language background to contribute to this area.

3.3 � Domain and textual type factor

The very first studies are mainly concerned with the TERN problem in formal text like 
news articles  (Chinchor 1998a; Setzer and Gaizauskas 2000; Pustejovsky et  al. 2003b; 
Boguraev et  al. 2007; Parker et  al. 2011; Fu and Dhonnchadha 2020). Later on, studies 
are gradually concerned with TERN in other domains and textual types. Mazur and Dale 
(2010) collect English articles from Wikipedia about famous wars and annotate the time 
expressions for domain-specific time expression analysis; the corpus is called WikiWars. 
Similarly, Strötgen and Gertz (2011) develop the WikiWarsDE, which includes Wikipe-
dia articles in German in the war domain. Strötgen and Gertz (2012) analyze time expres-
sions in the text from colloquial short message service (SMS) and scientific biomedical 
documents while Degaetano-Ortlieb and Strötgen (2017) analyze the time expressions in 
the scientific literature and their diachronic variation over a time span of about 350 years. 
Tabassum et al. (2016) analyze the time expressions in the tweets which are informal text. 
Zhong et al. (2017) and Zhong and Cambria (2018) analyze the time expressions across 
formal and informal text and comprehensive and specific domain text. Kim et al. (2020) 
analyze time expressions in novels while Navas-Loro et al. (2019) and Loro (2021) ana-
lyzes time expressions in legal documents. Zarcone et al. (2020) and Alam et al. (2021) are 
concerned with time expressions in the voice assistant domain. Nzali et al. (2015), Strotgen 
(2015), Zhong and Cambria (2018), Olex et al. (2019), and Alam et al. (2021) analyze time 
expressions in cross-domain or cross-dataset scenarios.

A series of researches have devoted tremendous effort on time expressions in clinical 
text (including the clinical reports) and public health (Jindal and Roth 2013; Lin et al. 
2013; Roberts et al. 2013; Sohn et al. 2013; Miller et al. 2015; Sun et al. 2015; Bethard 
et al. 2015, 2016, 2017; Lee et al. 2018; MacAvaney et al. 2018; Laparra et al. 2018b; 
Hao et al. 2018; Viani et al. 2018; de-la Cuadra et al. 2019; Najafabadipour et al. 2019; 
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Zhong et al. 2019; Dupuis et al. 2020; Fu et al. 2020; Niu et al. 2020; Pan et al. 2020; 
Viani et al. 2020; Shim et al. 2021).

Table  4 summarizes the domains and textual types about which researchers have 
conducted investigation on TERN. It shows that researchers are mainly concerned with 
TERN in news articles and clinical records and public health. To the best of our knowl-
edge, there is no research by now about TERN in sports, biographies, and entertain-
ments, which are three important domains, because people are very much interested in 
different kinds of sports and entertainment activities and famous people in history and 
nowadays. Researchers who are interested in TERN and have some domain knowledge 
could consider to contribute to TERN in the three domains.

Table 3   Languages on which researchers conduct researches about TERN

Language Literature

English Grishman and Sundheim (1996), Chinchor (1998a), Pustejovsky et al. (2003a, 2003b), Negri 
and Marseglia (2004), Ferro et al. (2005), Kolomiyets and Moens (2009), Pustejovsky et al. 
(2010), Styler et al. (2014), Mazur and Dale (2010), Verhagen et al. (2007, 2010), UzZa-
man et al. (2013), Bethard et al. (2015, 2016, 2017), Laparra et al. (2018a, 2018b)

Chinese Wu et al. (2005a, 2005b), He et al. (2007, 2008), Wu et al. (2010), Verhagen et al. (2010), Li 
et al. (2014), Yin and Jin (2017), Pan et al. (2020)

French Vazov (2001), Baldwin (2002), Bittar et al. (2011), Verhagen et al. (2010), Moriceau and 
Tannier (2014), Nzali et al. (2015)

Italian Lavelli et al. (2005), Caselli et al. (2011), Verhagen et al. (2010), Manfredi et al. (2014)
Korean Jang et al. (2004), Im et al. (2009), Verhagen et al. (2010), Jeong et al. (2016), Lim and Choi 

(2017, 2019)
Arabic Boudaa et al. (2018)
Basque Altuna et al. (2017)
Brazilian de Azevedo et al. (2018a, b)
Catalan Taule et al. (2008)
Croatian Skukan et al. (2014)
Dutch van de Camp and Christiansen (2012)
German Strötgen and Gertz (2011), Almasian et al. (2022)
Hindi Kamila et al. (2018)
Persian Mansouri et al. (2018)
Portuguese Costa and Branco (2012), de Azevedo et al. (2018a, b), Tissot et al. (2019)
Romanian Forascu and Tufis (2012)
Russain Funkner and Kovalchuk (2020)
Spanish Saquete et al. (2002), Taule et al. (2008), Sauri et al. (2010), Verhagen et al. (2010), Strötgen 

et al. (2013), Najafabadipour et al. (2019), de-la Cuadra et al. (2019), Navas-Loro and 
Rodríguez-Doncel (2020)

Swedish Berglund (2004)
Turkish Emirali and Karslıgil (2022)
Uyghur Murat et al. (2018)
Ukrainian Grabar and Hamon (2018, 2019)
Vietnamese Strötgen et al. (2014)
Multilingual Wilson et al. (2001), Saquete et al. (2004), Negri et al. (2006), Taule et al. (2008), Llorens 

et al. (2010), Strotgen and Gertz (2013, 2015), Strötgen et al. (2013, 2014), Starý et al. 
(2020), Lange et al. (2020, 2022), Cao et al. (2022)
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4 � Evaluation of TERN

The evaluation shared tasks of TERN are essential to the progress in TERN. Many tech-
niques are proposed to rank systems based on their capability to annotate a text like an 
expert linguist. In this section, we take a look at six main measures that are used for 
MUC, ACE, TempEval, and Clinical TempEval competitions. Before that, let us sum-
marize the task from the point of view of evaluation.

4.1 � MUC evaluation

In the MUC-7 event  (Chinchor 1998a), a system is scored on two axes: its ability to 
find the correct type (TYPE) and its ability to find exact text (TEXT). A correct TYPE 
is credited if an entity is assigned the correct type, regardless of boundaries as long as 
there is an overlap. A correct TEXT is credited if entity boundaries are correct, regard-
less of the type. For both TYPE and TEXT, three measures are kept: the number of cor-
rect answers, the number of actual system guesses, and the number of possible entities 
in the solution.

The final MUC score is the micro-averaged f-measure (MAF), which is the harmonic 
mean of precision and recall calculated over all entity slots on both axes. A micro-aver-
aged measure is performed on all entity types without distinction (errors and successes 
for all entity types are summed together). The harmonic mean of two numbers is never 
higher than the geometrical mean. It also tends toward the least number, minimizing the 
impact of large outliers and maximizing the impact of small ones. The F-measure there-
fore tends to privilege balanced systems.

Table 4   Domain and textual types on which researchers conduct researches about TERN

Domain/text type Literature

News articles Grishman and Sundheim (1996), Chinchor (1998a), Pustejovsky et al. 
(2003a), Setzer and Gaizauskas (2000), Pustejovsky et al. (2003b), Negri 
and Marseglia (2004), Boguraev et al. (2007), Pustejovsky et al. (2010), 
Verhagen et al. (2007, 2010), UzZaman et al. (2013), Parker et al. (2011), Fu 
and Dhonnchadha (2020)

Wars Mazur and Dale (2010), Strötgen and Gertz (2011), Grabar and Hamon (2019)
Colloquial SMS Strötgen and Gertz (2012)
Scientific literature Strötgen and Gertz (2012)
Tweets Tabassum et al. (2016), Zhong et al. (2017), Zhong and Cambria (2018)
Novels Navas-Loro et al. (2019)
Legal documents Navas-Loro et al. (2019), Loro (2021)
Voice assistants Zarcone et al. (2020), Alam et al. (2021)
Cross-domains Zhong and Cambria (2018), Olex et al. (2019), Alam et al. (2021)
Clinical records and public 

health
Jindal and Roth (2013), Lin et al. (2013), Roberts et al. (2013), Sohn et al. 

(2013), Miller et al. (2015), Sun et al. (2015), Bethard et al. (2015, 2016, 
2017), Lee et al. (2018), MacAvaney et al. (2018), Laparra et al. (2018b), 
Hao et al. (2018), Viani et al. (2018), de-la Cuadra et al. (2019), Najafabadi-
pour et al. (2019), Zhong et al. (2019), Dupuis et al. (2020), Fu et al. (2020), 
Niu et al. (2020), Pan et al. (2020), Viani et al. (2020), Shim et al. (2021)
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In MUC, precision is calculated as COR/ACT and the recall is COR/POS. For the 
previous example, COR = 4 (2 TYPE + 2 TEXT), ACT = 10 (5 TYPE + 5 TEXT), and 
POS = 10 (5 TYPE + 5 TEXT). The precision is therefore 40%, the recall is 40%, and 
the MAF is 40%. However, these metrics are complicated and later on researchers tend 
not to use them in reporting results about TERN.

4.2 � ACE evaluation

ACE has a complex evaluation procedure. It includes mechanisms for dealing various eval-
uation issues (e.g., partial match and wrong type). The ACE task definition is also more 
elaborated than previous tasks at the level of named entity “subtypes” and “class” as well 
as entity mentions, but these supplemental elements will be ignored.

Basically, each entity type has a parameterized weight and contributes up to a maximal 
proportion (MAXVAL) of the final score (e.g., if each person is worth 1 point and each 
organization is worth 0.5 point, then it takes two organizations to counterbalance one per-
son in the final score).

4.3 � TempEval evaluation

TempEval-2 (Verhagen et al. 2010), organized as the SemEval-2010 Task 13, aims to auto-
matically identify all the time expressions, events, and temporal relations within a text, 
in six languages, namely Chinese, English, Italian, French, Korean, and Spanish. In this 
survey, we focus on time expressions. It uses three standard metrics to evaluate the TER 
performance: Precision, Recall, and F

1
 , and uses Accuracy to evaluate the performance of 

attribute classification and value normalization.

where TP is the number of tokens that are part of an extent in both key and response, FP is 
the number of tokens that are part of an extent in the response but not in the key, and FN is 
the number of tokens that are part of an extent in the key but not in the response.

4.4 � Clinical TempEval evaluation

Clinical TempEval Evaluations (Bethard et al. 2015, 2016, 2017; Laparra et al. 2018b) are 
a series of evaluations that consider time information extraction, including TERN, in the 
clinical domain. They are concerned with different types of time expressions in clinical 
documents but use the same evaluation metrics (i.e., precision, recall, F

1
 , and accuracy) as 

standard TempEval evaluations as mentioned above.

(1)Precision = TP∕(TP + FP)

(2)Recall = TP∕(TP + FN)

(3)F
1
=

2 × Precision × Recall

Precision + Recall

(4)Accuracy =
Number of correct answers

Number of total answers
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Table 5 summarizes the evaluations and shared tasks that researchers organize to resolve 
the TERN problem alone with the literature. There are four series of shared tasks regarding 
TERN, namely MUC, ACE, TempEval, and Clinical TempEval, and the TempEval series 
receives most attention and have a significant impact on the TERN development, including 
setup some standards for TERN research.

5 � Time expression recognition and normalization

Realizing the importance of time expression in text analysis and its subsequent applica-
tions, researchers from diverse areas organize TempEval evaluations and other shared tasks 
to automatically recognize time expressions from unstructured text and then normalize 
them into standard format. Although most approaches address the time expression recog-
nition and normalization as an end-to-end task, we discuss the two sub-tasks separately, 
because the two sub-tasks lie at different levels of linguistic analysis. Specifically, the 
recognition task lies at the level of syntactic analysis while the normalization task lies at 
the level of semantic analysis. According to Noam Chomsky’s “Syntactic Structures,” pp. 
93–94 (Chomsky 1957), syntax is not related to semantics and semantics does not affect 
syntax. Therefore, it is better to discuss the syntactic task and semantic task separately, and 
in this way, we can understand each of the two sub-tasks deeply.

5.1 � Time expression recognition

The methods for TER are mainly categorized into three kinds: rule-based methods, tradi-
tional machine learning-based methods, and deep learning-based methods.

5.1.1 � Rule‑based methods

Rule-based time taggers like TempEx, GUTime, HeidelTime, and SUTime mainly prede-
fine a set of time-related words and regular expression patterns (Mani and Wilson 2000; 
Verhagen et al. 2005; Strötgen and Gertz 2010; Chang and Manning 2012). HeidelTime 
hand-crafts rules with time resources like weekdays, seasons, and months, and leverages 
language clues like part-of-speech (POS) to identify time expression and then normalize 
them to the standard form in a pipeline Unstructured Information Management Architec-
ture (UIMA2)  (Strötgen and Gertz 2010). SUTime  (Chang and Manning 2012) designs 

Table 5   Evaluations about TERN

Evaluation Literature

MUC Grishman and Sundheim (1996), Chinchor (1998a)
ACE Mazur and Dale (2010), Strötgen and Gertz (2011), 

Grabar and Hamon (2019)
TempEval Verhagen et al. (2007, 2010), UzZaman et al. (2013)
Clinical TempEval Bethard et al. (2015, 2016, 2017), Laparra et al. (2018b)

2  http://​uima.​apache.​org.

http://uima.apache.org
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deterministic rules using a cascade finite automata (Hobbs et al. 1997) on regular expres-
sions over tokens  (Chang and Manning 2014). It first identifies individual words, then 
expands them to chunks, and finally to the whole time expressions. Other rule-based tag-
gers include the FSS-TimEx (Zavarella and Tanev 2013), which uses finite-state rule cas-
cades to recognize time expressions, and SynTime  (Zhong et  al. 2017), which defines a 
token type system to describe the constituents of time expressions and designs a set of 
heuristic rules over the token types to recognize the time expressions. The rule-based time 
taggers achieve very good performance in the TempEval exercises, in which HeidelTime 
achieves the highest F

1
 of 86% in TempEval-2 (Verhagen et al. 2010) and SUTime achieves 

the highest F
1
 of 91.3% at relaxed match in the TempEval-3 (UzZaman et al. 2013). The 

type-based method SynTime achieves much better results on the TempEval-3, WikiWars, 
and Tweets datasets compared with both of rule-based and learning-based taggers (Zhong 
et al. 2017).

5.1.2 � Machine learning‑based methods

Machine learning based methods mainly extract features from the text and on the features 
apply the statistical models for recognizing time expressions. Example features include 
character features (e.g., first 3 characters and last 3 characters), word features (e.g., cur-
rent word, previous word, and subsequent word), syntactic features (e.g., part-of-speech 
and noun phrase chunks), semantic features (e.g., lexical semantics and semantic role), 
and gazetteer features (e.g., match in a dictionary)  (Llorens et  al. 2010; Filannino et  al. 
2013; Bethard 2013). The statistical models include Markov logic network, logistic regres-
sion, support vector machines, maximum entropy, and conditional random fields (Llorens 
et al. 2010; UzZaman and Allen 2010; Jung and Stent 2013; Filannino et al. 2013; Bethard 
2013). Those methods mainly leverage information from the labeled data under the frame-
work of supervised learning. Some of them obtain good performance, and even achieve 
the highest F

1
 of 82.71% in terms of strict match in the TempEval-3 competition (Bethard 

2013).
Outside TempEval evaluations, Angeli et  al. (2012) leverage compositional grammar 

and employ a EM-style approach to learn a latent parser for time expression recognition. In 
the method named UWTime, Lee et al. (2014) handcraft a combinatory categorial gram-
mar (CCG) Steedman (1996) to define a set of lexicon with rules and use L1-regularization 
to learn linguistic context. The two methods explicitly use linguistic information. In Lee 
et al. (2014), especially, CCG could capture rich structure information of language, similar 
to the rule-based methods. Tabassum et al. (2016) focus on resolving the dates in tweets, 
and use distant supervision to recognize time expressions. Kuzey et al. (2016) formulate 
the TERN problem as an entity-like temponym resolution problem and develop an inte-
ger linear program to jointly infer temponym mappings to timeline and knowledge base 
so as to resolve time expressions. Zhong and Cambria (2018) define a constituent-based 
tagging scheme TOMN, which indicates the constituents of time expressions defined in 
SynTime (Zhong et al. 2017), to model time expressions (Zhong 2020); they also apply this 
idea to model both time expressions and named entities (Zhong et al. 2020, 2022; Zhong 
and Cambria 2021; Zhou et al. 2022). Ning et al. (2018) formulate TER as a text-chunking 
problem and use a basic machine learning method to recognize time expression chunks. 
Ding et al. (2019) propose to automatically generate abstracted patterns and then use the 
extended budgeted maximum coverage model to select appropriate patterns for recognizing 
time expressions.
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5.1.3 � Deep learning‑based methods

With the popularity of applying neural networks and deep-learning methods to numerous 
tasks, many researchers use neural networks, word embeddings, and graph embeddings to 
model and recognize time expressions from unstructured text  (Kim and Jeong 2016; Lin 
et  al. 2017; Etcheverry and Wonsever 2017; Vashishth et  al. 2018; Hossain et  al. 2018; 
Chen et  al. 2019; Kim et  al. 2020; Lange et  al. 2020; Patra et  al. 2020; Almasian et  al. 
2021, 2022; Cao et  al. 2022). Kim and Jeong (2016) employ element-type and Jordan-
type recurrent neural networks (RNN) to extract both time expressions and events from 
textual data. Lin et al. (2017) propose to represent time expressions with single pseudo-
tokens for convolutional neural networks (CNNs) and use these representation to extract 
temporal relations. Etcheverry and Wonsever (2017) leverage distributed representations 
and artificial neural networks to model time expressions and investigate the number of 
layers, sizes, and normalization techniques in recognizing Spanish time expressions from 
unstructured text. Vashishth et al. (2018) use a graph convolutional network (GCN) with 
jointly exploiting syntactic and temporal graph structures of document to infer the creating 
date of documents. Hossain et  al. (2018) develop a system using long short-term mem-
ory (LSTM) recurrent neural network (RNN) along with word embedding to extract time 
expressions from the TempEval-2 textual data. Chen et al. (2019) try to model time expres-
sions with pre-trained word representations and explore the need of contextualization and 
training resource requirements to recognize time expressions from free text. Kim et  al. 
(2020) investigate multilingual methods with adversarial alignment to model time expres-
sions in multiple languages in a common embedding space and recognize time expressions 
in the cross-lingual scenario. Patra et  al. (2020) exploit a sequence-to-sequence encoder 
with contextual entity embeddings and negation constraints to resolute date-time entities 
in scheduling. Almasian et al. (2021, 2022) introduce two popular pre-trained transformer-
based models BERT (Devlin et al. 2019) and RoBERTa (Liu et al. 2019) to model time 
expressions and general temporal information. Cao et al. (2022) instead leverage two state-
of-the-art multilingual models mBERT  (Devlin et  al. 2019) and XLMR  (Conneau et  al. 
2020) to model time expressions in multiple languages by transferring knowledge from 
multiple source languages to the low-resource target language.

Table  6 summarizes the three kinds of methods that are developed to resolve the TER 
task. It shows that in relatively early years, researchers tend to design rules and use traditional 

Table 6   Three kinds of methods developed for time expression recognition

Method Literature

Rule methods TempEx (Mani and Wilson 2000), GUTime (Verhagen et al. 2005), Heidel-
Time (Strötgen and Gertz 2010; Strötgen et al. 2013), SUTime (Chang and 
Manning 2012, 2013), SynTime (Zhong et al. 2017)

Machine-learn methods TIPS (Llorens et al. 2010), TRIPS-TRIO (UzZaman and Allen 2010), Angeli 
et al. (2012), ATT (Jung and Stent 2013), ManTime (Filannino et al. 2013), 
ClearTK (Bethard 2013), UWTime (Lee et al. 2014), TweeTIME (Tabassum 
et al. 2016), Temponym (Kuzey et al. 2016), TOMN (Zhong and Cambria 
2018), CogCompTime (Ning et al. 2018), PTime (Ding et al. 2019)

Deep-learn methods Kim and Jeong (2016), Lin et al. (2017), Etcheverry and Wonsever (2017), 
Vashishth et al. (2018), Chen et al. (2019), Kim et al. (2020), Lange et al. 
(2020), Patra et al. (2020), Almasian et al. (2021, 2022), XLTime (Cao et al. 
2022)
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machine-learning methods for TER while in recent years researchers prefer to apply deep 
learning-based methods to model time expressions.

5.2 � Time expression normalization

Those methods that are developed for time expression normalization in the TempEval exer-
cises are mainly based on rules (Mani and Wilson 2000; Verhagen et al. 2005; Strötgen and 
Gertz 2010; Llorens et al. 2010; UzZaman and Allen 2010; Chang and Manning 2013; Filan-
nino et al. 2013; Bethard 2013). Because the rule systems have high similarity, Llorens et al. 
(2012) suggest to construct a large knowledge base as a public resource for the normaliza-
tion task. Some researchers treat the normalization process as a learning task and use machine 
learning methods (Lee et al. 2014; Tabassum et al. 2016). Lee et al. (2014) use AdaGrad algo-
rithm (Duchi et al. 2011) and Tabassum et al. (2016) use a log-linear algorithm to normal-
ize time expressions. Sun et al. (2015) use traditional machine-learning models to normalize 
time expressions as a two multi-label classification task in clinical narratives; but their mod-
els achieve the accuracy of type classification at 57.2%. Laparra et  al. (2018b) specifically 
organize a SemEval shared task focusing on parsing time normalization and use the SCATE 
scheme (Laparra et al. 2018a) to represent time expressions instead of the standard TimeML 
scheme, but only Olex et al. (2018) submit their results. Laparra et al. (2018a) propose a new 
annotation scheme SCATE and construct a new dataset with the same name SCATE for time 
expression normalization; they also use a character-level multi-output neural network to nor-
malize time expressions under their SCATE scheme and corpus. Tissot et al. (2019) propose 
variant forms of trapezoidal and hexagonal fuzzy membership models to normalize time 
expressions in Portugueses and English. Ding et al. (2021) propose to automatically gener-
ate normalization rules from annotated data with common surface forms to normalize time 
expressions. Lange et al. (2022) use masked language models to normalize time expressions 
in multilingual scenarios and apply their models on low-resource languages. All these nor-
malization researches assume that all the time expressions within a document have the same 
reference date and this reference date is generally set by the document creating date (DCT). 
However, there are many cases that within the same document, different time expressions may 
have different reference date. There are few researches that are concerned with this challenge 
except that Zhao et al. (2010) normalize time expressions with choosing dynamic reference 
time. This challenge is actually a bottleneck for TEN in long-text documents. We hope that 
researchers can pay some attention on this issue in future research.

Table 7 summarizes the three main kinds of methods that are proposed to normalize time 
expressions in textual data. It shows that rule-based methods are still dominant in the TEN 
task with good performance in comparison with other two kinds of methods. Some methods 
(i.e., CogCompTime) that use learning models for TER still design rules for TEN. There are 
also some deep-learning methods that are developed for TEN. But these traditional machine-
learning methods and deep-learning methods need to tackle the issues of countless of digit-
based time expressions, and the correspondence between time elements and their values in 
time expressions.
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6 � TERN datasets and softwares

Available high-quality datasets and softwares about TERN are crucial for researchers to 
contribute to this area. We list here as many as possible resources that are developed for 
TERN. Table 8 lists some publicly available softwares for the TERN task while Table 9 
reports some datasets that are usually used for TERN. A portal website for the TERN task 
is http://​timex​portal.​wikid​ot.​com/, where researchers can find some old-fashion but useful 
resources, such as literature, datasets, and systems.

Table 7   Three kinds of methods developed for time expression normalization

Method Literature

Rule methods TempEx (Mani and Wilson 2000), GUTime (Ver-
hagen et al. 2005), TIPS (Llorens et al. 
2010), TRIPS-TRIO (UzZaman and Allen 
2010), HeidelTime (Strötgen and Gertz 2010; 
Strötgen et al. 2013), SUTime (Chang and 
Manning 2012, 2013), ManTime (Filannino 
et al. 2013), CogCompTime (Ning et al. 2018), 
Chrono (Olex et al. 2018)

Machine-learn methods Zhao et al. (2010), Angeli et al. (2012), 
ATT (Jung and Stent 2013), UWTime (Lee 
et al. 2014), TweeTIME (Tabassum et al. 2016), 
Temponym (Kuzey et al. 2016), Tissot et al. 
(2019), ARTime (Ding et al. 2021)

Deep-learn methods SCATE (Laparra et al. 2018a), Lange et al. (2022)

Table 8   Softwares for time expression recognition and normalization

Method Type Address

HeidelTime (Strötgen et al. 2013) Rule https://​github.​com/​Heide​lTime/​heide​ltime
SUTime (Chang and Manning 2012) Rule https://​nlp.​stanf​ord.​edu/​softw​are/​sutime.​shtml
ClearTK (Bethard 2013) Machine learning https://​clear​tk.​github.​io/​clear​tk/
UWTime (Lee et al. 2014) Machine learning https://​lil.​cs.​washi​ngton.​edu/​uwtime/
SynTime (Zhong et al. 2017) Rule https://​github.​com/​xszho​ng/​synti​me
TOMN (Zhong and Cambria 2018) Machine learning https://​github.​com/​xszho​ng/​tomn
CogCompTime (Ning et al. 2018) Machine learning https://​github.​com/​qiang​ning/​CogCo​mpTime
Chrono (Olex et al. 2018) Rule https://​github.​com/​AmyOl​ex/​Chrono
ParsTime (Mansouri et al. 2018) Rule https://​github.​com/​Behro​ozMan​souri/​ParsT​ime
PTime (Ding et al. 2019) Machine learning http://​ws.​nju.​edu.​cn/​ptime
Kim et al. (2020) Deep Learning https://​github.​com/​allen​kim/​what-​time-​is-​it
ARTime (Ding et al. 2021) Machine learning https://​github.​com/​nju-​webso​ft/​ARTime
DATEing (Aumiller et al. 2022) Machine learning https://​github.​com/​satya​77/​Tempo​ral_​Tagger_​

Servi​ce
Almasian et al. (2021) Deep Learning https://​github.​com/​satya​77/​Trans​former_​Tempo​

ral_​Tagger
XLTime (Cao et al. 2022) Deep Learning https://​github.​com/​Yuwei​Cao-​UIC/​XLTime

http://timexportal.wikidot.com/
https://github.com/HeidelTime/heideltime
https://nlp.stanford.edu/software/sutime.shtml
https://cleartk.github.io/cleartk/
https://lil.cs.washington.edu/uwtime/
https://github.com/xszhong/syntime
https://github.com/xszhong/tomn
https://github.com/qiangning/CogCompTime
https://github.com/AmyOlex/Chrono
https://github.com/BehroozMansouri/ParsTime
http://ws.nju.edu.cn/ptime
https://github.com/allenkim/what-time-is-it
https://github.com/nju-websoft/ARTime
https://github.com/satya77/Temporal_Tagger_Service
https://github.com/satya77/Temporal_Tagger_Service
https://github.com/satya77/Transformer_Temporal_Tagger
https://github.com/satya77/Transformer_Temporal_Tagger
https://github.com/YuweiCao-UIC/XLTime
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7 � Discussion and conclusion

The task of time expression recognition and normalization (TERN) has been thriving for 
more than 20 years. It aims at recognizing time expressions from free text and then normal-
izing the recognized time expressions to a machine readable format. In this survey, we have 
shown the diversity of languages, domains, textual genres and timex types covered in the 
literature. More than ten languages are studied. However, most of the works have concen-
trated on limited domains and textual genres such as news and web pages.

We have also provided an overview of the techniques employed to develop TERN sys-
tems, documenting the recent trend away from hand-created rules and traditional machine-
learning approaches towards deep-learning methods. Handcrafted systems provide good 
performance at a relatively high system engineering cost. When supervised learning is 
used, a prerequisite is available to a large collection of annotated data. Such collections 
are available from the evaluation forums but remain rather rare and limited in domain and 
language coverage. Recent studies in the field have explored semi-supervised and unsuper-
vised learning techniques that promise fast deployment for many timex types without the 
prerequisite of an annotated corpus. We have listed and categorized the features that are 
used in recognition and normalization algorithms. The use of an expressive and varied set 
of features turns out to be just as important as the choice of machine learning algorithms. 
Finally, we have also provided an overview of the evaluation methods that are used in the 
major forums of the TERN research community.

Acknowledgements  This research is supported by the Agency for Science, Technology and Research 
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