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Abstract
Computational syntactic processing is a fundamental technique in natural language pro-
cessing. It normally serves as a pre-processing method to transform natural language into 
structured and normalized texts, yielding syntactic features for downstream task learning. 
In this work, we propose a systematic survey of low-level syntactic processing techniques, 
namely: microtext normalization, sentence boundary disambiguation, part-of-speech tag-
ging, text chunking, and lemmatization. We summarize and categorize widely used meth-
ods in the aforementioned syntactic analysis tasks, investigate the challenges, and yield 
possible research directions to overcome the challenges in future work.

Keywords  Microtext normalization · Sentence boundary disambiguation · Part-of-speech 
tagging · Text chunking · Lemmatization · Syntactic processing · Natural language 
processing

1  Introduction

Syntactic processing is a generalization of natural language processing (NLP) subtasks 
that are concerned with the structure of phrases and sentences, as well as the relation 
of words to each other within the phrase or sentence  (Woolf 2009). It involves extract-
ing meanings from sentence constituents, and establishing the semantic structure of the 
input sentence  (Roberts 2016). Syntactic processing is thus a foundational step towards 
higher level of interpretations, preceding other more complicated tasks, such as word sense 
disambiguation, information retrieval, sentiment analysis, dialogue system, etc. It pre-
processes the input texts, and provides important features that can be further utilized by 
machines. However, in the era of deep learning based high-level NLP tasks, syntactic pro-
cessing techniques are often overlooked. These NLP applications rely on neural networks 
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to implicitly extract syntactic information. They are indeed able to significantly outperform 
symbolic methods that depend on handcrafted feature templates. Nevertheless, we argue 
that integrating symbolic and subsymbolic Artificial Intelligence (AI), also known as neu-
rosymbolic AI, is the key for stepping forward in the path from NLP to natural language 
understanding  (Cambria et  al. 2017). Despite of the recent advancement of deep learn-
ing, it does not truly achieve human-like natural language understanding, as they simply 
make probabilistic guesses. Belinkov et al. (2018) conducted an experiment to evaluate the 
word embeddings learned by Neural Machine Translation (NMT) on syntactic tasks, with 
results indicating that they are poor representations for syntactic information. Therefore, to 
further improve the performance of semantic and pragmatic tasks, it is of great benefit to 
regard syntactic processing as sub-problems. For instance, Part-of-Speech (POS) tagging 
is incorporated in the decoding process (Feng et al. 2019) or as an auxiliary task (Niehues 
and Cho 2017; Mao and Li 2021) to improve NMT and metaphor detection, lemmatization 
as a pre-processing step boosts the accuracy of neural sentiment analysis on social media 
text (Symeonidis et al. 2018). Hence, syntactic processing is an integral part of the neuros-
ymbolic NLP paradigm.

In this paper, we examine the five most basic tasks in syntactic processing, namely, 
microtext normalization, Sentence Boundary Disambiguation (SBD), POS tagging, text 
chunking, and lemmatization. There is a variety of other tasks in this field, e.g., stop word 
removal, negation detection, constituency parsing, and dependency parsing. Here, we 
decide to focus on the most foundational syntactic processing tasks that can be helpful 
to high-level syntactic tasks and other NLP applications. To elaborate, dependency pars-
ing analyzes the grammatical structure of a sentence based on the dependencies between 
words. It is strongly related to POS linguistically. Indeed the majority of existing algo-
rithms heavily rely on POS tagging (Chen and Manning 2014; Dyer et al. 2015; Dozat and 
Manning 2016; Zhou et al. 2020). Similarly, constituency parsing analyzes the sentences 
by breaking down the sentences into constituents. It can be regarded as hierarchical text 
chunking, establishing structure within the chunks. Thus, we consider them to be high-
level tasks that can benefit from the introduced low-level syntactic processing techniques 
and warrant reviews on their own.

Although low-level syntactic processing tasks have gradually faded out of public views 
in many NLP conference proceedings, previous surveys presented significant findings in 
individual syntactic processing tasks. Satapathy et  al. (2020) presented a comprehensive 
review on microtext normalization. They discussed the similarities between microtext and 
brachygraphy, and suggested the potential applications of microtext normalization in more 
complex NLP tasks. Read et al. (2012) reviewed 10 publicly available SBD systems, and 
argued that the published results of these systems are evaluated on different task definitions 
and data annotations. Thus, they assessed the systems on unified task definition and gold-
standard datasets, as well as on user generated content corpora. Manning (2011) conducted 
error analysis on the existing POS tagging algorithms at the time, deducing 7 common 
error categories, and proposed a solution for the errors and inconsistencies in the gold-
standard dataset. Kanis and Skorkovská (2010) compared manual and automatic Czech 
lemmatizers, based on their influence on the performance of information retrieval. How-
ever, many of these reviews are out-of-date, unable to cover the recent advancement, pow-
ered by e.g., deep learning techniques. Additionally, some of them focused on the appli-
cations of specific tasks. In this work, we aim to provide an extensive, up-to-date survey 
for the low-level syntactic tasks in a package, inspiring novel applications in the emerging 
neurosymbolic AI paradigm, bringing the low-level syntactic tasks back to the vision of the 
researchers of high-level NLP tasks.
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We introduce the tasks in the order of microtext normalization, SBD, POS tagging, text 
chunking, and lemmatization. For each of the tasks, we (a) give an overview of the prob-
lem; (b) categorizing and reviewing the existing algorithms; and (c) delivering a summary 
about the features of different technical trends, challenges to be addressed, and possible 
paths and directions in future work. A more detailed outline of the taxonomies in this sur-
vey is illustrated in Fig. 1. In closing, we briefly list some examples of applying syntactic 
processing techniques to complex NLP tasks and conclude our survey.

2 � Microtext normalization

In the era of Short Message Service (SMS) and social media, a plethora of text data can be 
mined from the web. Microtext is a term referring to shorthand writing, commonly seen 
in these informal texts. The occurrence of microtext poses a problem for NLP, as it uses 
informal languages, e.g., shortened and lengthened words, abbreviated phrases, and miss-
ing grammatical components. It is difficult for machines to understand the meaning of the 
source text. Hence, microtext normalization is crucial in NLP. The task aims to convert 
the informal texts into their standard forms that can be easily processed by a downstream 
task, such as sentiment analysis for social media (Brody and Diakopoulos 2011; Satapathy 

Fig. 1   The outline of the survey. By the end of each sub-task, we highlight the features of different technical 
trends
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et al. 2017, 2019b), information retrieval (Bontcheva et al. 2013), and question answering 
system (Mittal et al. 2014).

Microtext is often highly compact, informal, and semi-structured  (Rosa and Ellen 
2009). There are many abbreviations, acronyms, lax spelling and grammar, as well as 
metadata that establish the context. Although microtext is a written language, it is strongly 
influenced by phonetics, resulting in language-dependent character repetition and substitu-
tion phenomena (Satapathy et al. 2020), e.g., “nooooo” for “no”, and “luv” for “love”. 
Even without any knowledge about texting conventions, humans can understand this type 
of irregular words by sounding them out. Thus, phonetics-based abbreviations and spelling 
alterations are invented and evolve more freely than orthography-based ones. For instance, 
“schewpid” is created to imitate “stupid” in a British accent. It is uncommonly used, but 
most English speakers can understand it, even if they have never seen it before. As for 
orthography-based abbreviations and alterations such as “wdym” for “what do you mean”, 
less Internet-savvy people will have to look up its meaning. Therefore, text-level mapping 
alone is often not adequate to address the sparsity caused by phonetic-level alterations. 
Thus, existing typical corpora (see Table 1) are prepared for both text-level and phonetic-
level mappings. Accuracy, top-n accuracy, F-score, and BLEU score (Papineni et al. 2002) 
are widely used evaluation measures. Specifically, top-n accuracy considers the system 
correct, if the correct standard form is in its top n predictions.

We categorize the existing microtext normalization approaches by linguistic, statistical, 
and neural network methods.

2.1 � Linguistic approach

Linguistic approaches normalize microtext by modeling linguistic knowledge or commonly 
observed patterns in informal texts. Normalizers in this categories use rule-based and/
or lexicon-based method to leverage orthographic and phonetic information, or to imple-
ment their observations or assumptions about the formation of microtext. This approach is 
advantageous at addressing specific problems, such as abbreviation, character repetition, 
and character substitution caused by phonetics. However, it is labor intensive, as most rules 
and lexicons are manually built.

Pennell and Liu (2010) described a rule-based normalization system for text messages 
so that they can be read by a text-to-speech (TTS) system. A set of hand-crafted rules are 
applied to translate standard English into abbreviations in text lingo, which provides fea-
tures for a Maximum Entropy (MaxEnt) classifier to automatically create abbreviations, 
thereby establishing a mapping from standard English to the text message domain. This 
mapping is then reversed to create a look-up table so that the corresponding English words 
can be predicted from the input text message.

Brody and Diakopoulos (2011) described an automated method based on the notion 
that word lengthening is strongly associated with subjectivity and sentiment. Their method 
leverages this association to identify new domain-specific sentiment- and emotion-bearing 
words that are not in the existing lexicon. A rule-based unsupervised procedure is applied 
to detect such OOV words, generate the possible canonical forms, and discover their 
polarity.

Jose and Raj (2014) proposed a lexico-syntactic normalization model. As the name sug-
gests, their model consists of two modules - lexical normalization module, and syntactic 
analysis module. The former is based on a channelized database and a user feedback sys-
tem. Inspired by the multi-channel model (Xue et al. 2011) that is introduced in the later 
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section, the database is built as four channels of database, namely abbreviation channel, 
non-noisy channel, grapheme channel, and phoneme channel. Given a tokenized input 
string, candidate outputs are produced from each of these channels via binary search. The 
syntactic analysis module is based on a bottom-up parser. It takes the lexically normalized 
string outputted from the previous module, and builds the corresponding parsing tree using 
grammar rules. The module will then decide whether the sentence is valid or not, which 
helps to make the text normalization task more efficient.

Desai and Narvekar (2015) introduced a method to normalize OOV words. First, a set 
of rules are applied to standardize elongated words such as “gooooood”. Then, the most 
probable candidates are found from compiled databases for the OOV tokens. Lastly, any 
remaining noises are normalized using Levenshtein edit distance, which signifies the mini-
mum number of single character insertions, deletions, and substitutions required to trans-
form one word to another.

Mittal et al. (2014) proposed a three-level architecture to process microtext in Question 
Answering (QA) system. First, noise presented in the SMS tokens are replaced with the 
closest dictionary words using the Soundex (Beider 2008), Metaphone algorithm (Philips 
1990), and a modified version of the Longest Common Subsequence (LCS) algorithm 
termed Phonetic LSC (PLSC) that also takes phonetic similarity into account. Next, a 
semantically similar set of candidate questions are selected. Lastly, the results are opti-
mized via Syntactic Tree Matching (STM) and WordNet-based similarity.

Satapathy et al. (2017) proposed a phonetic-based algorithm to normalize tweets, which 
is used to enhance the accuracy of polarity detection. It is based on the assumption that 
humans are able to understand character repetition and substitution in unknown informal 
words because they automatically shift to the phonetic domain when they read the texts. 
Therefore, they adopted an ensemble approach that mainly relies on phoneme, and used 
a lexicon to address other forms of OOV words such as acronyms and emoticons. Given 
a tweet, all the OOV words are matched with the lexicon to find their In-Vocabulary (IV) 
forms and corresponding polarity class. Then, any leftover unnormalized tokens are pro-
cessed by Soundex, which uses homophones to encode texts so that characters with similar 
pronunciations can be easily matched. Since their objective is to boost polarity detection, 
the phonetic code of OOV words is matched against the knowledge base SenticNet (Cam-
bria et al. 2022). The final output is fed into a polarity classifier to test the effectiveness of 
normalization, and yields promising results.

So far, all of the phonetic algorithms used in the above mentioned methods encode 
words based on their spelling, and thus are only applicable for English or languages writ-
ten in Latin alphabet. An alternative is to use International Phonetic Alphabet (IPA), which 
more accurately represents pronunciations and can be used to encode any languages. How-
ever, its disadvantage is also evident - such a fine-grained encoding system can be too spe-
cific for phonetic matching. Thus, it needs to be simplified accordingly.

Khoury (2015) proposed a phonetic tree-based microtext normalization model. The 
model determines the probable pronunciation of English words based on their spelling 
via a radix-tree structured phonetic dictionary. To build the tree, Khoury created a dataset 
of IPA transcriptions of the English Wiktionary1. When encountering an OOV word, the 
model is able to find the most likely IV word using the uniform-cost search algorithm.

1  http://​www.​wikti​onary.​org/

http://www.wiktionary.org/
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Jahjah et  al. (2016) presented a novel word-searching strategy, built on the idea of 
sounding out the consonants of a given word. Their algorithm uses spelling and phonetic 
strategies to extract the base consonant data from misspelled and real phrases. First, the 
visual signature and phonetic signature of real English words are extracted using a set of 
rules. The former, similar to spelling-based phonetic algorithms, is defined by the sequence 
of unrepeated consonants in a word, whereas the latter is represented by the correspond-
ing IPA symbols. The algorithm also extracts simplified reconstructions of the words with 
vowels re-inserted at the correct places. Subsequently, signatures of a new OOV phrase 
are generated via a similar set of rules as in the previous step, with special care to the per-
mutations of adjacent consonants and common suffixes. Lastly, the model finds a set of IV 
words with identical signatures to the OOV word, along with their occurrence probability, 
and applies several heuristics to find the best matching IV word.

Building upon their previous work (Satapathy et al. 2017), Satapathy et al. (2019b) pro-
posed a cognitively inspired microtext normalizer, named PhonSenticNet, to aid concept-
level sentiment analysis for SMS texts. Given a message, a binary classifier is first applied 
to detect whether microtext is present, aiming to reduce execution time. If true, PhonSen-
ticNet finds the closest match for every concept in the input sentence based on phonetic 
distance, which is computed using Sorensen similarity algorithm based on both Soundex 
encoding as well as IPA encoding. Results showed that PhonSenticNet outperforms their 
previous algorithm.

2.2 � Statistical approach

Statistical approaches employ machine learning models such as Hidden Markov Model 
(HMM) and Support Vector Machine (SVM) to perform text normalization. For this type 
of normalizers, noisy channel is the most widely-used formulation. Modeling the process 
of distorting the source into the target, noisy channel is the basis of many NLP applica-
tions, e.g., Statistical Machine Translation (SMT), Automatic Speech Recognition (ASR), 
and spell checking. Intuitively, we can view microtext normalization as a translation task 
from standard English to informal English. Therefore, the nature of noisy channel makes it 
suitable for microtext normalization.

Choudhury et al. (2007) constructed a noisy channel model based on HMM for words 
in standard English to represent all possible variations of their corresponding text language 
version. Inspired by Rabiner (1989), the core concept of their model is to formulate the 
transformation from standard English to text language as a noisy channel. Given a sentence 
s in standard form, the noisy channel decodes it into text language t by

where the language model P(s) encodes which strings in standard form are valid, and the 
error term P(t ∣ s) models how the standard forms are distorted. The former can be easily 
constructed by exploiting large amounts of unlabeled data, therefore the paper focused on 
the latter, which is implemented by a letter-to-phoneme conversion HMM. Given a word in 
standard English, the HMM formulates the graphemes in the word as observation states, 
and their corresponding phonemes as hidden states. To train and test their method, they 
created a word-aligned corpus of SMS texts and standard English.

Jiampojamarn et al. (2007) pointed out that the previous letter-to-phoneme conversion 
systems only support one-to-one letter-phoneme alignment, which leads to difficulties in 
handling single letters that correspond to two phonemes, or vice versa. This can be partially 

t̂ = argmax sP(s)P(t ∣ s)
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mitigated by manually constructing a fixed list of merged phonemes prior to the align-
ment process. The paper, however, proposed a better solution to overcome this limitation 
- an automatic many-to-many alignment method. Given an input word, a many-to-many 
aligner establishes the appropriate alignments across the graphemes and phonemes. After 
this process, the input word is represented as a set of letter chunks, each containing one 
or two letters aligned with phonemes. The chunk boundaries are determined via a bigram 
letter chunking prediction model based on instance-based learning (Aha et al. 1991). The 
prediction model generates all the bigrams in a word, automatically determining whether 
each of them should be a double letter chunk based on the context. Subsequently, an HMM 
embedded with a local classifier is applied to find the globally most possible sequence of 
phonemes of the given word. The local classifier, also based on instance-based learning 
technique, generates the phoneme candidates for every letter chunk according to the con-
text. Thus, compared to conventional HMM described above, their modified HMM is able 
to utilize context information from not only the phoneme side but also the grapheme side.

Bartlett et al. (2008) applied a structured SVM model called SVM-HMM model (Altun 
et al. 2003) to orthographic syllabification, which acts as a sub-system to improve letter-
to-phoneme conversion. The paper formulated orthographic syllabification as a sequence 
labeling problem, employing SVM-HMM to predict tag sequences. SVM-HMM, unlike 
the standard SVM (Tsochantaridis et al. 2004), employs Markov assumption during scor-
ing, and thus is able to consider complete tag sequences during training. The motivation 
for using SVM-HMM over HMM is mainly the benefit of the discriminative property in 
SVM, and leeway to adopt feature representations without any conditional independence 
assumptions. The paper explored two tagging schemas for syllabification. One is positional 
tags (NB tags) (Bouma 2003) that label whether each letter occurs at a syllable boundary 
or not. The other is structural tags (ONC tags) (Daelemans et al. 1997; Skut et al. 2002), 
which represent the role each letter is playing within the syllable, namely onset, nucleus, 
and coda. The former is simple, straightforward, and adaptable to different languages. The 
latter, on the other hand, is able to capture the internal structure of a syllable to improve 
accuracy, but does not explicitly represent syllable breaks. To mitigate the weakness of the 
ONC tag schema, the paper combined the two schemas and proposed a hybrid Break ONC 
tag schema. Experiments show that their model not only outperforms previous syllabifica-
tion systems, but also improves the accuracy of letter-to-phoneme conversion.

Kaufmann and Kalita (2010) employed a SMT system for Twitter message normaliza-
tion. Given a tweet, it is first passed through a syntactic normalization module, where sets 
of rules on the orthographic- and syntactic-level are applied to preliminarily normalize 
the input sentence. Next, the normalized tweet is fed into the machine translation module, 
which is implemented by an existing SMT model called Moses  (Koehn et  al. 2007), to 
transform the tweet into standard English.

Xue et  al. (2011) introduced a method that considers orthographic factors, phonetic 
factors, contextual factors, and acronym expansions, formulating each of them as a noisy 
channel. The core concept is that a non-standard term should be similar to its standard 
form in respect of one or more of these factors, and thus each channel is responsible for 
one aspect of the distortion that converts the intended form into the observed form. The 
grapheme channel models the corruption of spellings. The phoneme channel causes distor-
tion in pronunciations. The context channel changes terms around a target term. The acro-
nym channel transforms a phrase into a single term. These channel models are combined 
using two variations of channel probabilities, namely Generic Channel Probabilities and 
Term Dependent Channel Probabilities. The former assumes that the probability of a term 
being emitted through a noisy channel is independent of its standard form, whereas the 
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latter takes into consideration that some standard forms are more likely to be distorted via 
a certain channel in reality. Experiments show that the two variants achieve similar perfor-
mance, with the latter being slightly better on SMS dataset.

Han and Baldwin (2011b) theorized that supervised learning is not adept at handling 
Twitter OOV words due to data sparsity. Hence, they introduced an unsupervised clas-
sifier that detects ill-formed words and generates candidate IV words using morphopho-
nemic similarity. Their normalization strategy consists of three stages. First, a confusion 
set of candidate IV words is generated for each OOV word based on morphophonemic 
variations, which are produced using lexical edit distance and the double Metaphone algo-
rithm (Philips 2000). Then, based on its confusion set, a linear kernel SVM classifier (Fan 
et al. 2008) is employed to detect whether the given OOV word is actually an ill-informed 
word. Lastly, if the OOV word is indeed ill-informed, the most likely candidate is selected 
based on morphophonemic similarity and context. Although their method outperforms 
most supervised models, there are limitations. The most prominent one is that it only tar-
gets single-token words, and thus is unable to handle phrases and acronyms.

Pennell and Liu (2011, 2014) described a SMT-based system for expanding abbrevia-
tions found in informal texts. The method operates in two phases. In the first phase, a char-
acter-level SMT model generates possible hypotheses for each abbreviation. By training 
the model at character level, the model is able to learn the common character abbreviation 
patterns regardless of their associated words, and thus alleviates the OOV problem. In the 
second phase, an in-domain language model decodes the hypotheses, choosing the most 
likely one in the context.

Similarly,  Li and Liu (2012) introduced a word-level framework based on a SMT 
approach, which performs well in translating OOV words into IV words. The framework 
can be divided into two components. One component is a character-based SMT mod-
ule that translates non-standard words into standard words by matching their character 
sequence. The other component is a two-stage SMT module that leverages phonetic infor-
mation. Non-standard words are first translated into possible phonetic symbols, then map-
ping to standard words. The candidate word lists generated by the two components are then 
combined and ranked using a set of heuristic rules.

Liu et al. (2012) described a broad-coverage normalization system that incorporates dif-
ferent aspects of human cognition, including letter conversion, visual priming, and resem-
blance between string and phone. The system consists of four key components. Given a 
token, three sub-normalizers respectively produce candidate words based on the cognition 
aspects, namely, enhanced letter transformation, visual priming, and spell checking. Then, 
the last component, called candidate combination, uses either word-level or message-level 
strategy to rank the candidates. The enhanced letter transformation component is a standard 
noisy channel, where the error term is modeled by a character-level CRF. The enhancement 
is two-fold. First, features relating to phoneme, morpheme, syllable, and word boundary 
are used to train the CRF. Second, the training (word, token) pairs are chosen according to 
their global contextual similarity. On the other hand, the visual priming component is also 
a noisy channel, but uses a novel technique inspired by cognitive behavior. They observed 
that when humans are familiar with informal texts, they are able to quickly recognize non-
standard tokens given only minor visual cues. Following this observation, the priming 
component computes the error term based on word frequency of the token and the minor 
visual stimulus, which is LCS between the token and target word divided by the token 
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length. Lastly, for the spell checking component, the open-source Jazzy spell checker2 is 
employed. The broad-coverage system outperforms previous state-of-the-art models at 
both word level and message level.

Zhang et  al. (2013) proposed a parser-centric word-to-word normalization method to 
convert raw informal texts into the correct grammatical version. The main drive for this 
method is that text normalization performance should be strongly dependent on how use-
ful it is for downstream applications, e.g., parsing. Given an input sequence, a series of 
replacement generators replace original tokens with normalized ones by producing sets of 
edit operations. Subsequently, a directed acyclic normalization graph is constructed based 
on the generated replacements. The graph models two types of dependencies, namely, syn-
tactic consistency of true assignments, and correlations among replacements. The output 
is determined by using Maximum A Posteriori probability (MAP) inference, which is to 
select the weighted longest path in the normalization graph. The paper tested the normal-
izer in two aspect, namely, its effects on dependency parsing and its domain adaptability. 
Results showed that the proposed normalizer indeed helps improve parsing, and supports 
domain transfer with low cost.

Wang and Ng (2013) made the observation that aside from standardizing informal 
words, other normalization operations, such as missing word recovery and punctuation 
correction, are also crucial for the improvements of downstream NLP tasks. To this end, 
they presented a punctuation correction method based on dynamic CRF  (Sutton et  al. 
2007), which is described in detail in the text chunking section, and a missing word recov-
ery method based on standard CRF. For the former, the words and punctuation symbols 
surrounding the focal word are represented as binary features, and fed into a two-layer 
dynamic CRF model. The first layer assigns the actual punctuation tags, whereas the sec-
ond layer labels sentence boundaries. For missing word recovery, the paper specifically 
targeted the omission of “be” in English. Hence, a CRF is employed to label every token 
in the input sentence with a tag that indicates whether the token should be followed by a 
conjugation of “be”. Furthermore, they proposed a novel beam-search decoder that can 
integrate different types of normalization operations, including statistical and rule-based 
operations. Given an input sentence, the decoder iteratively produces new sentence-level 
hypotheses, evaluating them to retain the plausible ones, until it finds the best normaliza-
tion. Each hypothesis is generated by several hypothesis producers. Each of these produc-
ers focuses on a different target aspect of informal texts, applying the corresponding type 
of normalization operation to the sentence. In other words, the objective of beam-search is 
to find the best pipeline of hypothesis producers. Their method yields significant improve-
ment in both Chinese and English social media texts.

Yang and Eisenstein (2013) suggested that data sparsity of social media texts makes 
unsupervised learning extremely challenging. To solve this problem, they proposed a uni-
fied unsupervised model based on maximum-likelihood framework. Given an informal 
sentence, a log-linear model is applied to model the string similarity between tokens in 
tweets and standard English. Since it is an unsupervised, locally-maximized conditional 
model, typical dynamic programming techniques such as the Viterbi algorithm is not ideal. 
Instead, they applied the sequential Monte Carlo algorithm (Cappé et al. 2007) for training. 
The log-linear model is combined with a language model for standard English to output the 
desired conditional probability.

2  http://​jazzy.​sourc​eforge.​net/

http://jazzy.sourceforge.net/


5655A survey on syntactic processing techniques﻿	

1 3

Based on the assumption that syllable plays a fundamental role in non-standard word 
generation in social media, Xu et al. (2015b) viewed syllable as the basic unit and extended 
the conventional noisy channel approach. Given a non-standard word, it is first segmented 
into syllables to identify the non-standard syllables. Then, the error term of the noisy chan-
nel can be represented as syllable similarity, which is an exponential potential function that 
combines orthographic similarity and phonetic similarity. The former is measured by edit 
distance and LCS, whereas the latter is measured by phonetic edit distance and phonetic 
LCS (PLCS) based on letter-to-phone transcripts. Results showed that the syllable-based 
approach indeed yields significant improvement. Additionally, this method has the advan-
tage of being robust and domain independent.

2.3 � Neural network approach

In recent years, deep learning models are widely used in the filed of NLP (Otter et al. 2020; 
Mao et al. 2019), as they are able to automatically extract features from input text. Neu-
ral network approaches make use of this advancement in microtext normalization domain. 
As stated in the previous section, microtext normalization can be viewed as a translation 
problem. Hence it is a natural progression to employ the encoder-decoder framework com-
monly adopted by NMT (Yang et al. 2020). Additionally, since the attention of normalizing 
microtext has gradually shifted from word level to character level, neural networks are fre-
quently utilized to extract character-level features.

Chrupała (2014) introduced a semi-supervised text normalization model. They pointed 
out a weakness of the widely used noise channel decomposition in microtext normaliza-
tion - texts in normalized form of source domain are limited, and standard text resources 
vary across domains. Thus the target language model is in fact not as easy to estimate as 
one imagines. Therefore, their model serves as an alternative that utilizes a large amount 
of unlabeled data from a source domain. To achieve this, normalization is formulated as a 
string transduction problem (Chrupała 2006), which is discussed in detail in the lemmati-
zation section. Using labeled data, a CRF learns the sequence of edit operations that trans-
forms the tweets to standard English. Additionally, a Simple Recurrent Network  (Elman 
1991) is employed to induce character-level embeddings from unlabeled Twitter data, 
which are used as features in the CRF transduction model. Their model is able to yield 
accurate results with less training data and without lexical resources.

Leeman-Munk et al. (2015) proposed a deep learning model to solve the W-NUT (see 
Table  1 for W-NUT) Lexical Normalization for English Tweets challenge. Their model 
consists of three components, a normalizer, a flagger that identifies words to be normal-
ized, and a conformer that smooths out the simple errors from the normalizer. The nor-
malizer is implemented as a character-level three-layer feedforward neural network, which 
takes in the input word and predicts a possible standard version. The flagger has the same 
architecture as the normalizer and works in parallel with the normalizer. The input word 
is replaced by the generated word only if the flagger tags it as to be normalized. Since 
the normalizer functions at character level, it is possible that the predicted word is one 
character off. To address this error, a conformer is constructed using a dictionary collected 
from the gold standard training data. If the word generated by the normalizer is not in the 
dictionary, the conformer replaces it with the most similar word in the dictionary based on 
Levenshtein edit distance.

Taking inspiration from the advances in neural Machine Translation (MT),  Lusetti 
et al. (2018) proposed a character-level encoder-decoder model to normalize multilingual 
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SMS messages. The model employs a Bidirectional Long Short-Term Memory (Bi-
LSTM) (Graves et al. 2013) as an encoder, an LSTM (Hochreiter and Schmidhuber 1997) 
as a decoder, and a soft attention mechanism (Bahdanau et al. 2014). They further intro-
duced two methods to augment the model. First is to fuse it with a word-level language 
model of the target language using the synchronization mechanism (Ruzsics and Samard-
zic 2017). Second is to enhance the training set with additional target-side data.

Similarly, Satapathy et al. (2019a) tested different variants of the Sequence-to-Sequence 
(Seq2Seq) normalization framework, and to what extent they can improve the performance 
of sentiment analysis on informal texts. Specifically, they experimented with four types of 
character-level encoder-decoder architectures, namely LSTM, LSTM with attention, Gated 
Recurrent Units (GRU) (Cho et al. 2014), and LSTM with Convolutional Neural Network 
(CNN) as feature extractor (Kim 2014). Experiments show that all the normalizers above 
help boost the accuracy of sentiment analysis on social media and SMS texts. The ranking 
of effectiveness from high to low is GRU, LSTM with attention, LSTM with CNN, and 
LSTM.

Lourentzou et  al. (2019) proposed a hybrid word-character attention-based encoder-
decoder model for text normalization. Given a sentence, the tokens are first passed through 
a word-based Seq2Seq model to capture semantic meaning and long-term contextual 
dependencies. Any detected OOV tokens are marked and passed on to a secondary charac-
ter-based Seq2Seq model, which outputs the possible IV tokens and corresponding confi-
dence. The character-based Seq2Seq model is trained using synthetic adversarial data that 
aims to capture errors commonly found in social media texts.

2.4 � Summary

Microtext normalization is in fact a complex task containing many sub-problems, e.g., mis-
spelled words, acronyms, phonetics-based spelling alterations, real-word spelling errors, 
missing words and punctuations, etc.

In summary, among linguistic approaches, the system proposed by  Pennell and Liu 
(2010) is advantageous in that it does not require external lexicons, however, it relies on 
hand-crafted rules to generate candidates. Jose and Raj (2014) incorporated a parser as sub-
system, effectively capturing lexico-syntactic information. However, their method heavily 
relies on manually complied database. The representation of string similarity is a focal 
point of linguistic approaches. Desai and Narvekar (2015) used Levenshtein edit distance 
to measure similarity, which cannot model the human intuition behind microtext. Mittal 
et al. (2014), on the other hand, applied multiple spelling-based phonetic matching algo-
rithms to compute similarity. However, their method is language-specific. IPA phonetic 
matching can be applied to any language, while it suffers from over-specificity  (Khoury 
2015). Jahjah et al. (2016) mitigated this weakness by incorporating spelling features com-
bined with IPA phonetic matching. Brody and Diakopoulos (2011) and Satapathy et  al. 
(2017, 2019a) all targeted sentiment analysis. Brody and Diakopoulos (2011) relied a set of 
simple rules for elongated words, and thus limited in use. The latter two models are able to 
handle various types of OOV words, among which Satapathy et al. (2019b) has the advan-
tage of incorporating IPA encoding.

For statistical approach, most models formulate microtext normalization as a noisy 
channel problem, as first implemented by Choudhury et  al. (2007). A limitation of their 
method is that it can only map one letter to one phoneme.  Jiampojamarn et  al. (2007) 
implemented a many-to-many letter-phoneme alignment that can mitigate this problem, 
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whereas their solution relies on hand-crafted conversion rules and only works on fixed win-
dow size of letters. Bartlett et al. (2008) and Xu et al. (2015b) addressed this limitation by 
utilizing syllable. The former uses syllable tagging as a sub-system, whereas the latter con-
siders syllable as the basic unit for noisy channel. Han and Baldwin (2011b) and Yang and 
Eisenstein (2013) both utilized unsupervised learning to mitigate the data sparsity problem 
for social media text. However, their methods cannot handle phrases and acronyms. The 
parsing-centric method proposed by Zhang et al. (2013) is advantageous in aiding down-
stream task, however, it has the same weakness of only dealing with single-token word-
to-word conversion. This limitation can be addressed by SMT-based approach. Kaufmann 
and Kalita (2010) directly implemented an existing SMT system for microtext normaliza-
tion. Following this approach, Pennell and Liu (2011) presented a character-level SMT sys-
tem that can better handle abbreviation. Li and Liu (2012) further improved such method 
by combining character-level and phonetic SMT systems. On the other hand,  Xue et  al. 
(2011) tackled the difficulty of abbreviation by using multiple noisy channels, each for one 
aspect of microtext. Similarly, Liu et al. (2012) also incorporated multiple noisy channels, 
and took it one step further by designing each noisy channel specifically for its function. 
Lastly, Wang and Ng (2013) confronted the niche aspects of microtext normalization, i.e., 
missing word recovery and punctuation correction.

With neural network approaches,  Chrupała (2014) addressed the target domain prob-
lem of MT-based approach by proposing a semi-supervised alternative. However, such 
method only targets single-token word. Leeman-Munk et al. (2015) circumvented both of 
these limitations by using a character-level pipeline model, which conversely can intro-
duce propagated errors. Lusetti et al. (2018), Satapathy et al. (2019a) and Lourentzou et al. 
(2019) all made use of the encoder-decoder structure with various neural networks, which 
can be considered as an MT-based approach. Nonetheless, the target domain problem is 
less prominent nowadays, because a) more annotated datasets are available, and b) deep 
learning approach is more adept at extracting generalized information than traditional SMT 
systems.

Table  2 presents a summary of the introduced methods and their concerns. Notably, 
most linguistic and statistical methods use a combination of orthographic matching and 
phonetic matching by computing their corresponding similarities. This is expected, as each 
provides complementary information that the other cannot address. There are methods that 
use neither, formulating their target problems as sequence prediction tasks instead, using 
either graphical models or neural networks. For some approaches, contexts are taken into 
consideration by incorporating syntactic features (Fossati and Di Eugenio 2008; Kaufmann 
and Kalita 2010; Zhang et  al. 2013), or using attention mechanism  (Lusetti et  al. 2018; 
Satapathy et al. 2019a; Lourentzou et al. 2019). Additionally, syllable-level and character-
level models are able to learn more fine-grained patterns than word-level ones, and thus are 
gaining popularity in recent years, especially for the latter. Since microtext normalization is 
a field with abundant raw text, we also mark out methods that are able to utilize unlabeled 
data. Finally, there are specific sub-problems that were addressed by a part of the reviewed 
linguistic and statistical methods, namely, abbreviation and acronym and sentiment-related 
error. Table 3 shows the performance of the introduced methods, organized by their tar-
get tasks. On the SMS-C dataset,  Li and Liu (2012) obtained the highest top-1 accu-
racy, whereas Liu et al. (2012) obtained the highest top-20 accuracy. Zhang et al. (2013) 
achieved the best performance on LexNorm1.1, and Xu et al. (2015b) on LexNorm1.2.

To sum up, linguistic approaches build upon simple text-level and phonetic-level 
matching algorithms, utilizing hand-crafted rules, lexicons or knowledge bases. As 
mentioned above, it is adequate at targeting specific problems, e.g., IPA-based phonetic 
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matching, sentiment, and context provided by metadata. However, its drawbacks are 
prominent. Rule-based and lexicon-based methods require a lot of human effort, hence 
unable to adapt to other language domains. Statistical approach, on the other hand, is 
much less labor-intensive. This type of models regard microtext normalization as a SMT 
problem or a sequence labeling problem. Although most of them still rely on feature 
engineering, they pave the way for neural network approaches. With the help of neural 
networks, context-sensitive character-level features can be easily extracted by Seq2Seq 
models. It is also adaptable to other languages.

Table 2   The comparison between different Microtext normalization methods

OM stands for orthographic matching based on string similarity. PM stands for phonetic matching based on 
phonetic similarity. UD stands for unlabeled data. Abb. stands for abbreviation

Method OM PM Context Syllable Character UD Abb. Sentiment

Linguistic  Pennell and Liu (2010) ✓

 Brody and Diakopoulos 
(2011)

✓ ✓

 Jose and Raj (2014) ✓ ✓ ✓

 Mittal et al. (2014) ✓ ✓

 Desai and Narvekar 
(2015)

✓ ✓

 Satapathy et al. (2017) ✓ ✓ ✓ ✓

 Khoury (2015) ✓

 Jahjah et al. (2016) ✓

 Satapathy et al. (2019b) ✓ ✓

Statistical  Choudhury et al. (2007) ✓ ✓ ✓

 Jiampojamarn et al. 
(2007)

✓ ✓

 Bartlett et al. (2008) ✓ ✓

 Kaufmann and Kalita 
(2010)

✓ ✓

 Xue et al. (2011) ✓ ✓ ✓ ✓ ✓

 Han and Baldwin (2011b) ✓ ✓ ✓ ✓

 Pennell and Liu (2011) ✓ ✓ ✓ ✓

 Li and Liu (2012) ✓ ✓ ✓ ✓ ✓

 Liu et al. (2012) ✓ ✓ ✓ ✓ ✓

 Zhang et al. (2013) ✓ ✓

 Wang and Ng (2013) ✓

 Yang and Eisenstein 
(2013)

✓ ✓

 Xu et al. (2015b) ✓ ✓ ✓ ✓

Neural  Chrupała (2014) ✓ ✓

 Leeman-Munk et al. 
(2015)

✓ ✓

 Lusetti et al. (2018) ✓ ✓ ✓

 Satapathy et al. (2019a) ✓ ✓ ✓

 Lourentzou et al. (2019) ✓ ✓ ✓
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However, the neural network approaches still have much room for improvement. To our 
knowledge, there is not yet a deep learning normalizer that directly addresses the data spar-
sity problem caused by phonetics-based alterations. It can potentially lead to performance 
drop for languages that are rich in such alterations on social media, such as Chinese. Thus, 
incorporating phonetic features or a phonetic-level encoder can be a potential direction for 
future work.

Furthermore, the use of microtext is strongly affected by the geolocation and dialect 
of users. For instance, when expressing laughter in Latin alphabets, there is a tendency to 
use “lol” for English speakers, “hhh” for Chinese speakers, “www” for Japanese speak-
ers, “kkk” for Korean speakers, “555” for Thai speakers, etc. Metadata that provides such 
information is scarcely utilized in existing methods. As such, this would also be an interest-
ing direction to explore.

3 � Sentence boundary disambiguation

SBD, which decides where sentences begin and end in raw texts, is an important yet over-
looked pre-processing task for many NLP applications. Downstream tasks such as machine 
translation (Matsoukas et al. 2007; Zhou et al. 2017) and document summarization (Jing 
et al. 2003; Boudin et al. 2011) rely on predetermined sentence boundaries for good perfor-
mance. Sentence segmentation is seemingly easy through identifying punctuation marks. 
However, there are some notable ambiguities that often occur in text. For instance, aside 
from indicating the end of a sentence, a period can also appear in abbreviations or as deci-
mal point. In a more complex scenario where an abbreviation is the last token of a sen-
tence, the period simultaneously serves as a part of the abbreviation as well as the full-stop 
of the sentence.

There are two widely-used corpora for SBD, the Brown Corpus  (Francis and Kucera 
1979) and the WSJ corpus from the Penn Treebank project  (Marcus et  al. 1993). In the 

Table 4   Widely used corpora for SBD

Dataset Source Reference

Text BC The Brown Corpus  Francis and Kucera (1979)
WSJ Wall Street Journal  Marcus et al. (1993)
SMC Twitter text corpus  Rudrapal et al. (2015)
MG Texts in Modern Greek  Stamatatos et al. (1999)
GRS Gold Standard Rules  Sadvilkar and Neumann 

(2020)
MIMIC Medical Information Mart for Intensive Care corpus  Johnson et al. (2016)
FV Fairview Health Services database Knoll et al. (2019)

Prosody T-News Speech transcripts from news program  Stevenson and Gaizauskas 
(2000)

T-CTL Prepared speech transcripts  Treviso et al. (2017)
T-MCI Impaired speech transcripts  Treviso et al. (2017)
T-R Transcripts of BBC and radio news Gotoh and Renals (2000)
BN Broadcast news transcripts  Liu et al. (2004)
CTS Conversational telephone speech transcripts  Liu et al. (2004)
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Brown Corpus, 90% of periods occur at the end of sentences, and 10% at the end of abbre-
viations, among which about 1% to 2% are in both, whereas in the WSJ corpus, about 47% 
of periods appear in abbreviations. Thus, the ambiguity level largely depends on corpora 
and the associated domains. Widely applied datasets are listed in Table 4. The evaluation 
metrics commonly used are accuracy (or error rate) and F-measure.

In this paper, we divide the existing SBD algorithms into three categories: word-based 
approaches, syntax-based approaches, and prosody-based approaches.

3.1 � Word‑based approach

The word-based approaches largely rely on morpholexical information, e.g., suffix, spell-
ing, capitalization, and word length to segment sentences. For early works, rule-based 
approaches, n-gram probabilistic methods, and lexical lookup methods are commonly 
employed to predict the type of the words surrounding a period, thus determining whether 
the period marked the end of the sentence.

Grefenstette and Tapanainen (1994) were the first to propose a rule-based algorithm to 
resolve the ambiguities caused by the usage of periods. Specifically, a set of rules are man-
ually created using regular expressions to represent possible patterns where periods that do 
not occur as full-stops. The system then matches the surrounding context of every period 
in texts against the regular expressions to predict whether it is a sentence boundary. Their 
system obtains reasonably high accuracy with great computational efficiency.

To enable automated extraction of rules,  Stamatatos et  al. (1999) applied transfor-
mation-based learning to SBD. Compared to the original transformation-based algo-
rithm (Brill 1995), which is discussed in detail in the POS tagging section, their method 
limits the number of possible transformations. This is achieved by maintaining two sets of 
rules for each punctuation mark. Initially, all punctuation marks are considered to be full-
stops. Then for each of them, the system automatically learns a set for rules that triggers 
the removal of a sentence boundary, and a set of rules that triggers the insertion of a sen-
tence boundary. This mechanism ensures that the maximum number of transitions for each 
punctuation mark is two.

Sadvilkar and Neumann (2020) developed a rule-based SBD system called PySBD, 
where the reasoning mechanism of their system are explainable. The performance is 
comparable to statistical models. Unlike the other supervised SBD methods, PySBD is 
trained and evaluated with the Golden Rule Set (GRS). GRS is a language specific corpus 
designed for SBD. It contains sets of hand-crafted rules over a variety of domains that are 
carried out in a pipeline fashion.

Despite the decent accuracy, there are some drawbacks to rule-based methods. Firstly, 
periods exhibit absorption properties, meaning when multiple periods occurs they are often 
marked as one. Therefore, it is challenging to build a comprehensive set of rules where 
they do not contradict each other. Furthermore, such systems are often developed using a 
specific corpus, thus further application to a corpus in another language or domain is diffi-
cult. Therefore, many machine learning methods are proposed for the SBD tasks to address 
these shortcomings.

To reduce the labor efforts in developing hand-crafted rules and features,  Reynar 
and Ratnaparkhi (1997) proposed a SBD system based on MaxEnt (Ratnaparkhi 1996). 
It requires only simple information about the candidate punctuation marks. For each 
candidate punctuation mark, the system utilizes morpholexical features of its trigram 
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tokens, estimating their joint probability distribution as a sentence boundary. The per-
formance of their system is comparable to those which require vastly more resources.

Schmid (2000) proposed an unsupervised learning method by manually listing all 
the possible scenarios where a period may denote a decimal point or an abbreviation. 
For each of the listed scenarios, a probability model is created accordingly to predict 
whether the period is a full-stop. Unlike previous token-based methods, which rely on 
the focal token itself and its local context to determine whether it is an abbreviation, 
their model computes the distribution of possible abbreviations by scanning through 
the whole corpus. This method can be referred to as a type-based approach  (Kiss and 
Strunk 2002).

Similarly,  Kiss and Strunk (2002) introduced an innovative unsupervised type-based 
system that requires less human effort. Their approach views the identification of abbrevia-
tions as a collocation detection problem, which can be solved using log likelihood ratio. 
Specifically, an abbreviation can be seen as a collocation of the abbreviated word and the 
following period.

Kiss and Strunk (2006) further expanded this system to create the Punkt system, which 
has a more complex structure. First, the input text is processed by the previous type-based 
algorithm to obtain the initial annotation, which marks a period as either part of an abbre-
viation, part of an ellipsis, or sentence boundary. Subsequently, a token-based classifier is 
applied to revise the initial annotation as well as to determine whether a period is both part 
of an abbreviation or ellipsis and the end of sentence, thus producing the final annotation. 
In the token-based classifier, log likelihood ratio is used for two heuristic. One is the col-
location heuristic, which takes a pair of word surrounding a period and tests whether a col-
location tie exists between them. The other is the frequent sentence starter heuristic, which 
searches for word types that form a collocation with a preceding sentence boundary based 
on the results from the type-based classifier. The frequent sentence starter heuristic helps 
counterbalance the collocation heuristic, which in some scenarios falsely identifies colloca-
tion across a sentence boundary.

Gillick (2009) proposed a SBD system based on SVM. The system takes the trigram 
contexts of periods as input. Specifically, for a trigram of the form “L.R”, the problem is 
defined as the conditional probability of the binary sentence boundary class s, P(s ∣“L.R”). 
The system utilizes morpholexical features, e.g., capitalization and word length to train the 
SVM. To reduce the error rate caused by words such as U.S and N.Y, the system adopts the 
type-based approach, taking into account the log count of lowercased appearances of L and 
R in the input texts. Aside from the proposed system, the paper also makes the observation 
that the majority of errors in SBD occur when an abbreviation is the end of sentence.

Rudrapal et  al. (2015) focused on the problem of SBD in social media texts and 
explored three machine learning algorithms for the task, namely CRF, Naïve Bayes (NB), 
and Sequential Minimal Optimization (SMO) (Platt 1999). Since social media texts likely 
use informal languages, identifying sentence boundaries in such texts is a even greater 
challenge. To mitigate the ambiguities, the corpus is first tokenized, using the tokenizer 
in CMU Twitter POS tagger  (O’Connor et  al. 2010; Gimpel et  al. 2010). Subsequently, 
the machine learning algorithms are trained on the basic textual features of the tokenized 
corpus. The CRF method is able to extract simultaneously correlated lexical features, thus 
easier to incorporate different knowledge sources. The SMO method, on the other hand, is 
an iterative optimization approach to train SVM. Results show that SMO yields the best 
performance on social media texts, whereas NB comes close in the second place. On the 
Brown corpus, both NB and SMO obtain good performance, but the former is more accu-
rate. CRF, however, performs marginally worse than the other two algorithms.
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Riley (1989) first introduced a tree-based algorithm to SBD, where a regression tree 
is generated using a set of hand-crafted morpholexical features from the trigram context 
of words with periods in them to identify decimal points and abbreviations. Although 
their model achieves accurate results, the model requires a vast amount of training data, 
making it too costly for a pre-processing task and unrealistic for languages and domains 
with limited resources.

Wong and Chao (2010); Wong et  al. (2014) applied an incremental algorithm on 
SBD. Their system is based on i+Learning principle, which is an incremental decision 
tree learning algorithm, making it flexible to changes and suited for online learning. The 
algorithm can be divided into two phases. First, the system constructs a top-down binary 
decision tree offline using the initial training data. The resulting tree acts as an optimal 
base for the second phase, which is a online procedure that adopts the tree transposition 
mechanism of Incremental Tree Induction (ITI)  (Utgoff et al. 1997) as a bias to grow 
and revise the base tree. This method dynamically revises the tree according to the new 
incoming data while preserving the essential statistical information. Thus it is able to 
adapt to texts in a different language or domain without the need to retrain from scratch. 
Their system is trained on morpholexical features extracted from trigram contexts.

All of the aforementioned SBD systems, with the exception of  Kiss and Strunk 
(2002, 2006), use n-gram based technique to extract textual information, which leads 
to sparse vector space problems. To address this, Treviso et al. (2017) suggested word 
embedding as an alternative and verified which embedding induction method works best 
for SBD. They investigated Word2Vec  (Mikolov et  al. 2013), Wang2Vec  (Ling et  al. 
2015a), and FastText  (Bojanowski et  al. 2016). They used Continuous Bag-Of-Words 
(CBOW) and Skip-gram to train the vectors, respectively. They then tested the embed-
dings on a Recurrent Convolutional Neural Network (RCNN) (Treviso et al. 2016) for 
sentence segmentation. Experiments show that Word2Vec consistently performs better 
than the other two methods. Additionally, the Skip-gram strategy generally yields bet-
ter results than the CBOW for the Wang2Vec and the FastText, whereas for Word2Vec 
the better strategy depends on the corpus. Furthermore, they also compared the model 
performance between using only the extracted morpholexical features and adding mor-
phosyntactic features for SBD. Interestingly, the results show that the explicitly added 
features do not make a difference in terms of accuracy. They theorized that the word 
embedding alone carries sufficient morphosyntactic information for SBD.

Knoll et al. (2019) utilized both word embeddings and character embeddings to fur-
ther capture morpholexical features. Based on the observation that previous SBD sys-
tems perform poorly on a domain specific corpus such as clinical texts, they proposed 
a deep learning algorithm to address this problem. First, the input text is tokenized and 
transformed into word embeddings using FastText. The text is also fed into a Convolu-
tional Neural Network (CNN) layer (Collobert et al. 2011) to obtain character embed-
dings, which is summed with the word embeddings. The final word representation is 
passed through a Bidirectional Long Short-Term Memory (Bi-LSTM) layer  (Graves 
et al. 2013) and a sigmoid-activated dense layer to output the log-probability of a word 
being the start of a sentence. They tested their algorithm on the Medical Information 
Mart for Intensive Care (MIMIC) corpus (Johnson et al. 2016) and a dataset drawn from 
the Fairview Health Services (FV). Results suggest that the deep learning approach 
indeed outperforms the traditional ones, especially on corpora from different domains 
and corpora where sentences are often not terminated by punctuation marks.
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3.2 � Syntax‑based approach

It is difficult for word-based approaches to robustly capture contexts larger than the 
focal token. Syntax-based SBD systems can solve this problem by utilizing POS tags. 
Intuitively, we know that the number of possible POS patterns for a bigram is much less 
than the number of possible word patterns, thus lessening sparsity problems. Addition-
ally, the syntactic function of a word makes a big difference when identifying abbrevia-
tions. For instance, when predicting whether a capitalized word following a period is a 
proper name or a common word, taking into account the POS tags of its trigram context 
is more effective than relying only on their morpholexical properties.

Palmer and Hearst (1994) were the first to incorporate POS tagging in the task of SDB. 
They proposed an efficient and portable system based on feed-forward neural network. The 
core idea is to use POS probabilities of the tokens surrounding a punctuation mark as input 
to the feed-forward network, which outputs an activation value to determine what label to 
assign to the punctuation mark. First, the system uses a slightly modified version of the 
PARTS POS tagger (Church 1988), which also produces the frequency counts of the POS 
tags associated with each token. The system then maps them into a more generalized set 
of 18 POS categories. Each input token in the n-gram context around a punctuation is then 
represented by a descriptor array indicating their probability distributions for these 18 cate-
gories, in addition of two flags that mark whether the word is capitalized and if it follows a 
punctuation mark. Subsequently, these descriptor arrays are fed into a fully-connected hid-
den layer with a sigmoid activation function, and then into an output unit to decide whether 
the punctuation marks are full-stops. The system also introduces two adjustable thresholds 
to leave room for difficult ambiguities. When the output score falls under the first thresh-
old, the punctuation mark is not a sentence boundary. When the score is higher than the 
second threshold, it is a sentence boundary. If the score is in between these two thresholds, 
that means the system is under-informed to make a confident prediction and it’ll be marked 
accordingly for later use.

Based on this algorithm,  Palmer and Hearst (1997) further developed a SBD system 
called Satz, where the aforementioned n-gram descriptor arrays containing POS informa-
tion can be fed into either a neural network as in their previous work, or a decision tree. The 
learning algorithm chosen for the system is a c4.5 (Salzberg 1994) decision tree induction 
program, which iteratively constructs the tree using the descriptor arrays as input attrib-
utes. Each leaf node of the decision tree represents the value of the goal attribute, which in 
this case indicates whether a punctuation mark is a sentence boundary. After the decision 
tree is built, the algorithm prunes it by recursively examining each sub-tree to reduce errors 
and overfitting. Experiments show that the tree-based learning method achieves compa-
rable accuracy as the feed-forward neural network. However, there are problems with the 
n-grams of generalized POS categories. First, the generalized categories are far sparser 
than the traditional Penn Treebank POS tags, thus requiring more training data. Further-
more, since words outside of the n-gram have no influence on the prediction, the n-gram 
must be of sufficient length to capture syntactic information. In the Satz System, n is set to 
be 6, which is also much sparser than the commonly adopted bigrams and trigrams. The 
reason behind these weakness is that, this method is built on the premise that sentence 
boundaries must be obtained before POS tagging. Thus, to utilize syntactic information, 
the original POS tags have to replaced by the generalized POS categories.

This dilemma is solved by Mikheev (2000), who suggested that POS taggers do not 
necessarily require predetermined sentence boundaries to operate. The simple solution 
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is to break the input text into short text-spans so that it is easier for POS taggers to 
handle. Based on this notion, he proposed a SBD system using POS tagging frame-
work. To achieve this, he made some minor adjustments to the Brown Corpus and the 
WSJ corpus. First, the period in abbreviation is tokenized separately from the rest of 
the abbreviations. Second, all the periods are marked accordingly to three types of tags, 
namely full-stop, abbreviation, or both. With this setting, SBD can be performed using 
a POS tagger, which is able to fully make use of the local syntactic information. The 
POS tagger chosen for this system is based on HMM and MaxEnt, which will be dis-
cussed in detail in the POS tagging section. He further introduced a document-centered 
approach (Mikheev 2002), which can also be regarded as type-based. When using this 
approach, the system scans the entire document for contexts where the focal token is 
marked unambiguously. This approach is proven to be effective in distinguishing 
whether a capitalized word is a proper name or a common word, which works in com-
plement with the POS tagger to determine sentence boundaries.

Stevenson and Gaizauskas (2000) applied memory-based learning to identify sentence 
boundaries in transcripts produced by an ASR system. It is more challenging than SBD 
with standard texts. For instance, the text generated by an ASR system is generally unpunc-
tuated, in single case, and likely to contain transcription errors. Their algorithm is based on 
the Timbl memory-based learning algorithm (Daelemans et al. 2003), which memorizes a 
set of training examples. It classifies new instances by assigning them the class of the most 
similar learned instances. The system adopts both POS tags and morpholexical features 
such as capitalization and stop word flag. Results show that the proposed algorithm cannot 
effectively address the difficulties in ASR transcripts.

Following the work of Reynar and Ratnaparkhi (1997), Agarwal et al. (2005) proposed 
a MaxEnt classifier that incorporates both lexical and syntactic information. Specifically, 
they assigned each token with a binary End-of-Sentence tag and a POS tag, formulating 
SBD as a sequential labeling problem. Similar to the previous MaxEnt model, their classi-
fier is also trained on the features of trigram contexts. Their work also concluded with the 
best tested feature set for the MaxEnt classifier.

3.3 � Prosody‑based approach

Prosody-based approaches are proposed specifically for SBD in ASR. Previous meth-
ods  (Stevenson and Gaizauskas 2000; Treviso et  al. 2017) toke a word-based approach, 
using only textual features from speech transcripts. However, transcripts tend to be erro-
neous, and thus are unable to provide reliable cues to segment sentences. Prosody-based 
approaches, on the other hand, incorporate prosodic information, e.g., pitch, pause length, 
pre-pausal lengthening, and energy patterns. Such prosodic features are assumed to be able 
to compensate the lack of punctuation and capitalization in speech. Furthermore, sentence 
structures are often more elusive in spoken language. A sentence-like unit (SU) in speech 
can be a sentence, part of a sentence, or a semantically complete component in a sen-
tence (Strassel 2003). Therefore, SBD in ASR faces the additional challenge of determin-
ing whether an SU is an actual sentence.

Gotoh and Renals (2000) presented two finite state models to statistically extract sen-
tence boundary information from program scripts, as well as transcriptions of broadcast 
speech produced by a vocabulary speech recognition system. The former is an n-gram type 
language model trained by the program scripts. The latter is a pause duration model, which 
is a statistical prosody model estimated from the outputs of an ASR system aligned with 
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their corresponding program transcripts. The joint probability of a sequence of prosodic 
features are combined the corresponding sequences of word- and class-tokens to enhance 
the accuracy.

Liu et al. (2004) first built a HMM-based SBD system for continuous speech. Then they 
proposed a MaxEnt posterior probability model, which aims to address two main shortcom-
ings of the HMM system. Firstly, the training objective of HMM is to maximize the joint 
probability of observed and hidden events, which is not the best criterion to reduce classi-
fication error. Secondly, the n-gram language model underlying the HMM transition model 
requires a significant increase in the number of model parameters to incorporate highly 
correlated features. The former is solved by replacing the generative model with a posterior 
probability model. The latter is addressed by MaxEnt framework, which allows for a large 
number of overlapping features. Aside from word n-gram and its syntactic information, 
they also utilized prosodic features around each word boundary, e.g., duration, pitch, and 
energy patterns. The system is evaluated using the NIST3 SU error rate. Results suggest 
that the proposed model and HMM have complementary strengths and weaknesses. The 
MaxEnt model is able to achieve better accuracy, whereas the HMM makes more effective 
use of prosodic features, and degrades less with word recognition errors.

Taking it one step further, Liu et al. (2005) applied CRF to SBD in speech, comparing 
its performance with the HMM model and the MaxEnt model. CRF has the advantages of 
being discriminatively trained and able to model the entire sequence. As in their previous 
work, textual and prosodic information is used to train the models. Results show that CRF 
indeed performs marginally better than the HMM and MaxEnt. The only shortcoming of 
CRF model is that, compared to other two models, it takes longer to train as the number of 
features increases.

Liu et  al. (2006) found that a SU in speech is less frequently a sentence than a non-
sentence unit. Thus, a prosody model must be able to deal with the imbalanced dataset 
distribution. To address this problem, they modeled prosodic information with a decision 
tree classifier in their HMM-based system  (Liu et  al. 2004). They also investigated dif-
ferent types of sampling approaches, concluding that random downsampling is the most 
advantageous.

3.4 � Summary

In conclusion, existing SBD systems can be categorized into word-based, syntax-based, 
and prosody-based approaches. Table 5 presents a summary of the introduced systems, and 
the features and methods they used. In this paper, for convenience, if a SBD system only 
use the word itself as lexical features, it is not counted as a method using morpholexi-
cal features. A comparison of all the system performance can be found in Table 6. The 
datasets used are listed in Table 4. On the Brown Corpus, word-based method proposed 
by Wong and Chao (2010) achieved the highest accuracy, exceeding the best syntax-based 
method (Mikheev 2002) by 0.26%. On the WSJ dataset, the best word-based method (Gil-
lick 2009) obtained 99.75% accuracy, whereas the best syntax-based method  (Mikheev 
2002) obtained 99.55%. For prosody-based approaches, Liu et al. (2005) obtained the low-
est NIST SU error rate.

3  http://​www.​nist.​gov/​speech/​tests/​rt/​rt2003/​fall/

http://www.nist.gov/speech/tests/rt/rt2003/fall/
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Word-based systems utilize morpholexical features, e.g., capitalization, suffix, word 
length, etc, which can be further divided into token-based, type-based, and neural network 
based. Given a focal word, token-based methods use rules or machine learning models to 
determine sentence boundary based on the features of the local context. Among rule-based 
systems, the work of Stamatatos et al. (1999) could automatically generate rules, and Sad-
vilkar and Neumann (2020) applied sets of accurate rules in pipeline. Since the rule-based 
methods are rigid and labor intensive, Reynar and Ratnaparkhi (1997) and Rudrapal et al. 
(2015) alleviated this by using statistical models that require simple features. Riley (1989) 
proposed the first tree-based SBD system, which is more comprehensible to human. To 
reduce the computation cost, Wong and Chao (2010); Wong et al. (2014) applied an incre-
mental tree-based algorithm, which is also more flexible and suited for online learning. 
Type-based methods, compared to token-based ones, not only consider the morpholexical 
features of the token, but also compute its likelihood as a non-sentence boundary over the 
entire corpus. Hence, type-based approaches have the advantage of having the capacity to 

Table 5   The comparison between different SBD methods

TK denotes token-based method. TP denotes type-based method. ASR denotes automatic speech recogni-
tion

Method Morpholexical Syntactic Prosodic TK TP Neural ASR

Word  Grefenstette and Tapanainen 
(1994)

✓ ✓

 Stamatatos et al. (1999) ✓ ✓

 Sadvilkar and Neumann 
(2020)

✓ ✓

 Reynar and Ratnaparkhi 
(1997)

✓ ✓

 Schmid (2000) ✓ ✓

 Kiss and Strunk (2002) ✓ ✓

 Kiss and Strunk (2006) ✓ ✓

 Gillick (2009) ✓ ✓

 Rudrapal et al. (2015) ✓ ✓

 Riley (1989) ✓ ✓

 Wong and Chao (2010) ✓ ✓

 Wong et al. (2014) ✓ ✓

 Treviso et al. (2017) ✓ ✓ ✓

 Knoll et al. (2019) ✓ ✓

Syntax  Palmer and Hearst (1994) ✓ ✓ ✓

 Palmer and Hearst (1997) ✓ ✓ ✓

 Mikheev (2000) ✓ ✓

 Mikheev (2002) ✓ ✓ ✓

 Stevenson and Gaizauskas 
(2000)

✓ ✓ ✓ ✓

 Agarwal et al. (2005) ✓ ✓ ✓

Prosody  Gotoh and Renals (2000) ✓ ✓ ✓ ✓

 Liu et al. (2004) ✓ ✓ ✓ ✓

 Liu et al. (2005) ✓ ✓ ✓ ✓

 Liu et al. (2006) ✓ ✓ ✓ ✓
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manage a large amount of unannotated data. Among type-based methods, Schmid (2000) 
implemented separate probability models for different scenarios. However, it requires the 
manual labor of listing such scenarios.  Kiss and Strunk (2002, 2006) adverted this by 
framing SBD as a collocation detection problem of words and following periods. Gillick 
(2009) classified sentence boundary based on trigram context, only incorporating a type-
based method for difficult instances, which is less computationally expensive. Treviso et al. 
(2017) suggested word embedding as a more effective alternative for n-gram and type-
based approaches, bypassing feature engineering. Further on this direction,  Knoll et  al. 
(2019) utilized word-level and character-level neural networks to automatically extract 
morpholexical features.

Syntax-based systems are proposed based on the assumption that POS tags can provide 
context information where word-based approaches are lacking. The majority of syntax-
based systems utilize syntactic features in conjunction with morpholexical ones to enhance 
the performance. Palmer and Hearst (1994, 1997) are the first to incorporate POS informa-
tion, but wrongly assume that sentence boundary is a prerequisite for POS tagging. Nota-
bly, although these systems consist of a feedforward neural network, it is solely used for 

Table 6   The performance of the introduced SBD methods. D denotes dataset

R denotes result. M denotes measure. NIST is the NIST SU error rate

Method Experiment 1 Experiment 2

D R M D R M

Word  Stamatatos et al. (1999) MG 99.4% Acc.
 Sadvilkar and Neumann (2020) GRS 97.92% Acc.
 Treviso et al. (2017) T-CTL 79% F1 T-MCI 74% F1
 Knoll et al. (2019) MIMIC 98.6% F1 FV 99.2% F1
 Rudrapal et al. (2015) BC 99.6% Acc. SMC 87.0% Acc.
 Grefenstette and Tapanainen (1994) BC 93.78% Acc.
 Reynar and Ratnaparkhi (1997) BC 97.9% Acc. WSJ 98.8% Acc.
 Schmid (2000) BC 99.70% Acc. WSJ 99.62% Acc.
 Kiss and Strunk (2002) WSJ 99.05% F1
 Kiss and Strunk (2006) BC 98.89% F1 WSJ 98.35% F1
 Gillick (2009) BC 99.64% Acc. WSJ 99.75% Acc.
 Riley (1989) BC 99.8% Acc.
 Wong and Chao (2010) BC 99.98% Acc.
 Wong et al. (2014) BC 99.81% Acc. WSJ 99.80% Acc.

Syntax  Palmer and Hearst (1994) WSJ 98.5% Acc.
 Palmer and Hearst (1997) WSJ 98.9% Acc.
 Mikheev (2000) BC 98.8% Acc. WSJ 99.2% Acc.
 Mikheev (2002) BC 99.72% Acc. WSJ 99.55% Acc.
 Agarwal et al. (2005) BC 97.7% F1 WSJ 97.8% F1
 Stevenson and Gaizauskas (2000) T-News 76% F1

Prosody  Gotoh and Renals (2000) T-R 70% F1
 Liu et al. (2004) BN 48.61% NIST CTS 30.66% NIST
 Liu et al. (2005) BN 46.28% NIST CTS 29.30% NIST
 Liu et al. (2006) BN 49.57% NIST CTS 32.40% NIST
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classification, not for feature extraction. Thus, they are not included in the neural category 
in Table 6.  Mikheev (2000, 2002) solved the POS tagging dilemma, and developed a type-
based method. Following this setup, Agarwal et al. (2005) used a token-based probabilis-
tic model, whereas Stevenson and Gaizauskas (2000) tackled SBD in ASR with memory-
based learning, which can be seen as type-based.

Lastly, since speech lacks the textual cues crucial to sentence boundary, prosody-based 
systems incorporate prosodic features for SBD in ASR. Gotoh and Renals (2000) and Liu 
et  al. (2004, 2005) integrated prosodic features using various machine learning models. 
However, their systems are not adept in distinguishing SUs and sentences. Liu et al. (2006) 
confronted this weakness by tackling the imbalanced data distribution.

SBD for standard texts has already been well-studied. However, domain-specific SBD 
still remains a challenge, as some domains tend to use punctuations differently from gen-
eral formal texts. Griffis et al. (2016) reviewed several off-the-shelf models on biomedical 
and clinical corpora. Their error analysis showed that the semicolons, colons, and new-
lines heavily used in clinical text are extremely error-prone. Additionally, periods used 
in unknown abbreviations, names, and numbers are a significant cause of error as well. 
Fatima and Mueller (2019) attempted to solve the task of SBD in financial domain via a 
machine learning approach and an unsupervised rule-based approach. Unfortunately, the 
former fails to produce acceptable results, whereas the performance of the latter is accept-
able but still leaves a lot to be desired. Sanchez (2019) examined several off-the-shelf algo-
rithms for SBD on legal texts. Similarly, the results are not ideal, indicating that there is 
still a lot of room for improvement for these existing approaches. Therefore, a robust SBD 
system that is capable of handling domain-specific corpora is called for.

Another challenging aspect is SBD in speech, especially SU boundary detection. Con-
sidering the lack of annotated resources in this domain, one possible direction for future 
work is semi-supervised learning. For instance, the machine can learn from annotated 
training samples that are manually labeled to precisely indicate SU boundaries, infer labels 
on the unannotated data, and fine-tune itself.

4 � POS tagging

POS tagging is a fundamental task in NLP, which aims to label each word in a given text 
with its POS tag, e.g., noun, verb, adjective, etc. It is an upstream task that pre-processes 
the input texts to assist more complex NLP applications. Since the POS of a word can 
affect its meaning and polarity, POS tagging is important for downstream tasks e.g., word 
sense disambiguation  (Taghipour and Ng 2015; Alva and Hegde 2016), information 
retrieval  (Mahmood et  al. 2017), sentiment analysis  (Asghar et  al. 2014; Mubarok et  al. 
2017), metaphor detection  (Mao et  al. 2021; Ge et  al. 2022) and interpretation  (Mao 
et al. 2018, 2022). Numerous studies have been done on POS tagging for a variety of lan-
guages  (Shao et al. 2017; Nguyen et al. 2017; Kanakaraddi and Nandyal 2018; Darwish 
et al. 2018). Considering that the fundamental methodologies are similar across different 
languages, here we focus on introducing POS taggers in English.

English POS tagging is a well-studied problem. Following Church (1988), most early 
works utilized hand-crafted features, derived from the local contexts, e.g., rule-based learn-
ing  (Brill 1995), memory-based learning  (Daelemans et  al. 1999b), and other statistical 
approaches, among which the MaxEnt framework (Ratnaparkhi 1996; Toutanvoa and Man-
ning 2000; Curran and Clark 2003) and directed graphical models  (Kupiec 1992; Brants 
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2000; McCallum et  al. 2000) received the most attention. The performance of feature 
engineering approaches took a big leap with the novel CRF (Lafferty et al. 2001) and the 
perceptron algorithm  (Collins 2002), which addresses the parameter estimation problem 
of MaxEnt models. Attempts at applying bidirectional inference to the task also achieved 
remarkable improvements, for instance the cyclic dependency network  (Toutanova et  al. 
2003) and guided learning framework (Shen et al. 2007). With the recent surge of interest 
in deep learning, neural networks such as CNN (LeCun et al. 1998; Collobert et al. 2011), 
Recurrent Neural Network (RNN) and LSTM (Hochreiter and Schmidhuber 1997; Graves 
et al. 2013) have been applied to the field of POS tagging, freeing the task of POS tag-
ging from hand-crafted feature set and yielding even more promising results. Subsequently, 
many studies extended the previous methods to semi-supervised learning to further boost 
the tagging accuracy (Clark et al. 2003; Suzuki and Isozaki 2008; Zhou et al. 2018). The 
performance of POS taggers are measured by accuracy, or in its other form, e.g., error rate.

In this paper, we first review the tagging schemas of POS tagging. Then, we divide the 
existing POS taggers into the following categories: feature engineering approaches, deep 
learning approaches, and semi-supervised learning approaches.

4.1 � Tagging schemas

In this section, we introduce the most prevalent tagsets used in the field of POS tagging.
Penn Treebank POS tags The Penn Treebank POS tagset (Marcus et al. 1993) is the 

most widely used tagging paradigm. Derived from the Brown corpus, the Penn Treebank 
has since replaced it as the standard for POS tagging in English. Compared to its predeces-
sor, the Penn Treebank offers a more fine-grained syntactic distinction, containing 36 POS 
categories in total. For instance, a base form of a verb is always tagged as VB in the Brown 
corpus, whereas the Penn Treebank differentiates it as VB (imperative or infinitive) or VBP 
(non-third person singular present tense) depending on the context.

However, as the need for multilingual and cross-lingual POS induction arises, the gran-
ular differentiation of the Penn Treebank becomes a drawback, since many languages do 
not entirely follow the grammatical structure of English.

Universal POS tags To address the weakness of the Penn Treebank and facilitate future 
research,  Petrov et  al. (2011) proposed a tagset with coarser syntactic POS categories 
based on the observed commonalities across most languages. The Universal tagset contains 
12 universal POS categories. In addition, they also created a mapping from 25 Penn Tree-
bank POS categories to their tagset. When used in conjunction with the Penn Treebank, the 
Universal tagset and mappings are able to account for 22 different languages.

Table 7   Widely used corpora for POS tagging

Category Dataset Source Reference

Formal BC the Brown Corpus  Francis and Kucera 
(1979)

WSJ Wall Street Journal  Marcus et al. (1993)
Genia Genia Biomedical corpus  Kim et al. (2003)

Social media T-PoS Twitter text corpus Ritter et al. (2011)
ARK Twitter text corpus  Owoputi et al. (2013)
NPS Twitter text corpus  Forsyth (2007)
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The commonly used corpora for POS tagging (in English) are listed in Table 7.

4.2 � Feature engineering approach

Feature engineering approaches, as the name suggests, rely on hand-crafted feature tem-
plates to determine the POS tag for a word. Some commonly used features are lexical, 
contextual, and morphological. To avoid confusion, here we define lexical features as the 
frequencies of the observed POS tags in the training data, contextual features as the sur-
rounding words and their predicted POS tags if available, morphological features as affixes, 
and existence of numerals, hyphens, capitalization, etc. The taggers utilize such features via 
rule-based or machine learning algorithms. Notably, graphical models such as HMM and 
CRF gain most attention because of their proficiency at capturing sequential dependency.

Church (1988) was the first to determine that features from two or less of the nearby 
tokens are significantly informative to predicting the POS tag of a given token. For exam-
ple, the word bear can be a verb or a noun, but if it is observed to follow a determiner such 
as the, then the tagger can label bear in the word sequence the bear as noun. The tagger 
takes a lexicon-based approach - for each word in the corpus, their most frequent POS tags 
and the corresponding lexical probabilities are stored in a lookup table. The tagger also 
computes the contextual probability, which is the probability of observing a POS tag given 
the two POS tags following it. Then, given a sentence, the goal is to search for the tag 
sequence that optimizes the lexical and contextual probabilities.

Brill (1995) proposed a POS tagger with transformation-based learning. Initially, the 
tagger assigns each word the most likely POS tag according to the training corpus. When 
the prediction is incorrect, the tagger tries another transformation from the transforma-
tional rule templates, which is derived from the three preceding words, the three following 
words, and their POS tags. The learning procedure stops when no more transformation 
can be found to reduces the errors. This method is simple and effective, but unfortunately 
require a long training time. To address this problem, Ngai and Florian (2001) optimized 
the model by incorporating good and bad counts for each transformational rule, which 
avert repetition in the learning procedure. This method successfully reduces the training 
time while maintaining the accuracy.

Daelemans et al. (1999b) introduced a memory-based approach to POS tagging. Exam-
ples in training set are represented as a feature vector with an associated tag category. For 
each test data point, its similarity to all examples in the memory is computed. The category 
of the most similar instances is chosen as the predicted category for the test data points.

Abney et  al. (1999) applied boosting to POS tagging. Boosting algorithm is similar 
to transformation-based learning discussed above, where the model combines template 
rules to produce the most accurate classification rule. They proposed two methods to deal 
with the multi-class problem. First they applied the AdaBoost.MH algorithm  (Schapire 
and Singer 1999), where each possible class is paired with the given word and assigned 
a binary label as a derived problem, which is then solved by binary AdaBoost. AdaBoost.
MH is memory-consuming, therefore they proposed a novel AdaBoost.MI algorithm, 
which uses binary AdaBoost to train separate binary classifiers for each class, and com-
bines their output by choosing the class with most confidence. Unlike AdaBoost.MH, here 
the predictions are selected independently for each class. The boosting approach is shown 
to be more accurate than transformation-based learning.

Nakagawa et al. (2001) employed SVM to specifically solve the unknown word problem 
in POS tagging. In this method, binary SVM classifiers are created for each POS tag based 
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on the training corpus, which are then used to predict the POS tags of unknown words. 
Subsequently,  Giménez and Marquez (2004a) and Giménez and Màrquez (2004b) pro-
posed SVMTool, which extends the binary SVM to cover multi-class classification. SVM 
classifiers are created for each POS tag that contains ambiguous lexical items. When labe-
ling a word, the most confident prediction among all the SVM classifiers is selected.

Ratnaparkhi (1996) first successfully applied MaxEnt framework to POS tagging A 
set of binary features is paired with every possible output label. Each feature-label pair is 
assigned a weight which is trained to maximize the entropy. When predicting the POS tag 
of a word, these weights are multiplied by the corresponding feature to estimate the prob-
ability of a label. The label with the highest probability is selected. Toutanvoa and Man-
ning (2000) improved this method by modifying the set of features. They removed the lexi-
cal features derived from the preceding words, adding other hand-crafted features derived 
from a larger context window, which alleviates the proper noun problem and the ambigu-
ous word form distinction problem. Curran and Clark (2003) proposed a re-implementation 
of the MaxEnt tagger (Ratnaparkhi 1996) using Generalized Iterative Scaling (GIS) esti-
mation algorithm and model smoothing technique. Their method proves to be much faster 
in training and predicting than the original MaxEnt tagger.

Directed graphical model is another well-studied statistical approach to POS tagging. 
Kupiec (1992) proposed a POS tagger based on HMM. HMM model follows the first order 
Markov assumption where the current state is only conditioned on previous states, and the 
current observation is only conditioned on the current state. For POS tagging, the observa-
tions are that the words in a given input sentence x, and the states are the corresponding 
POS tags y. The objective is to estimate the joint distribution P(x,  y) by computing the 
transition probability and the emission probability. The former links the current state with 
the previous one, whereas the latter represents how likely a word is observed under a given 
label. The transition matrix and emission matrix are estimated from frequency counts using 
a tagged training dataset.

Brants (2000) proposed a Trigram’n’Tags (TnT) POS tagger based on second order 
Markov model combined with a smoothing technique. It is a generative model, similar to 
HMM. The states in the model represent tags. The outputs represent words. The transi-
tion probabilities depend on the states, whereas the output probabilities only depend on the 
most recent class. The trigram probability is computed using a smoothing paradigm that 
is a linear interpolation of unigrams, bigrams and trigrams. This POS tagger requires less 
time to train while achieving similar accuracy as a MaxEnt tagger (Ratnaparkhi 1996).

McCallum et al. (2000) presented Maxium Entropy Markov model (MEMM), a novel 
Markovian sequence model combining HMM and MaxEnt framework. HMM tagger needs 
to enumerate all possible observation sequences to define the joint probability P(x,  y). 
Additionally, the inference is intractable. Therefore, it is not cost-effective for HMM to rep-
resent multiple interacting features or long-range dependencies of the observations. Condi-
tional probabilistic sequence model such as MEMM is a good alternative to alleviate this 
difficulty, since it defines the probability of possible label sequence given an observation 
sequence, i.e., P(y ∣ x) . It also allows observations to be represented as arbitrary overlap-
ping features. The MEMM uses the MaxEnt framework to fit a set of exponential models, 
where the probability of a state depends on the observations and the previous state.

Although MaxEnt models are effective and widely used for sequence labeling tasks, 
their parameter estimation methods have limitations. In MEMM, the transitions leaving 
a given state compete locally instead of globally, which causes a bias towards states with 
fewer outgoing transitions. Thus, it cannot accurately represent dependencies between con-
secutive states. Different methods was proposed to solve this label bias problem.
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Collins (2002) proposed a perceptron-based  (Rosenblatt 1958) parameter estimation 
algorithm for global learning. The tagger predicts a sequence of tags from left to right, 
where each tag is determined based on the input sequence and the previous tags, also 
known as history. The tagging task is then represented as a feature-vector representation 
of history-tag pairs. The history-tag pairs are seen as local representations, which sums 
up to the global representation of the input sequence. A score function is defined based 
on the global representation, which is used to estimate the parameters corresponding to 
each history. The highest scoring tag sequence for the given sentence is found via Viterbi 
algorithm. In the training phase, if the highest scoring sequence is incorrect, the parameters 
will be updated using simple addition and subtraction.

Another more widely-used alternative to MaxEnt is CRF, which is a novel method as 
opposed to the sequential classification approaches mentioned above. Lafferty et al. (2001) 
is the first to introduce CRF to sequence labeling. CRF is a discriminative linear-chain 
graphical model. It uses a single exponential model for the joint probability of the entire 
state sequence given an observation sequence. Thus, the weights of different features at 
different states can be traded off against each other. The graph model can be expressed 
as G = (V ,E) , where V denotes the nodes, i.e., states and observations, and E denotes 
the undirected edges that represent the dependencies between variables. The features 
are defined over each edge in the graph. x = (x

1
, x

2
,… , xn) denotes the input sequence. 

y = (y
1
, y

2
,… , yn) denotes the output sequence. Then each yi is dependent on x and yi−1 , 

represented by a set of binary feature functions F . The joint probability is thus computed 
as

where Z is the normalization factor, and � denotes weights for each feature function.
Rush et al. (2012) proposed a POS tagger using Markov random fields (MRFs) to model 

global constraints between sentences, which alleviates the accuracy problem when labeled 
dataset is limited or out-of-domain. MRF is an undirected graph model G = (V ,E) , where 
V are nodes for every word in the given sentence. An index set is constructed to include all 
valid label assignments in the corpus, which acts as inter-sentence constrains. The objec-
tive is to find the best sentence-level label assignments with regards to V and E that are 
consistent with elements in the index set, incorporating corpus-level information to aug-
ment sentence-level labeling.

Although undirected graphical models such as CRF avert the label bias problem, they 
have a few disadvantages against the sequential classification method. On one hand, CRF 
is less efficient to train because they need to perform Viterbi algorithm over the entire sen-
tence in each iteration. On the other hand, sequential classification method leaves room 
to employ a variety of machine learning algorithms as local classifiers. Therefore, many 
works focus on improving the performance of sequential classification methods by enrich-
ing the information for the local classifiers. Since the previous directed graphical taggers 
take an unidirectional approach, one popular way of enhancing features is utilizing future 
tags via bidirectional networks.

Toutanova et al. (2003) was the first to introduce bidirectional inference for POS tag-
ging. They proposed a cyclic dependency network with a series of local conditional log-
linear models to exploit information from both directions explicitly. Each node in the 
network represents a random variable with a corresponding local conditional probability 
model that considers the source variables from all incoming arcs. The tagger finds the 

P(y ∣ x) =
1

Z(x)
exp(� ⋅ F(y, x)),
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sequence that maximizes the score via Viterbi algorithm, similar to previous MaxEnt 
and HMM models. The only difference between bidirectional inference and an unidi-
rectional graphical model such as HMM is that, when the Markov window is at the time 
step i, the score it receives is P(ti−1 ∣ ti, ti−2,wi−1) instead of P(ti ∣ ti−1, ti−2,wi) , t and w 
being output tag and input word respectively. Their model, however, suffers from col-
lusion problem where the model lock onto conditionally consistent but jointly unlikely 
sequences. This is because the local classifiers encounter double-counting problem 
when using the information from future tags.

In order to avert this problem, Tsuruoka and Tsujii (2005) proposed an alternative bidi-
rectional inference algorithm with an easiest-first strategy. The label sequence of a given 
sentence is the product of local probabilities. The proposed inference method is to con-
sider all of the possible decomposition structures and choose the optimal structure to pre-
dict label sequence. The paper also proposed a more efficient alternative to bidirectional 
decoding algorithm, which adopts the easiest-first strategy. Instead of enumerating all the 
possible decompositions, the tagger tags the easiest word at each step, and repeating the 
procedure until all the words are tagged. To pick the easiest word, the appropriate local 
MaxEnt classifier is selected according to the availability of the neighboring labels, and 
used to output the probabilities. The word with the highest probability is deemed as the 
easiest word for the current step. Their bidirectional inference method is proven to be able 
to find the highest probability sequence with similar performance but lower computational 
complexity.

Shen et al. (2007) proposed a novel guided learning framework for bidirectional infer-
ence. Unlike the easiest-first strategy which only uses heuristic rule to determine the order 
of inference, their approach incorporates the selection of inference order into the train-
ing of the MaxEnt classifier for individual token labeling, combining the two into a sin-
gle learning task. Specifically, a sub-sequence of the input sentence is called a span. Each 
span is associated with one or more hypotheses, which are started and grown via labeling 
actions. The tagger initializes and maintains a set P of accepted spans and a set Q of can-
didate spans. It repeatedly selects a candidate span from Q whose action score of its top 
hypothesis is the highest,moving it to P, until a span covering the whole input sentence 
is added to P from Q. For training, the tagger uses guided learning to learn the weight of 
action score. If the top hypothesis of a selected span is compatible with the gold standard, 
then the candidate span is accepted. Otherwise, similar to perceptron algorithm  (Collins 
2002), the weight is updated by rewarding the feature weights of the gold standard action 
and punishing the feature weights of the action of the top hypothesis. Then all the existing 
spans in Q are removed and replaced with new hypotheses for all the possible spans gener-
ated based on the context spans in P. This allows the tagger to simultaneously learn the 
individual classification and the inference order selection.

Ma et  al. (2013) proposed an easy-first POS tagger with beam search. The easy-first 
POS tagger enumerates all possible word-tag pairs, choosing the most confident one to 
label according to the score function, marking the word as processed. Then the tagger re-
computes the scores of the unprocessed words based on the local context, repeating the 
selection procedure until all the words are marked as processed. For the easy-first tagging 
with beam search, a set of labeling action sequences is maintained and grows via beam 
search. At each step, the sequences in the beam � are expanded in all possible ways, and the 
top expanded sequences within the beam width are selected into � . The trainable weight 
vector in a score function is learned through perceptron-based global learning similar to 
the previously mentioned guided learning framework (Shen et al. 2007), however its per-
formance on the WSJ dataset is not as good as the latter.
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4.3 � Deep learning approach

So far the above-mentioned methods are all dependent on hand-crafted features sets. 
With the development of deep learning in NLP, the application of neural networks to 
POS tagging makes it possible to avoid feature engineering and further improve the tag-
ging performance. Notably, neural network models are widely-employed to automati-
cally capture character-level patterns, which have to be modeled with morphological 
features in previous taggers, e.g., suffix, capitalization, presence of numerals, etc.

Collobert et  al. (2011) proposed a window approach for sequence labeling tasks, 
which assumes the tag of a word is mainly dependent on its neighboring words. Hence 
it considers a fixed size window of words around the current word as local features. 
Given an input sentence, the tagger passes it through a lookup table layer. The resulting 
sequence of representations is fed into the convolutional layer, which can be regarded as 
a feed-forward neural network with L layers, to extract local features. That is, a concat-
enation of the word vectors in the focal window is inputted to L linear layers to perform 
affine transformations over their inputs. Finally, a softmax layer computes the probabili-
ties for each labels given the output of the L-th layer. The POS tagger is trained with 
word-level log-likelihood, also more commonly known as cross-entropy.

Dos Santos and Zadrozny (2014a) used deep neural network to learn the character-
level representations, and combined them with the corresponding word representations 
to perform POS tagging. Prior to their work, the morphological or other intra-word 
information is given to the tagger via hand-crafted features. To reduce human effort, 
CharWNN is proposed as an extension of the previously introduced convolutional archi-
tecture (Collobert et al. 2011). CharWNN uses the convolutional layer to extract features 
from the input words and generates their character-level embedding at tagging time. The 
character-level embeddings are concatenated with word-level embeddings as word rep-
resentations. Taking the window approach, a fixed window size of word representations 
in the input sentence are concatenated into a vector, which are then fed into two linear 
neural network layers to compute the scores. The tagger also incorporates the transition 
score (Collobert et al. 2011), which is introduced in detail in the text chunking section, 
in order to capture the structural information from the sentence.

Wang et al. (2015) proposed a BLSTM-RNN model for POS tagging. The model first 
implements a linear layer as a lookup table to produce word embeddings, which are fed 
into a bidirectional LSTM layer and then a softmax layer to output the scores of tags. 
They also introduced a novel method to train word embedding on unlabeled data, where 
BLSTM-RNN takes a sentence with some words replaced by randomly chosen words as 
input, tagging the words in the sentence as correct or incorrect. Thus the lookup table in 
BLSTM-RNN is trained to minimize the binary classification error.

Ma and Hovy (2016) introduced a Bi-LSTM-CNN-CRF model, which utilizes both 
word-level and character-level representations automatically, requiring no task-specific 
resources, feature engineering or data pre-processing. First, a CNN layer  (Chiu and 
Nichols 2016) is applied to encode character-level information of a word into its charac-
ter-level representation. A dropout layer is applied before character embeddings are feed 
into CNN. Then, the model concatenates the character-level representations and word 
embeddings, feeding them into Bi-LSTM to model context information of each word. A 
dropout layer is also applied to the output vectors. Lastly, the output vector of Bi-LSTM 
is fed to a CRF layer to decode labels for the whole sentence.
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Akbik et al. (2018) proposed Flair, a contextual string embedding for sequence labe-
ling tasks. The Flair embedding is learned using a LSTM-based language model over 
sequences of characters instead of words. For optimal performance, the Flair embedding 
is stacked together with pre-trained static word embedding GloVe  (Pennington et  al. 
2014) and a task-trained character embedding learned by LSTM. The final embedding is 
passed onto a standard BiLSTM-CRF architecture to acquire the output label sequence.

Zhao et  al. (2019) proposed a deep CNN architecture called Deep Gated Dual 
Path CNN (GatedDualCNN) for sequence labeling. The model first uses a CharCNN 
to extract character-level representations, which are then concatenated with the word 
embeddings and fed into a 1-D convolution (Conv1D) layer followed by rectified linear 
unit (ReLU) and batch normalization (BN) to get the inital hidden states. Thereafter, in 
order to stack up more convolutional layers while averting the vanishing gradient prob-
lem, the paper incorporated gate blocks, residual connection, and dense connection. The 
core component of a gate block is the gated linear unite (GLU) (Dauphin et al. 2017), 
whose output is processed by a Conv1D layer with ReLU and BN to produce the suc-
cessive hidden state. To encourage feature re-usage between gate blocks, residual con-
nection is introduced to bypass the non-linear transformation in the gate block. On the 
other hand, dense connection serves the purpose of new feature exploration in a dense 
path. To combine these two connections, the model uses a dual path, where hidden state 
produced by each block is split row-wise, then fed into the residual path and the dense 
path respectively. The outputs are concatenated as the input of the next block. The final 
hidden state is then passed on to a CRF layer to decode the best sequence of tags.

Yang et  al. (2017) introduced transfer learning for deep hierarchical RNN POS 
tagger to alleviate the out-of-domain problem. The base model uses a character-level 
GRU  (Cho et  al. 2014) to obtain character embeddings, which are concatenated with 
word embeddings and passed on to a word-level GRU and a CRF layer to predict the 
tag sequence. They described three different transfer learning architectures for this base 
model. Transfer model T-A, which shares all the model parameters and feature repre-
sentations between domains, is used for cross-domain transfer where label mapping is 
possible. It only performs a label mapping step on top of the base’s CRF layer. If the 
two domains have disparate label sets, then transfer model T-B learns a separate CRF 
layer for each tasks while sharing parameters in other layers. For cross-lingual transfer, 
model T-C only shares the parameters and representations in the character-level GRU, 
keeping two separate word-level GRU and CRF layers for the source task and the target 
task. The paper experiments with transferring from chunking and Name Entity Recogni-
tion (NER) to standard POS tagging on WSJ, and also tests transfer learning from WSJ 
to Genia Biomedical corpus (Kim et al. 2003) and Twitter corpus T-PoS.

Similarly, Meftah and Semmar (2018) presented a transfer-learning-based end-to-end 
neural model. Their base model uses a CNN layer to extract character embedding, a 
GRU layer to compute hidden states, and a fully-connected layer and softmax layer to 
output the scores for tags. Two transfer learning architectures are proposed based on this 
neural network. For cross-domain transfer, they used a parent network for source data 
and a child network for target data. The parent network is trained on annotated out-of-
domain data, namely WSJ, whose parameters are transferred to the child network. Then 
the child network is fine-tuned through training on labeled Twitter datasets. For cross-
task transfer, the parent network and the child network shares a set of parameters, jointly 
optimizing the two tasks, while maintaining separate task-specific parameters that are 
trained on the corresponding task. The task selected for the parent network is NER.
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4.4 � Semi‑supervised approach

As researchers have easy access to large amounts of unlabeled texts online, it is a nat-
ural progression for POS taggers to utilize unlabeled data. In addition, POS taggers 
trained from annotated dataset generally achieve high accuracy on in-domain data, 
whereas their performance drops on out-of-domain data such as social media posts and 
conversational texts. Consequently, there have been many attempts to use unsupervised 
or semi-supervised learning to alleviate the OOV problem that is largely responsible for 
the fall in tagging accuracy.

Unsupervised learning POS taggers mostly take the word clustering approach. For 
example, Clark (2003) described an unsupervised POS tagger that incorporates morpho-
logical information into a distributional clustering algorithm to sort unlabeled text into 
lexical classes. Biemann (2006) introduced a graph-based word clustering method based 
on context similarity of high frequency words and log-likelihood of lower frequency 
words. Owoputi et al. (2013) proposed an unsupervised MEMM tagger for word cluster-
ing on Twitter conversations.

Semi-supervised learning (SSL) approach, on the other hand, utilizes both small 
amounts of labeled data and relatively large amounts of unlabeled data for training. SSL 
is more scalable than unsupervised learning. It can be applied to POS tagging to solve 
the out-of-domain problem and improve accuracy.

Clark et al. (2003) proposed bootstrapping POS tagger using co-training with unla-
beled data. The main idea is to co-train a TNT tagger (Brants 2000) and a MaxEnt tag-
ger  (Curran and Clark 2003), using the output from one as additional labeled data for 
the other. The model first learns two separate classifiers for each view of the task via a 
small amount of labeled seed data. Then, each classifier incrementally labels a subset 
of unlabeled data for the other to use as the new training dataset. Results show that 
when using little labeled training data and a much larger amount of unlabeled data, the 
accuracy of POS tagger improves. However, the performance drops when the amount of 
labeled training data increases.

Ando and Zhang (2005) proposed a semi-supervised multitask learning framework. 
The objective is to learn from unsupervised tasks, and transfer to the target supervised 
task. The framework consists of multiple task classifiers, each made of two alternatively 
optimized feature functions. One is task-specific and the other is trained to map into a 
low dimensional subspace common across all tasks. For POS tagging, two unsupervised 
auxiliary tasks are used. The first task is word prediction, which predicts the word at the 
current position. The second task is Top-2, which predicts the top-2 choices of the POS 
tagger trained with labeled data.

Toutanova and Johnson (2007) presented a Bayesian Latent Dirichlet Allocation 
(LDA) model for semi-supervised POS tagging. Compared to previous semi-supervised 
approaches, the tagger is not given any labeled data, but a dictionary that constrains 
the possible tags of some words. The LDA-based model is a generative model that uses 
only observed context features to predict the tags of words. They incorporated a sparse 
prior on the distribution over tags for each word, and employed a Bayesian approach 
that maintains a distribution over parameters. The semi-supervised LDA is enabled by 
explicitly modeling ambiguity classes obtained from the dictionary constrain.

Spoustová et  al. (2009) extended the average perceptron algorithm  (Collins 2002) 
for semi-supervised learning. Specifically, they used an ensemble of taggers (Brill and 
Wu 1998; van Halteren et al. 2001) to pre-tag a large unannotated corpus, which is then 
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combined with labeled dataset and fed into an average perceptron POS tagger. Further-
more, they observed that it is beneficial to feed the tagger with different chunks of unsu-
pervised data at each training iteration. Hence, they explored three types of selection 
mechanisms, namely, sequential chopping, random selection without replacements, and 
random selection with replacements. Based on the properties of the average perceptron 
algorithm, the selected chunk of unannotated data is inputted after the labeled dataset. 
Results show that the semi-supervised method indeed outperforms supervised ones, and 
the three mechanisms contribute identically for English POS tagging.

Suzuki and Isozaki (2008) introduced a semi-supervised extension of CRF  (Lafferty 
et al. 2001) that combines supervised and unsupervised probability models via a param-
eter estimation called Maximum Discriminant Functions sum (MDF). For a given input 
sequence x and its corresponding output y, C denotes the set of cliques in an undirected 
graphical model. yc is the feature function and the output from the associated clique c. 
Then, similar to standard CRF, the conditional probability for y is

where Z(x) is the normalization factor, �c is the set of feature function for the correspond-
ing clique c, and � is the function weights. In this SSL-based architecture, the feature func-
tions for clique c are the concatenation of �c and the log likelihood of all the joint probabil-
ity models. A set of model parameters � is introduced to weight the joint models, which is 
estimated using unlabeled data via MDF.

Subramanya et al. (2010) described another CRF-based algorithm for semi-supervised 
POS tagger. For graph construction, they used local sequence contexts as graph vertices V, 
which consists of a set Vl of n-grams that occur in the labeled data and a set Vu in the unla-
beled data. The graph is built over types rather than tokens via a symmetric similarity func-
tion, thus named similarity graph. This similarity graph is used as a smoothness regularizer 
to train CRF in a semi-supervised manner. Specifically, given a set of CRF parameters, the 
tagger first computes marginals over tokens in the unlabeled data, which are then aggre-
gated to marginals over types and used to initialize the graph label distributions. After run-
ning label propagation, the posteriors from the graph are used to smooth the state posteri-
ors. Subsequently, the unlabeled data is decoded using Viterbi algorithm to produce a set 
of automatic annotations, which are combined with the labeled data to retrain the CRF 
through supervised learning. The procedure is repeated until convergence. They used WSJ 
as labeled source domain training data, and the QuestionBank (Judge et al. 2006) as test 
data. The unlabeled data are collected from Internet search queries in similar forms to the 
QuestionBank. Experiments show that their proposed algorithm indeed outperforms super-
vised CRF in other domains.

Søgaard (2010) introduced stacked learning as a way to reduce POS tagging to a clas-
sification task, thus simplifying semi-supervised training. The stacking approach here is 
to combine SVMTool  (Giménez and Màrquez 2004b) and an unsupervised tagger  (Bie-
mann 2006) into a single-end classifier, where the former predicts the POS tag of a given 
word and the latter sorts the word into a word cluster. Semi-supervised learning is achieved 
by tri-training with disagreement. Firstly, three classifiers of the same learning algorithm 
mentioned above are trained on three bootstrap samples of the labeled dataset, which 
ensures that the classifiers are diverse. Then, a data point in the unlabeled dataset is labeled 
for classifier c1 , if and only if the other two agree on its label assignment but c

1
 disagrees, 

which strengthens the weakness of the classifier without skewing the labeled data by easy 

P(y ∣ x) =
1

Z(x)

∏

c∈C

exp(� ⋅ �
c(yc, x)),
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data points. This labeling process is repeated until the classifiers no longer change. Subse-
quently, the three classifiers are integrated by majority voting.

Zhou et al. (2018) proposed a weakly supervised sequence tagging model with ECOC 
(Error-Correcting Output Codes) that can learn to predict the POS tag for a given word in a 
context, given a dictionary of words with their possible tags. Most approaches prior to this 
paper are based on disambiguation, such as CRF and HMM, which suffers from the nega-
tive effects of false positive tags as the size of possible tags increases. The POS tagger is 
trained and tested based on constrained ECOC (Dietterich and Bakiri 1994). First, a unique 
L-bit vector is assigned to each tag. The set of bit-vectors is regarded as a coding matrix, 
where each row represents a codeword, e.g., class, and each column specifies a dichotomy 
over the tag space to learn a binary classifier. In the encoding stage, for each column of the 
coding matrix, a binary classifier is built based on binary training examples derived from 
the dictionary of the words with their possible tags. In the decoding stage, the codeword 
of an unlabeled test instance is generated by concatenating the predictive output of the L 
binary classifiers. The predicted instance is the class with the closest codeword accord-
ing to hamming distance or Euclidean distance. Thus, the proposed model which not only 
treats the set of possible tags as an entirety without resorting to disambiguation procedure, 
but also needs no manual intervention for feature engineering.

Gui et  al. (2017) proposed a Target Preserved Adversarial Neural Network (TPANN) 
for POS tagging on Twitter. WSJ is used as the labeled out-of-domain data, T-PoS, ARK, 
and NPS as labeled in-domain data, and tweets collected via Twitter API as unlabeled in-
domain data. The objective is to learn common features between resource-rich domain 
and target domain while preserving some domain-specific features of the target domain. 
TPANN first extracts character embedding features via CNN and concatenates them to 
word embedding as input. The hidden states are produced by a Bi-LSTM layer. Subse-
quently, the hidden states are transferred to a POS tagging classifier and a domain dis-
criminator, which are both standard feed-forward networks with a softmax layer. The POS 
tagging classifier maps the hidden states to their labels, whereas the domain discriminator 
maps the same hidden states to the domain labels so as to make the input features domain-
invariant. By training this adversarial network, common features can be obtained, but some 
domain-specific features are weakened. Thus, the paper introduced a domain-specific auto-
encoder to reconstruct target domain data. Specifically, at the Twitter decoder side, the hid-
den state ht is computed with ht = LSTM([h

0
⊕ zt−1], ht−1) , where h

0
 is the last hidden state 

of the Bi-LSTM layer, ⊕ denotes the concatenation operation, and zt−1 is computed from 
ht−1 using a multiple perceptron function. In this way, the auto-encoder counteracts the 
adversarial network’s tendency to erase target domain features by optimizing the common 
representation to be informative on the target domain data.

4.5 � Summary

POS tagging is a well-researched problem in the field of NLP. The existing POS tagging 
models can be divided into feature engineering approaches and deep learning approaches. 
Nonetheless, to address the growing need for domain adaptable POS taggers, we introduce 
another category to introduce semi-supervised methods.

Early feature engineering methods predict the POS tag of a word based on its local 
n-gram context with various machine learning techniques, following  Church (1988). 
Graphical models are commonly used for sequence labeling. Generative graphical mod-
els  (Kupiec 1992; Brants 2000) estimate the joint distribution based on the explicit 
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dependency between the states and the observations, and thus difficult to accommodate 
context features. Directed discriminative model  (McCallum et  al. 2000) addresses this 
weakness by modeling the conditional probability based on the dependencies between 
adjacent states and the observation sequence, while it suffers from the label bias problem. 
CRF (Lafferty et al. 2001) is able to solve the limitations above. It is an undirected dis-
criminative graphical model that is able to leverage decisions globally. However, it is dis-
advantageous in computational efficiency. Collins (2002) proposed an alternative that ena-
bles global learning by modifying the parameter estimation process of directed graphical 
model. Others alleviate the local limitation by introducing bidirectional sequence classifi-
cation (Toutanova et al. 2003; Tsuruoka and Tsujii 2005; Shen et al. 2007). These methods 
fallen out of favor in recent years, because it is not as adaptable to deep learning as CRF. 
MRF  (Rush et  al. 2012) is an undirected skip-chain graphical model that makes global 
decision not only on sentence-level but also corpus-level. Computationally it is as costly as 
CRF.

For deep learning, early methods take the window approach  (Collobert et  al. 2011; 
Dos Santos and Zadrozny 2014a) to extract contextual information. With the advancement 
of neural networks in NLP, it is replaced by RNN and RNN variants Wang et al. (2015), 
which is better suited for processing text. The most common approach is the BiLSTM-
CRF architecture, with improvement achieved through exploration of embeddings  (Ma 
and Hovy 2016; Akbik et al. 2018). Zhao et al. (2019) proposed a CNN-based model that 
addresses the vanishing gradient problem of deep CNN, which outperforms BiLSTM-
CRF when using the same embeddings. For transfer learning on cross-domain POS tag-
ging, Meftah and Semmar (2018) relied on hard parameter sharing, whereas Yang et  al. 
(2017) utilized hard and soft parameter sharing on different scenarios.

For SSL,  Clark et  al. (2003), Søgaard (2010), and Spoustová et  al. (2009) take the 
ensemble approaches. Clark et al. (2003) and Søgaard (2010) co-trained multiple POS tag-
gers, whereas Søgaard (2010) introduced a tri-training strategy to reduce errors. Spoustová 
et  al. (2009) used ensemble to label unannotated data for a specific tagger, which risks 
error propagation. Ando and Zhang (2005) jointly trained two unsupervised auxiliary tasks 
with supervised POS tagging. Toutanova and Johnson (2007) and Zhou et al. (2018) used 
dictionary constrains instead of labeled data. The former method was based on cluster-
ing, thus difficult to evaluate. The latter used constrained ECOC to solve the false positive 
tag problem of disambiguation-based methods. Suzuki and Isozaki (2008) and Subramanya 
et al. (2010) extended CRF to SSL by introducing cliques of states and similarity graph 
respectively. The former focused more on incorporating unlabeled data, whereas the latter 
targeted cross-domain scenarios. Compared to other cross-domain taggers, TPANN (Gui 
et al. 2017) is advantageous in utilizing a large amount of unlabeled data through a domain-
specific auto-encoder.

Table 8 illustrates a summary of the features and properties of all the discussed mod-
els. For feature engineering methods, there are mainly three types of features. First, lexical 
features are the observed POS tags of the focal word in the training corpus and their corre-
sponding frequencies, or less commonly, other frequency counts relating to the word, e.g., 
capitalized form frequency  (Toutanvoa and Manning 2000). Second, contextual features 
are the words surrounding the focal word and their predicted POS tags if available. Third, 
morphological features are the focal word’s suffix, prefix, and existence of numerals and 
special symbols. For some taggers less adept at handling overlapping features, only rare 
words in the corpus are given such morphological features. Thus we mark out the meth-
ods using rare word distinction. For methods using neural networks, on the another hand, 
such features can be automatically extracted via character-level encoding. Additionally, 
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Table 9   The performance of the introduced POS methods

D denotes dataset. R denotes result. M denotes measure. FE stands for feature engineering. DL stands for 
deep learning. Semi stands for semi-supervised. QB is QuestionBank

Method Experiment

D R M

FE  Brill (1995) WSJ 96.6% Acc.
 Ngai and Florian (2001) WSJ 96.61% Acc.
 Daelemans et al. (1999b) WSJ 96.6% Acc.
 Abney et al. (1999) WSJ 96.68% Acc.
 Nakagawa et al. (2001) WSJ 97.1% Acc.
 Giménez and Màrquez (2004b) WSJ 97.05% Acc.
 Ratnaparkhi (1996) WSJ 96.63% Acc.
 Toutanvoa and Manning (2000) WSJ 96.86% Acc.
 Curran and Clark (2003) WSJ 97.27% Acc.
 Kupiec (1992) WSJ 95.7% Acc.
 Brants (2000) WSJ 96.7% Acc.
 Collins (2002) WSJ 97.11% Acc.
 Lafferty et al. (2001) WSJ 95.73% Acc.
 Rush et al. (2012) WSJ 91.98% Acc.
 Toutanova et al. (2003) WSJ 97.24% Acc.
 Tsuruoka and Tsujii (2005) WSJ 97.24% Acc
 Shen et al. (2007) WSJ 97.33% Acc.
 Ma et al. (2013) WSJ 97.28% Acc.

DL  Collobert et al. (2011) WSJ 97.37% Acc.
 Dos Santos and Zadrozny (2014a) WSJ 97.47% Acc.
 Wang et al. (2015) WSJ 97.40% Acc.
 Ma and Hovy (2016) WSJ 97.55% Acc.

Akbik et al. (2018) WSJ 97.85% Acc.
 Zhao et al. (2019) WSJ 97.59% Acc.

Yang et al. (2017) WSJ 97.55% Acc.
Yang et al. (2017) Genia 92.62% Acc.
Yang et al. (2017) T-PoS 83.65% Acc.
Meftah and Semmar (2018) T-PoS 90.90% Acc.
Meftah and Semmar (2018) ARK 92.01% Acc.
Meftah and Semmar (2018) NPS 93.20% Acc.

Semi  Clark et al. (2003) WSJ 409 Perplexity
 Ando and Zhang (2005) BC 93.1% Acc.
 Toutanova and Johnson (2007) WSJ 93.4% Acc.
 Spoustová et al. (2009) WSJ 97.44% Acc.
 Suzuki and Isozaki (2008) WSJ 97.35% Acc.
 Subramanya et al. (2010) QB 86.8% Acc.
 Søgaard (2010) WSJ 97.27% Acc.
 Zhou et al. (2018) WSJ 92.91% Acc.

Gui et al. (2017) T-PoS 90.92% Acc.
Gui et al. (2017) ARK 92.80% Acc.
Gui et al. (2017) NPS 94.10% Acc.
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some methods determine the optimal output sequence by making the best local decision, 
whereas others are able to leverage predictions at different positions (see the global column 
in Table 8).

Table 9 shows a comparison of the accuracy of the introduced POS taggers. Currently, 
most POS tagger yield stable and reliable performance on the WSJ dataset from the Penn 
Treebank, with accuracy slightly above 97%. Akbik et al. (2018) obtained the state-of-the-
art result of 97.85%. On Twitter text corpa, Gui et al. (2017) consistently achieved the best 
performance.

Manning (2011) performed an error analysis and categorized the common errors from 
POS taggers into 7 classes. Results indicate that, a proportion of errors due to lexicon gap 
and unknown words can be addressed by semi-supervised methods. The errors caused by 
inconsistent or faulty gold standards can be fixed by correcting the WSJ dataset, for which 
he proposed a solution using deterministic rules. The other errors are mostly high fre-
quency words that have odd properties, which is an inherently difficult problem most POS 
taggers are attempting to solve.

Another challenge for English POS tagging is informal or out-of-domain texts, which is 
the focus of the semi-supervised approach section. With the boom of deep learning in NLP, 
novel neural networks and pre-trained language models can be expended to unsupervised 
or semi-supervised learning to further ameliorate the efficiency and tagging accuracy for 
user generated texts.

Noticeably, as a language pre-processing technique, POS tagging is ultimately intended 
for improving the performance of complex downstream tasks. Therefore, when pushing for 
higher accuracy for POS taggers, it is better to prioritize how we can eliminate the errors 
that have a strong influence on the downstream tasks. In the future, we hope to see POS 
taggers that are not only accurate and reliable, but also serve their purpose of enhancing 
more complicated NLP tasks.

5 � Text chunking

Text chunking is a NLP task that splits sentences into non-overlapping segments, such 
as Noun Phrase (NP) and Verb Phrase (VP). Chunking, also called shallow phrasing, can 
be applied as a pre-processing step before complete parsing. It helps the machine to learn 
the sentence structure and relation between words, e.g., recognizing names and syntactic 
components. Thus, it provides a useful foundation for downstream NLP tasks that require 
a general understanding of sentence components, e.g., NER (Collobert et al. 2011; Yang 
et  al. 2017), text summarization  (Gupta et  al. 2016), and sentiment analysis  (Syed et  al. 
2014).

In this section, we first review different tagging schemas in text chunking, then investi-
gating previous methods in tow categories: feature engineering approaches and deep learn-
ing approaches.

5.1 � Tagging schemas

IOB tagging schema Ramshaw and Marcus (1999) innovatively proposed noun phrase 
chunking as a machine learning problem. Prior to their work, chunk structure was mostly 
encoded with brackets between words, which is often met with the problem of unbalanced 
brackets. To solve this problem, they introduced the IOB1 (also known as IOB) tagging 
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schema to represent chunk structures, where “B” stands for the beginning of a chunk that 
immediately follows another chunk, “I” means the word is inside a chunk, and “O” stands 
for outside of any chunk. Thus, chunking is considered as a sequence labeling problem. The 
dataset they derived from the Penn Treebank is later referred to as baseNP and is used in 
some very early works. Thereafter, Sang and Buchholz (2000) introduced the widely-used 
dataset CoNLL-2000, extending the task of chunking from noun phrase to other types of 
chunks, such as verb phrases, prepositional phrases and adverb phrases. The dataset modi-
fies the above-mentioned IOB1 encoding schema to IOB2 (also known as BIO), where “B” 
is simply used in the beginning of every chunk. It also contains the corresponding POS tag 
of every token assigned by a standard POS tagger from Brill and Wu (1998). The CoNLL-
2000 dataset, along with F-score as metric, has become a standard for evaluating chunkers. 
Although the CoNLL-2000 comes with IOB2 encoding, it is not difficult to convert it into 
other schemas. A variety of encoding schemas are explored to study their effects on chunk-
ing performance.

IOE tagging schema An alternative to IOB is IOE (Sang and Veenstra 1999), where 
“E” represents the final word of a chunk immediately preceding another chunk in IOE1, or 
the final word on every chunk in IOE2. Sang and Veenstra (1999) split the baseNP dataset 
into two group and investigated the effectiveness of IOB and IOE. Results are inconclusive 
to determine which one can best improve the performance. Considering that IOB and IOE 
follow the same core concept to segment chunks, it is reasonable that they do not vary 
much in performance.

BIOES tagging schema Another popular encoding schema is BIOES (BILOU) (Rati-
nov and Roth 2009), where “E” stands for the ending token of a chunk, and “S” denotes a 
single element. Research shows that chunkers using BIOES outperform those using IOB 
significantly  (Yang et  al. 2018; Ratinov and Roth 2009; Dai et  al. 2015). This is likely 
because BIOES is more fine-grain then IOB, allowing the machine to learn a more expres-
sive model with only a small amount of extra parameters.

5.2 � Feature engineering approach

The feature engineering approaches rely on hand-crafted feature sets from the surrounding 
contexts, e.g., local lexical information, POS tags, and chunk tags of previous words. In 
this paper, we further categorize the feature engineering approach into two groups: local 
classification approaches and global classification approaches.

The local classification approaches view the chunking task as a sequence of classifica-
tion problems, one for each of the word in the sequence, where the predicted tag at each 
position may depend on the features of the whole input sentence and the predicted tags of 
previous words. The global classification approaches, on the other hand, are able to trade 
off decisions at different positions to obtain a globally optimal label sequence. Chunkers 
in this category are mostly graphical models, such as HMM (Freitag and McCallum 2000) 
and CRF.

5.2.1 � Local classification approach

The local classification approaches predict the label of one word in a sequence at a time, 
utilizing different lexical and syntactic information as features, e.g., the word itself, its POS 
tag, its surrounding words and their POS tags, to make the best local decision.
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Ramshaw and Marcus (1999) proposed a chunker with transformation-based learn-
ing. The chunk structure is represented by IOB1 tag schema in non-recursive base NP 
distinction, and by BN, N, BV, V, P in noun/verb phrase separation. First, a baseline 
heuristic is learned using POS tags. It is then used to produce initial hypotheses for each 
site in training corpus. When the baseline prediction is incorrect, the rule templates gen-
erate candidate rules for different locations based on the identities of words within a 
neighborhood, their POS tags and the current chunk tags. The candidate rules are tested 
against the rest of the corpus and sorted based on their positive scores. This will eventu-
ally create an ordered sequence of rules that predict the features of words. In order to 
speed up the learning process, an index is constructed to link each candidate rule to its 
static locations in the corpus, and the rules are disabled and re-enabled based on their 
scores and changes. Ngai and Florian (2001) also applied transformation-based learning 
to chunking, whose method is previously introduced in the POS tagging section.

Daelemans et  al. (1999a) proposed a memory-based learning method where POS 
tagging, chunking, and identification of syntactic relations are formulated as memory-
based modules. The proposed model is a lazy learner, keeping all training data available 
for extrapolation. Thus, it is more accurate than greedy learners for NLP tasks. Mem-
ory-based learning constructs a classifier for a task by storing a set of examples. Each 
example associates a feature vector with one of a finite number of classes. The classifier 
extrapolates the classes of feature vectors from those of the most similar feature vec-
tors in the memory. The syntactic analysis process is split into a number of classifica-
tion tasks where input vectors represent a focused item and a dynamically selected sur-
rounding context. Outputs of some memory-based modules are used as input by other 
memory-based modules.

Based on their work, Sang (2000) proposed a system-internal combination of memory-
based learning classifiers to find base chunks. The main idea is to generate five different 
chunking models by using different chunking representations, namely IOB1, IOB2, IOE1, 
IOE2, and the bracket structures. Each classifier uses the memory-based learning algorithm 
IB1-IG  (Daelemans et  al. 1999a) for determining the most probable tag for each word. 
The training data is stored and a new item is classified by the most frequent classification 
among training items closest to the new item. Outputs of the five classifiers are combined 
using either voting methods, classifier stacking method or combination method. The paper 
also explored three processing strategies: single-pass, double-pass, and n-pass, where the 
data are processed once, twice or many passes to identify the correct chunk tags. Accord-
ing to the experiment, the best combination is the Majority voting method and the double-
pass method.

Similarly, Van Halteren (2000) proposed a chunking method using Weighted Probabil-
ity Distribution Voting (WPDV) model  (van Halteren 2000). The proposed model has a 
three-stage architecture. In the first stage, five different base chunkers are trained, including 
a stacked TiMBL model (Sang 2000), a WPDV model, a reverse WPDV model, a R &M 
WPDV model, and a LOB WPDV model. Subsequently, another WPDV model is used to 
combine the outputs of the five base chunkers. Lastly, corrective measures are applied to 
the systematic errors, which are mostly due to the determination of the start position of 
NPs.

Koeling (2000) introduced a MaxEnt model for chunking, which is an exponential 
model that chooses the probability distribution with the highest entropy. MaxEnt oper-
ates on the intuition that if there is no evidence to favor one solution over the other, 
then both solutions are equally likely. Therefore, the probability distribution with the 
highest entropy should be chosen. Given a word, the probability of a candidate label is 
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dependent on its history, containing the word itself and its tag context. The label with 
the highest probability is selected.

Kudo and Matsumoto (2000, 2001) employed SVM for text chunking. The paper 
applied a weighted voting method to 8 pairwise SVM classifiers, using contextual infor-
mation as features for training. Training data is split into 4 different types of representa-
tions, namely IOB1, IOB2, IOE1, IOE2. For each representation, forward parsing and 
backward parsing are employed, thus creating a weight voting of 8 SVM systems. Four 
methods are proposed to determine the weight given to each system: uniform weights, 
cross validation, VC-bound, and Leave-One-Out.

Zhang et  al. (2001, 2002) applied a Winnow algorithm  (Littlestone 1988; Grove 
and Roth 2001) to text chunking. Winnow is suitable for problems with a high dimen-
sional feature space. The Winnow multiplicative update algorithm  (Littlestone 1988) 
updates the trainable parameter repeatedly when the algorithm cannot correctly classify 
an example. However, it may not converge when the data is not linearly separable. The 
paper proposes regularized Winnow, which converts the original Winnow into a numeri-
cal optimization problem that converges in both linear separable case and linear non-
separable case, thus making it suitable for NLP tasks such as text chunking. Besides 
contextual information, the model also uses English Slot Grammar  (McCord 1990) as 
addition features. Dynamic programming (Punyakanok and Roth 2000) is used to deter-
mine the best sequence of chunk tags.

Based on their work, Lee and Wu (2007) proposed a mask method based on SVM 
classifier that does not depend on external knowledge and multiple learners. The pur-
pose of the mask method is to collect unknown word examples from original training 
data, so that the chunker can handle unknown words in testing data. First, a tokenizer 
and a POS-tagger is applied to produce POS tag for each token. Then the feature selec-
tion component encodes the important features of context words. One-Against-All SVM 
classification method is employed to classify the IOB1 tag of the words. After lexicon-
related features are derived, the training set is divided into 2 or more parts. New training 
examples can be generated by mapping the new feature dictionary set from each training 
part. This method emulates training examples that do not contain lexical information, 
which helps the model considers the effect of unknown words, and adjusts the weights 
on lexical related features.

Johnson and Zhang (2005) proposed a semi-supervised method for text chunking, 
which is based on the idea that good classifiers should have similar predictive structure, 
and thus learns good structure from an auxiliary classification problem can help improve 
performance on the target problem. The paper presents a linear prediction model for 
structural learning. Supposedly, there is a low-dimensional predictive structure shared 
by multiple prediction problems, which can be discovered through joint empirical risk 
minimization (ERM). The goal of this model is to discover the common low-dimen-
sional predictive structure parameterized by the projection matrix in the predictor, i.e., 
to find the optimal projection matrix that minimizes the empirical risk summed over all 
the problems. This optimization problem is solved by alternating structure optimization 
(ASO) (Ando and Zhang 2005). For semi-supervised learning, the auxiliary prediction 
problems are generated automatically from unlabeled data. A classifier is trained with 
a feature map and labeled data, whose behavior is then predicted on the unlabeled data 
using another distinct feature map. After the training data for each auxiliary problem is 
created, the optimal projection matrix is computed from the training data via ASO, and 
the empirical risk on the labeled data is minimized.



5689A survey on syntactic processing techniques﻿	

1 3

5.2.2 � Global classification approach

The objective of chunkers using the local classification approaches is to minimize func-
tions related to labeling errors, where they make the best local decisions. As a result, 
they cannot trade off decisions at different positions against each other to obtain a glob-
ally optimal labeling. To solve this problem, many works attempt to establish global 
classifiers for text chunking. The earliest global classification approach relies on genera-
tive graphical models, such as HMM (Kupiec 1992).

Zhou and Su (2000) proposed an error-driven HMM-based text chunking tagger 
with context-dependent lexicon. The input token sequence is the product of the word 
sequence and the POS tag sequence. The chunking structure is represented by structural 
tags, which consists of structural relation, phrase category, and POS tags. The model 
uses the Viterbi algorithm to find a stochastic optimal tag sequence for the given token 
sequence. The baseline system only uses the current POS as lexical entry to determine 
the current structural chunk tag. Then, the paper attempts to add more contextual infor-
mation by adding lexical entries into the lexicon, such as the current and the previous 
words, and their POS tags. Adding more contextual information significantly improves 
the accuracy, however, it is difficult to merge all the above context-dependent lexicons 
in a single lexicon due to memory limitation. Thus, an error-driven learning approach 
is adopted to examine the effectiveness of lexical entries and reduce the size of lexicon.

Molina and Pla (2002) proposed an HMM-based tagging method where the model 
finds the sequence of states of maximum probability given the input sequence. This 
method can be used in many different shallow parsing tasks including text chunking, 
given the appropriate input information. When implemented for chunking, the model 
considers words and POS tags as the input. In addition, the paper suggests that the out-
put tag set could be too generic to produce accurate models. Thus, for a chunking task, 
the model can be enriched by adding POS information and certain selected words into 
the chunk tags. These are achieved by applying a specialization function on the original 
training set. From this new training set, the Specialized HMM can be learned by maxi-
mum likelihood. The tagging process is carried out using the Viterbi algorithm.

Although the HMM-based algorithms are well-understood, they require strict con-
ditional independence assumptions to work effectively, which makes it difficult to rep-
resent non-independent features, such as surrounding words. Attempts have been made 
to enable chunkers to handle more statistically correlated features of input tokens while 
obtaining global optimal labeling, e.g., the perceptron algorithm  (Collins 2002) and 
bidirectional inference algorithm (Tsuruoka and Tsujii 2005), both previously discussed 
in the POS tagging section.

Another popular algorithm to address this problem is based on CRF, which is the 
most widely-used alternative to generative graphical models. As mentioned in the POS 
tagging section, first proposed in  Lafferty et  al. (2001), CRF is an undirected linear-
chain graphical model. It uses a single exponential model for the joint probability of 
the entire tag sequence given an observation sequence. CRF can not only take in many 
statistically correlated features from the input data and train them discriminatively, but 
also trade off decisions at different sequence positions to obtain a globally optimal labe-
ling. Hence, it averts the limitations while maintaining the advantages of the local clas-
sification approach and the HMM-based approach.

Sha and Pereira (2003) introduced the application of CRF to text chunking, propos-
ing a novel CRF training algorithm with better convergence properties. For chunking 
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task, the CRF labels are pairs of consecutive chunk tags, which establishes a second-
order Markov dependency between chunk tags. The local feature is based on a predicate 
on the input sequence and current position, and a predicate on pairs of label. Instead of 
using iterative scaling as training algorithm (Lafferty et al. 2001), the paper experiments 
with two training methods to maximize the log-likelihood of the training set: precon-
ditioned conjugate gradient  (Shewchuk et  al. 1994), and limited-memory quasi-New-
ton (Nocedal and Wright 2006). Both utilize approximate second-order information to 
achieve high convergence speed.

Following their work, many alternative CRF or other second-order random fields 
algorithms are proposed for chunkers to model more complex dependencies. For 
instance, as described in the POS tagging section, Suzuki and Isozaki (2008) employed 
a SSL CRF, which is also tested to be effective at text chunking.

Sutton et  al. (2007) proposed dynamic CRF (DCRF), which is a generalization of 
the original CRF that repeats structure and parameters over a sequence of state vectors. 
Compared to conventional CRF, DCRF is able to represent distributed hidden states 
and complex interactions among states, such as factorial, second-order and hierarchical 
structure. To achieve this, DCRF introduces clique index c, which represents any state 
in the unrolled graph through a time step offset and its index in the state sequence y. 
Then the set of variables in the unrolled version of clique index c at time step t can be 
denoted as yt,c . Let C be a set of clique indices. Similar to standard CRF, given an input 
sequence x, the conditional probability P(y ∣ x) is computed as

where Z is the normalization factor, F is a set of feature function, and � denotes weights for 
each feature function. The generalization of DCRF allows for complicated structure, such 
as the proposed factorial CRF (FCRF), which incorporates edges between co-temporal 
labels to explicitly model dependencies between different chains. Assume a FCRF has L 
chains, where yl,t is the variable in chain l at time t. The distribution over output sequence 
is computed within-chain and between-chain:

This factorized structure can be used to jointly train several sequence labeling tasks, such 
as POS tagging and text chunking, with shared information. Based on this, the paper fur-
ther describes a marginal DCRF for joint learning between POS tagging and chunking, 
which is inspired by the notion that the main purpose of POS tagging is to help the pre-
diction of chunking. Therefore, training by maximizing the joint likelihood is not ideal, 
since the model might trade off accuracy among the chunk tag to obtain accuracy among 
the POS tag. The proposed marginal training encourages the model to prioritize learning 
the main task whilst retaining useful information from the other task. That is, in the train-
ing set, the observations of POS tag sequence are ignored, thus the model is able to focus 
on the conditional probability over y. Experiments show that joint training using marginal 
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FCRF improves chunking accuracy slightly in comparison to cascaded training where the 
two tasks are learnt in sequence.

Sun et al. (2008) proposed a chunker based on Latent-Dynamic Conditional Random Fields 
(LDCRF) (Morency et al. 2007) and a coinciding inference algorithm named Best Lable Path 
(BLP), which can learn latent-dynamics explicitly. More specifically, latent-dynamics is the 
underlying structure of syntactic contexts, which is often too complex for chunk labels to 
encapsulate. For example, it is difficult for the BIO tagging schema to differentiate the latent-
structures between the sequences “He is her -” and “He gave her-”, where the former is likely 
to be followed by a I-NP tag and the latter a B-NP tag. LDCRF is able to mitigate this problem 
by explicitly modeling hidden state variables. Given an input sentence x = (x

1
,… , xn) , the 

task is to learn the mapping between x and a sequence of labels y = (y
1
,… , yn) . The model 

also assumes a vector of hidden state variables h = (h
1
, h

2
,… , hn) for the sequence. To make 

training and inference more efficient, the model is restricted to have a disjointed set of hidden 
states �yi

 associated with each class label yi . The conditional probability can be written as

where P(h ∣ x,Θ) is calculated as conventional CRF:

where Θ denotes the model parameters. Due to the inclusion of hidden states, the best 
label sequence ŷ cannot be found directly via Viterbi algorithm. Therefore, NLP inference 
is introduced to search for ŷ , where the top-k hidden paths over hidden states are chosen 
using A ∗ search (Hart et al. 1968), and the corresponding probabilities of hidden paths are 
produced. Subsequently, the estimated probabilities of various label paths can be computed 
as the sum of the probabilities of hidden paths.

Muis and Lu (2016) proposed a weak semi-Markov CRF model for NP chunking on user 
generated text, namely NUS SMS Corpus (Chen and Kan 2012). Semi-Markov CRF (semi-
CRF) (Sarawagi and Cohen 2004) can be defined as conventional CRF with additional edges 
from one node to all the nodes up to L words away, representing a segment within which the 
words will be labeled with a single label. Based on Semi-CRF, the paper introduces a weaker 
variant that restricts each node to connect either to only the nodes of the same label up to L 
words away, or to all the nodes only in the next word. With this restriction, weak semi-CRF 
can decide the next segment length and type separately, whereas Semi-CRF is encouraged 
to make the decisions simultaneously. This restriction is achieved by splitting every original 
node into a Begin node and an End node. The End node connects only to the every next Begin 
nodes of any label. On the other hand, the Begin node connects only to the End nodes with the 
same label up to L next words. Thus, given the input sequence x = (x

1
,… , xn) , the conditional 

probability of label sequence y = (y
1
,… , yn) can be defined as

where Z(x) is the normalization factor, � is function weights, f is the feature function as 
in standard CRF, and g(yi, x, i − k, i) represents the feature vector on the edge between the 
Begin node with the current state yi at position i − k and the End node with state yi at posi-
tion i.
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Motivated by the idea that the choice of encoding schema can affect the performance of 
sequence labeling models, Lin et al. (2020) proposed two Latent Variable CRFs (LVCRF) 
that can automatically choose the best encoding schema for a given input sentence. They 
tested the models on the most popular schema, IOB2 and BIOES. The latent variable CRF 
is achieved by inserting a set of variables between the input and the output based on the 
chain rule of probability. This allows the model to capture the latent structure between 
observations and labels. The first model LVCRF-I labels the input sentence by labeling 
it with two encoding schemas simultaneously and optimizing the parameters to maximize 
the probability of both schemas. In the training phase, the model is not informed on which 
encoding schema is better, but trained to maximize the probability of both schemas. The 
best encoding schema is determined implicitly during the decoding stage when the best 
labeling path is found via Viterbi algorithm. The second model LVCRF-II, on the other 
hand, chooses the encoding schema on a word-level, combining the labeling path in two 
encoding schemas. Therefore, LVCRF-II allows the transformation between the two encod-
ing schemas. Experiments show that LVCRF-II indeed yields higher accuracy. It is also 
proven that the LVCRF framework can be used in neural network based chunkers such as 
LSTM to achieve even better result.

5.3 � Deep learning approach

Many deep neural networks, e.g., CNN, RNN and LSTM, can be applied to text chunking. 
Unlike the previous methods, deep learning approaches are able to automatically extract 
features from the input texts, making it possible to avoid hand-crafted feature templates.

As previously mentioned in the POS tagging section, Collobert et al. (2011) described 
a window approach for sequence labeling problems. Aside from the proposed model, they 
also suggested a novel training algorithm for tasks such as text chunking, where tags are 
organized in chunks and some tags cannot follow other tags. Named sentence-level log-
likelihood, it is proposed as an alternative to softmax and CRF, thus allowing the consid-
eration of scores over all possible tag paths for a given sentence. To achieve this, a transi-
tion score Ai,j is introduced, which is a trainable variable for jumping from tag i to tag j in 
successive words. The score of a tag path is computed by summing the transition scores 
and the scores outputted by the neural network. The score over all possible tag paths is nor-
malized via softmax and interpreted as a conditional tag path probability. The advantage of 
this method over CRF is that it uses a non-linear neural network instead of a linear model 
to maximize the likelihood, which encourages the model to learn useful features according 
to the task of interest. Additionally, they jointly train POS tagging, text chunking, and NER 
using the proposed window approach, where all models share the same lexicon lookup 
table and the parameters of the first linear layer, and the training objective is to minimize 
the loss averaged across all tasks.

Similarly, Yang et al. (2017) also utilized the correlation between text chunking, POS 
tagging and NER. They showed that transfer learning from the latter two tasks to chunking 
yields competitive performance. Their method was introduced in detail in the POS tagging 
section.

Huang et al. (2015) proposed a bidirectional LSTM model with a CRF layer (Bi-LSTM-
CRF). The model efficiently utilizes past and future input features via a Bi-LSTM layer and 
sentence level tag information via a CRF layer. Following the above-mentioned work (Col-
lobert et  al. 2011), the CRF layer incorporates a state transition matrix as parameters, 
which enables the model to utilize past and future tags to predict the current tag.
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Yang et al. (2016) described a deep hierarchical RNN, which can encode both char-
acter level and word level sequential information. Many previous works  (Dos  Santos 
and Zadrozny 2014b; Santos and Guimaraes 2015; Kuru et al. 2016) show that character 
level features help alleviate the out-of-vocabulary (OOV) problem in sequence labeling 
tasks, most of which rely on convolutional layer to extract such features. The proposed 
model, however, employs bidirectional GRU  (Cho et  al. 2014) to achieve this. The 
model stack multiple recurrent layers together to build a deep GRU. Such deep GRU 
is used on both character level and word level, together forming a hierarchical GRU. 
The word representations produced by the hierarchical GRU are fed into another deep 
bidirectional GRU to extract the context information in the word sequence. The result-
ing sequence of hidden states is used as input features for the next layer, where a CRF 
models the dependencies between tags in the sequence and predicts a sequence of tags.

Zhai et al. (2017) proposed a Bi-LSTM-based sequence chunking model where each 
chunk is treated as a complete unit for labeling. They also explored the idea of using 
pointer networks (Vinyals et al. 2015) instead of IOB labels. The paper divides sequence 
labeling into two sub-tasks: segmentation and labeling. The former is to identify scope 
of the chunks explicitly, whereas the latter is to label each chunk as a single unit based 
on the segmentation results. The model employs an encoder-decoder framework where 
the decoder is modified to take chunks as inputs. The Bi-LSTM encoder is used to cre-
ate a sentence representation as well as segment the input sequence into chunks. It uses 
a CNNMax layer to extract important information from words in the chunk, and utilizes 
context word embeddings of the chunks to capture context information. The decoder 
is a LSTM that takes all the information above to generate hidden states to label the 
segmented chunks. To further improve the accuracy, the model uses pointer network 
instead of IOB2 tags to identify chunks. It identifies a chunk, labels it, and repeats the 
process until all words are processed. At the beginning of a possible chunk, the pointer 
network determines which word is the ending point. After a chunk is identified and 
labeled, it serves as the input of the decoder in the next time step. With this setup, the 
model is able to utilize chunk-level features for segmentation. Experiments show that 
pointer network yields better performance than the IOB2 encoding schema.

Rei (2017) proposed a semi-supervised multitask learning framework for sequence 
labeling tasks. They used Bi-LSTM-CRF as baseline model, integrating unsupervised 
language modeling as the supplementary task, whose objective is to predict the next 
word in the sequence based on only the hidden state produced by the forward LSTM, 
and the previous word based on the hidden state from the backward LSTM. This addi-
tional language model objective encourages the model to learn more general patterns of 
semantic and syntactic composition.

Sun et  al. (2020) proposed a hybrid neural CRF for multi-view sequence labeling, 
termed MVCRF, and adopted diverse neural networks for feature extraction of multi-
ple views. The model not only considers the correlation between neighborhood labels 
and jointly decoding the best label sequence, but also combines multi-view learning 
by utilizing consensus and complementary principles. The model takes the word view 
and the POS view of the sequential data as input. Then, it uses Bi-LSTM to extract 
features from the word view x1 with pre-trained SENNA word embedding, and uses a 
linear network for the POS view x

2
 . The model then regularizes the log-likelihood by 

the consistency among distinct views to minimize the Euclidean distance between the 
features across two views in a joint representation space. Then, features from both views 
are fed into a MVCRF, where the output y is determined by the conditional probability 
P(y ∣ x1, x2).
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Liu et al. (2020) proposed a semi-CRF chunker based on stacked Bi-LSTM. Firstly, the 
word embedding and character encoding vector are concatenated and fed into the lower 
Bi-LSTM to obtain the sub-word representation. Subsequently, the parameters of the 
lower Bi-LSTM are extracted and loaded into the upper Bi-LSTM, which takes in the sub-
word representation, and outputs the word representation w = (w

1
,w

2
,… ,wn) . Based on 

the existing semi-CRF (Sarawagi and Cohen 2004), the paper describes a new semi-CRF 
(NSCRF). Let c = (c

1
, c

2
,… , cr) be a label path of the given sentence, where ci = (bi, ei, li) 

denotes the i-th chunk, bi represents the beginning word index, ei the end word index, and li 
the chunk-level tag. Then the conditional probability of NSCRF can be expressed as

where Z(c) is the normalization factor, F is the feature function.
Wei et al. (2021) proposed a Position-aware Self Attention (PSA) mechanism to address 

the RNN-based method’s limitation of capturing discrete relations in a sentence. The 
core of this model is the Bi-LSTM-based context encoder, which employs self-attention 
to encode relative positional information. Specifically, the context encoder contains two 
self-attentional context fusion layers: one for assigning weights to the initial inputs, the 
other for re-weighting the output of the Bi-LSTM. The self-attentional context fusion layer 
learns context-aware representations using PSA mechanism, where the alignment scores 
between tokens are calculated by a feed-forward neural network with an additional posi-
tional bias function consisting of three different positional factors, namely, self-disabled 
mask bias, distance-aware Gaussian bias, and token-specific position bias. With PSA, the 
proposed model is able to learn the non-continuous relations between the tokens.

5.4 � Summary

In conclusion, existing text chunking algorithms can be categorized as feature engineer-
ing and deep learning. Notably, feature engineering methods can be further divided into 
local and global approaches. The latter is able to leverage global information whereas the 
former can only make the locally optimal decision. The local approach includes machine 
learning methods such as transformation-based learning  (Ramshaw and Marcus 1999; 
Ngai and Florian 2001), memory-based learning (Daelemans et al. 1999a; Sang and Buch-
holz 2000; Sang 2000; Van  Halteren 2000), MaxEnt  (Koeling 2000), SVM  (Kudo and 
Matsumoto 2000, 2001; Lee and Wu 2007), and window algorithm  (Zhang et  al. 2001, 
2002). For global approach, early works utilize HMM. A significant limitation of HMM 
is that its strict independence assumptions makes it inefficient to incorporate contextual 
information. To mitigate this problem, Zhou and Su (2000) took an error-driven approach, 
whereas Molina and Pla (2002) transformed the training set through specialization func-
tions. CRF  (Lafferty et  al. 2001; Sha and Pereira 2003), as previously mentioned in the 
POS tagging section, is more flexible than HMM in terms of feature design. However, 
its linear-chain structure limits the ability to capture dependencies between non-adjacent 
states. Some CRF variants are proposed to address this limitation. DCRF  (Sutton et  al. 
2007) is a skip-chain graphical model that enables complex interactions between labels. 
Similarly, semi-Markov CRF (Muis and Lu 2016) is a skip-chain CRF targeting informal 
text, which accommodates restricted dependencies between nodes. LDCRF  (Sun et  al. 
2008) captures latent dynamics by establishing a set of hidden states for every class label. 
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LVCRF (Lin et al. 2020) is able to automatically choose the optimal encoding schema by 
inserting variables between states and observations.

Compared to feature engineering approaches, deep learning approaches are able to 
automatically extract features, and better facilitate joint training with other sequence 
labeling tasks. The most commonly used architecture is RNN variations combined with 
CRF. Huang et al. (2015) implemented the standard Bi-LSTM-CRF structure. Yang et al. 
(2016) utilized hierarchical GRU with CRF for better feature extraction. Sun et al. (2020) 
replaced the standard CRF with MVCRF, where the POS sequence is also incorporated 
as input. Similarly,  Liu et  al. (2020) utilized semi-CRF, which adds helpful labeling 
restrictions to standard CRF. Wei et al. (2021) applied a self-attention mechanism to the 
Bi-LSTM-CRF structure to model position-aware dependencies. In short, the RNN-CRF 
structure consistently yields good performance, and the neural network component leaves 
room for exploration and development. However, such structure is computationally costly, 
because of the limitation of CRF. Zhai et al. (2017) reframed the chunking task as segmen-
tation and labeling tasks, where a pointer-network is used to identify chunk span, averting 
the use of CRF. The weakness of this method is that there is limited interaction between 
the two subtasks to minimize error propagation. Joint learning is another direction of inter-
est. Collobert et al. (2011) and Yang et al. (2017) jointly learned text chunking with other 
sequence labeling tasks. The former proposed a neural alternative to CRF, which is more 
adept to learn task-specific features in joint learning. The latter presented a transfer learn-
ing framework. Rei (2017) incorporated unsupervised language modeling as an auxiliary 
task to text chunking.

Table 10 shows a comparison of the features used by the introduced chunkers. Given a 
focal word, the commonly used features are its POS tag, lexical context (n words to its left 
and to its right), syntactic context (n POS tags to its left and to its right). Some chunkers 
are able to utilize second-order features, e.g., concatenation of the focal word and at least 
two preceding or following POS tags, or the current POS tag and at least two preceding 
chunk tags. Such features provide more context but can lead to sparsity problems, and thus 
are not widely adopted. A few chunkers attempt to capture the structure of a chunk and 
use chunk-level features, such as the distance from the verb to the chunk head (Daelemans 
et  al. 1999a), or employing a pointer network to learn chunk segmentation before labe-
ling each word (Zhai et al. 2017). Morphological features e.g., affix and capitalization are 
less prevalent in text chunking, as most of the information they contain are expressed with 
POS tags. Nonetheless, morphological information can still be helpful in the case of OOV 
words. Deep learning methods adopt character-level embedding to acquire similar effects. 
Furthermore, since text chunking is a relatively coarse-grained syntactic task that can ben-
efit from other tasks e.g., POS tagging, NER, or language model, we specially mark out the 
algorithms that employ joint learning. A summary of the performance of the introduced 
algorithms are listed in Table 11. The current state-of-the-art model  (Akbik et  al. 2018) 
obtained the F1 score of 96.72%.

Compared to other sequence labeling tasks in NLP such as POS tagging and NER, text 
chunking has received relatively less attention. This has become more apparent in recent 
years, since most neural network models meant for sequence labeling are largely universal 
and can be extended to chunking. It is worth exploring whether a model designed specifi-
cally for chunking can improve the performance. The more significant challenge, however, 
is that text chunking as a sub-system in complex applications remains quite rare. Although 
pushing for accuracy is important, it is also good to keep in mind how chunking as a syn-
tactic pre-processing step can benefit the higher level NLP tasks such as semantics or 
pragmatics.
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With the development of neural network, the performance of sequence labeling model 
is advancing rapidly. Currently, the most popular approach to text chunking is the com-
bination of different deep learning algorithms and CRF. In the future, one possible way 
to further improve the performance is to apply graph neural network to chunking models. 
Another way is to find a neural network alternative to CRF. Lastly, we hope to see more 
integration between text chunking and other more complex downstream tasks, e.g., aspect 
extraction, sentiment analysis, etc.

Table 11   The performance of the introduced text chunking methods

FE stands for feature engineering. D denotes dataset. R denotes result. M denotes measure

Method Experiment

D R (%) M

FE-local  Muis and Lu (2016) NUS SMS 76.62 F1
 Ramshaw and Marcus (1999) baseNP 92.3 F1
 Daelemans et al. (1999a) baseNP 93.8 F1
 Ngai and Florian (2001) CoNLL2000 92.30 F1
 Sang (2000) CoNLL2000 92.50 F1
 Van Halteren (2000) CoNLL2000 93.32 F1
 Koeling (2000) CoNLL2000 91.97 F1
 Kudo and Matsumoto (2001) CoNLL2000 93.95 F1
 Zhang et al. (2002) CoNLL2000 93.56 F1
 Lee and Wu (2007) CoNLL2000 94.22 F1
 Johnson and Zhang (2005) CoNLL2000 94.39 F1

FE-global Zhou and Su (2000) CoNLL2000 93.68 F1
 Molina and Pla (2002) CoNLL2000 92.23 F1
 Collins (2002) CoNLL2000 93.53 F1
 Tsuruoka and Tsujii (2005) CoNLL2000 93.70 F1
 Sha and Pereira (2003) CoNLL2000 94.38 F1
 Suzuki and Isozaki (2008) CoNLL2000 95.15 F1
 McDonald et al. (2005) CoNLL2000 93.90 F1
 Sutton et al. (2007) CoNLL2000 93.87 F1
 Sun et al. (2008) CoNLL2000 94.34 F1
 Lin et al. (2020) CoNLL2000 92.44 F1
 Muis and Lu (2016) NUS SMS 76.62 F1

Deep learning  Collobert et al. (2011) CoNLL2000 94.32 F1
 Yang et al. (2017) CoNLL2000 95.41 F1
 Huang et al. (2015) CoNLL2000 94.49 F1
 Yang et al. (2016) CoNLL2000 95.41 F1
 Zhai et al. (2017) CoNLL2000 94.72 F1
 Rei (2017) CoNLL2000 93.88 F1
 Sun et al. (2020) CoNLL2000 95.44 F1
 Liu et al. (2020) CoNLL2000 91.80 F1
 Wei et al. (2021) CoNLL2000 95.15 F1
 Zhao et al. (2019) CoNLL2000 94.80 F1

Akbik et al. (2018) CoNLL2000 96.72 F1
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6 � Lemmatization

Lemmatization is a NLP task that reduces the inflected forms of given words into their 
morphologically correct root forms. It is an essential pre-processing technique that extracts 
concepts and keywords for downstream applications, e.g., search engine (Halácsy and Trón 
2006; Balakrishnan and Lloyd-Yemoh 2014) and dialogue systems (Zhao and Gao 2017; 
Altinok 2018; Liu et al. 2019). Another commonly used method is stemming, which also 
converts words into their base form, but does so by cutting off the prefixes or suffixes. 

Table 12   Widely used corpora for lemmatization

ahttps://​github.​com/​michm​ech/​lemma​tizat​ion-​lists
bhttp://​www.​cfilt.​iitb.​ac.​in/​wsd/
chttps://​circse.​github.​io/​LT4HA​LA/

Dataset Description Reference

CoNLL-2007 Dependency parsing corpus  Nivre et al. (2007)
CoNLL-2009 Syntactic and semantic dependencies corpus  Hajič et al. (2009)
CoNLL-2018 Multilingual parsing corpus  Zeman et al. (2018)
UD The Universal Dependencies treebanks  Nivre et al. (2016)
Multext Multilingual text tools and corpora  Ide and Véronis (1994)
MULText-EAST The MULText-EAST Slovene lexicon Erjavec (1998)
UniMorph The Universal Morphology project  Kirov et al. (2018)
PDT The Prague Dependency Treebank  Böhmová et al. (2003)
IFD The Icelandic Frequency Dictionary Helgadóttir (2012)
CELEX Lexical databases of English, Dutch and German  Jongejan and Dalianis 

(2009)
Cast3LB Spanish treebank  Civit and Martí (2004)
CESS-ECE Multilingual and multilevel annotated corpus  Martı et al. (2007)
1984 Manually annotated G. Orwell’s 1984  Gesmundo and Samardzic 

(2012)
GML The Middle Low German dataset  Peters and Nagel (2014)
PATB Penn Arabic Treebank  Maamouri et al. (2004)
ARZ Egyptian Arabic Morphological Annotation Maamouri et al. (2012)
FTB French Treebank  Seddah et al. (2013)
L-Lem Lexical databases of Modern Greek and English  Lyras et al. (2007)
D-Lem Afrikaans lexicon  Daelemans et al. (2009)
Lem-lista Lexical databases of 25 languages  Akhmetov et al. (2020)
RELIG Religious texts in Middle Dutch  Van Kerckvoorde (2019)
CG-LIT Literary texts in Middel Dutch  Van Kerckvoorde (2019)
WSDb Hindi word sense disambiguation health and tourism 

corpora
 Khapra et al. (2010)

LT4HALAc Latin texts  Celano (2020)
TüBa-D/Z The TüBa-D/Z treebank for German  Telljohann et al. (2004)
NoSta-D German texts with non-standard variations  Dipper et al. (2013)
UD-EWT The English Web Treebank  Silveira et al. (2014)
SIGMORPHON The SIGMORPHON 2019 shared task  McCarthy et al. (2019)
SEJFEK Polish economic lexicon  Savary et al. (2012)

https://github.com/michmech/lemmatization-lists
http://www.cfilt.iitb.ac.in/wsd/
https://circse.github.io/LT4HALA/
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Lemmatization, on the other hand, performs a morphological analysis based on the context 
of given words, and thus is able to preserve more syntactic information. For example, given 
the word “studied”, a stemmer simply removes the suffix and returns “studi”, whereas a 
lemmatizer is able to extract the proper lemma “study”.

Lemmatization has received growing attention in recent years, especially for highly 
inflected languages such as Dutch, Latin and Arabic. As lemmatizing English words are 
relatively easy, here we cover lemmatizers for inflection-rich languages to provide more 
perspectives to this task. Annotated training corpora for lemmatization mostly include 
lexicons for the target languages, CoNLL-2007  (Nivre et al. 2007), CoNLL-2009  (Hajič 
et al. 2009), CoNLL-2018 (Zeman et al. 2018) and the Universal Dependencies (UD) tree-
banks (Nivre et al. 2016). The standard evaluation metric is accuracy. Relevant information 
about the commonly used lemmatization datasets can be viewed in Table 12.

The existing lemmatizers regard lemmatization as either a suffix and prefix transforma-
tion problem, or a string-to-string transduction problem. The former focus on the start-
ing and ending letters, identifying recurring affixes and transforming them. The latter, on 
the other hand, considers the whole word form and generates the operations to convert it 
into its lemma. In this paper, we introduce the previous works in three section: the trans-
formation approaches, the statistical transduction approaches, and the neural transduction 
approaches.

6.1 � Transformation approach

The early lemmatizers learn a set of classification rules that detects and modifies the suffix 
and/or prefix of a given word form to transform it into the corresponding lemma. The trans-
formation approaches view lemmatization as a rule-based classification problem, where the 
class label assigned to a word is defined via giving the transformation to be applied on the 
word in order to get the normalized form. For instance, class labels can take the form of (x 
to y), where x is the suffix of the word form and y is that of its lemma.

Mladenic (2002) proposed two methods for mapping from words to their lemmas. 
The first on is letter-based representation using transformation-based learning, where the 
machine learns a set of classification rules from feature set comprised of suffixes. The 
other method is context-based representation using Naïve Bayes Majority classifier, where 
the features are n-grams of the given words. The experiments show that the rule-based 
approach performs better.

Plisson et al. (2004) proposed a lemmatizer based on Ripple Down Rules (RDR) (Comp-
ton et al. 1992) induction algorithm. As opposed to the if-then classification rules, RDR 
creates exceptions to existing rules, so that the addition of new rules is confined to the con-
text and will not cause inconsistency in the rule base. New RDR rules are added by creat-
ing “except” or “else” branches to the existing “if-then” rules, creating a tree-like decision 
structure. The model is trained on a lexicon of lemmatized Slovene words to learn what 
suffixes should be removed and/or added to get the normalized form. Results show that the 
RDR approach achieves better accuracy than the standard classification rules.

Juršič et al. (2007) further explored the application of RDR in the automatic construc-
tion of lemmatizers, presenting the LemmaGen system. They improved the original RDR 
method by instantiating general concepts in lemmatization into domain specific terms, such 
as organizing the training samples into (word-form, lemma) pairs, and restricting the form 
of rule condition and consequent. The LemmaGen is trained and tested on lexicons from 
multiple languages. It is proven to consistently outperform the original RDR.
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Erjavec and Džeroski (2004) presented a lemmatizer for unknown Slovene words. 
Their method consists of two steps. First, a trigram tagger (Brants 2000) performs mor-
phosyntactic description tagging on the input text. Subsequently, the resulting mor-
phosyntactic tag and the word itself are passed onto a first-order decision list learn-
ing system  (Manandhar et  al. 1998), which learns ordered sets of classification rules. 
The lemmatizer is trained on a lexicon containing lemmas with their full inflectional 
paradigms.

A limitation of the rule-based methods above is that classification rules are learned 
based on fixed-length suffixes. An alternative is to find the LCS between a word form and 
its lemma to identify the possible suffix.

Kanis and Müller (2005) constructed a lemmatizer automatically from the Full Form 
- Lemma (FFL) training dictionary using the LCS approach. They focused on three types 
of OOV problems, namely, missing full forms, compound words, and unknown words. To 
address the former two, they introduced the Hierarchical Lemmatization without Rule Per-
mission Check (HLWRPC), where a new lemmatization algorithm without the lemmatiza-
tion rule permission check is used when encountering missing full forms or compound 
words. To address the unknown words problem, a set of word applicable rules is assigned 
to every word. When lemmatizing an unknown word, the word applicable rules create a 
set of prefix and suffix patterns. Then these patterns are matched in the relevant table. The 
rules with the highest count of winnings are applied on the unknown word.

Jongejan and Dalianis (2009) described a method that automatically generates classifi-
cation rules to handle not only suffix but also prefix and infix changes to transform word 
forms into lemmas. Such affixes are identified via finding the LCS and their positions in 
relation to the LCS. In the training phase, the system tentatively lemmatizes the full form 
in each training pair by selecting from the rules that have been created. If the selected rule 
produces a wrong lemma, a new rule is incorporated into the rule base so that the new rule 
is selected instead of the erroneous rule and generates the right lemma from the full form. 
The training procedure terminates when the full forms in all the training pairs are trans-
formed to their corresponding lemmas. Then the system returns a data structure contain-
ing a set of classification rules that a lemmatizer must traverse to arrive at one rule that is 
selected to fire. They explored two different data structures to store rules, namely Directed 
Acyclic Graph (DAG) and plain tree structure with depth first, left to right traversal. Exper-
iments show that the latter is more efficient.

Daelemans et  al. (2009) applied prototype-based Active Learning (AL) to memory-
based lemmatization. AL (Cohn et al. 1996) is a type of unsupervised approach where cri-
teria are investigated to allow ordering the unannotated data in a way that the instances 
potentially contributing most to the speed of learning can be annotated first. The proposed 
lemmatizer is inspired by a novel AL algorithm called Prototype-Based Active Classifica-
tion (PBAC) (Cebron and Berthold 2009), where a new labeled prototype is added in each 
learning iteration to fine-tune the classification. Prototypical examples are selected first, 
whereas examples at the classification boundary are only selected automatically when it 
becomes necessary. To apply the PBAC approach to lemmatization, they used word fre-
quency and word length as features, assuming that longer or low frequency words are less 
prototypical than shorter or high frequency words. They hypothesized that contrary to the 
standard PBAC, less prototypical linguistic examples should provide better results faster in 
AL. Therefore, less prototypical instances are added to the memory-based classifier (Daele-
mans et al. 2004) at the start of the learning process. The classes are automatically gener-
ated based on the LSC. Experiments show that their algorithm indeed outperforms random 
data selection and other AL methods in lemmatization.
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Gesmundo and Samardzic (2012) formalized lemmatization as a category tagging task, 
where a word-to-lemma transformation rule is encoded as a single label. Specifically, given 
a word form, its prefix and/or suffix are found using the LCS method. Then, a transfor-
mation rule is defined by a tuple that contains the four types of generic transformation, 
namely, removing a suffix, adding a new lemma suffix, removing a prefix, and adding a 
new lemma prefix. Such transformation rules are used as labels. With this setup, any super-
vised tagging model can be used as a lemmatizer for any languages.

6.2 � Statistical transduction approach

As opposed to transforming word forms into lemmas by modifying suffix and/or prefix, the 
transduction approach views lemmatization as a character-level word-to-lemma transduc-
tion process. The introduction of edit tree paves the foundation for this approach, which 
converts an input string into the output string. Alternatives include edit distance, word vec-
tors, etc.

Chrupała (2006) was the first to propose a data-driven, context-sensitive lemmatizer 
based on a class-inference mechanism called the Shortest Edit Script (SES), which is able 
to detect recurring patterns in the mappings from words to their corresponding lemma, thus 
automatically deriving the lemmatization classes from training data. Specifically, an edit 
script of two sequences is a set of instructions that specifies the transformations from one 
sequence to the other. These instructions take the form of inserting or deleting a character 
at a designated position. Hence, finding the LCS is integral to finding the SES between two 
sequences. Though unlike the previously mentioned LCS-based transformation approach, 
SES does not identify suffix or prefix based on its position to map onto that of the lemma, 
but generating character-level modifications instead. This approach is proven to perform 
well for different languages, effectively reducing the labor to manually create full-paradigm 
inflectional lexicon.

Based on the SES mechanism,  Chrupała et  al. (2008) and Chrupala (2010) proposed 
Morfette, which is a modular, data-driven, probabilistic system that jointly learns lem-
matization and morphological tagging from morphologically annotated corpora. Morfette 
consists of two MaxEnt classifiers (Ratnaparkhi 1996) that are trained to predict lemmas 
and morphological tags respectively, and another module that dynamically combines their 
predictions and outputs the probability distribution over tag-lemma pair sequences. The 
lemma classifier uses the SES method to induce classes automatically.

Taking inspiration from the above-mentioned works,  Müller et  al. (2015) presented 
LEMMING, a modular model that jointly learns lemmatization and morphological tagging 
at the token level. The proposed lemmatizer maps an inflected form into its lemma given 
its morphological attributes using a log-linear model. Following the induction method in 
Morfette (Chrupała et al. 2008), the lemmatizer selects candidates through a deterministic 
pre-extraction of edit trees. This formalization allows the integration of arbitrary global 
features. It is vastly used in later transduction-based models. For joint learning, the lem-
matizer is combined with a morphological tagger MARMOT (Müller et al. 2013) in a tree-
structured CRF. Experiments show that LEMMING yields significant improvements in 
joint accuracy compared to Morfette and other lemmatizers.

Lyras et  al. (2007) implemented the Levenshtein edit distance on a dictionary-based 
algorithm for automatic lemmatization. Given an input word, the system calculates the 
string similarity between the input and all the lemmas stored in a dictionary, producing 
a set of lemmas with minimum edit distance from the input word. To further improve 
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the algorithm, they created a list containing the most common suffixes used in the target 
language to initiate the system. In this case, given a word, the system removes the first 
possible suffix of the input, calculating the edit distance between the stemmed input and 
lemmas. The lemmas with the minimum distance is stored. This process is repeated until 
all possible suffixes of the input word are removed. Then the system compares the edit 
distance of all the stored lemmas, and returns the n-best ones with the overall least edit 
distance. Experiments show that both methods perform well, but the stemming method, 
although more labor-taxing, indeed achieves higher accuracy than the baseline edit dis-
tance algorithm in both modern Greek and English.

Dreyer et al. (2008) presented a conditional log-linear model, which employs overlap-
ping features over latent alignment sequences, and learns latent classes and latent string 
pair regions from incomplete training data. Given an input, the candidate output is selected 
by a sliding window over the aligned (input, output) pair. At each window position, the 
log probabilities of all possible alignments are accumulated, evaluating each alignment 
separately. To further improve the performance, new latent dimensions can be added to the 
(input, output) tuple.

Toutanova and Cherry (2009) presented a global joint model for lemmatization and 
POS tagging trained on morphological lexicons and unlabeled data. The model consists 
of two components - a semi-supervised POS tagger (Toutanova and Johnson 2007), and a 
lemmatizing transducer that is optionally given the POS tags of input word to inform the 
lemmatization. Taking a pipeline approach, given a sentence, the POS tagger first predicts 
a set of tags for each word. Subsequently, the lemmatizer predicts one lemma for each of 
the possible tags. The k-best predictions of tag sets and lemmas are chosen to be the output. 
In addition, based on the notion that if two words have the same lemma, their POS tag sets 
should be dependent, the dependencies among multiple words are dynamically determined. 
Experiments show that their joint learning model outperforms the direct transduction lem-
matizer in different languages.

Nicolai and Kondrak (2016) presented three lemmatization methods leveraging inflec-
tion tables. The first one is a stem-based lemmatizer, which is built upon a word-to-stem 
transduction model by adding a stem-to-lemma model, both of which are adapted from the 
DIRECTL+ transducer (Jiampojamarn et al. 2010). The word-to-stem model is trained on 
morphological segmentations annotated by leveraging paradigmatic regularity in inflection 
tables, whereas the stem-to-lemma model is trained on character-aligned pairs of stems and 
lemmas. The second model is a stemma-based lemmatizer, consisting of a word-to-stemma 
model and a stemma-to-lemma model. The word-to-stemma model is an improved word-
to-stem model, where inflection tables are further utilized by replacing stems with the cor-
responding stemmas, and affixes with inflection tags. In this way, the boundaries between 
stems and affixes are identified by tags. The stemma-to-lemma model is the same as the 
stem-to-lemma model except it is trained stemma-lemma pairs. The final method is direct 
word-to-lemma transduction, which is trained on word-forms paired with their lemmas and 
inflectional tags obtained from the inflection tables. Furthermore, the paper employs a re-
ranking algorithm (Joachims 2002) after the n-best lists of possible lemmas are generated, 
which is able to leverage large, unannotated word lists to improve the accuracy. Experi-
ments show that the re-ranking algorithm indeed boost the performance, and the direct 
lemmatization method outperforms the other two models in most languages.

Barteld et  al. (2016) presented a novel candidate ranking method to tackle two chal-
lenges in data-driven lemmatization. First, highly inflected languages can feature com-
plex morphological changes such as prefix and/or infix modification. Secondly, spelling 
variations can appear in non-standard texts. To bring more emphasis on word-internal 
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modifications, Lexical Correspondence (LC) is used for lemma candidate generation 
instead of the commonly used edit trees. An LC is defined as a tuple (T, L) where T and L 
are two sequences of constants and variables with the requirement that the same variables 
appear in both sequences. Given a word form and an LC, the constants in sequence T are 
matched with characters in the word form and the variables are replaced with the remain-
ing substrings. Then, the corresponding lemma can be read off the second sequence L. 
To restrict over-generalization, insertions are anchored by their character offset either from 
the beginning or the end of the input word form. To deal with spelling variation, given an 
OOV word form, the lemmatizer generates lemma candidates from similar IV word form. 
The similarity is measured by he Levenshtein distance.

Gallay and Šimko (2016) innovatively proposed a method that automatically constructs 
lemmatizer by using text corpora to build vector models of words to infer lemmas. The core 
concept is that vector space word representation encodes not only syntactic and semantic 
patterns, but also morphological ones. Given an input word, the relevant reference (word, 
lemma) pairs are chosen from the reference lexicon by applying vector shifts to the input 
word to retrieve all candidate lemmas. Then, each candidate is assigned a weight based on 
their similarity with the input word. The correct lemma candidate is expected to appear in 
connection with different reference pairs. Therefore, the weights for the same candidate are 
summed together. The candidate with the highest total weight is outputted as the correct 
lemma.

Rosa and Žabokrtskỳ (2019) presented an unsupervised approach by performing 
agglomerative clustering of word forms with a novel distance measure. With the assump-
tion that the inflected forms of the same lemma tend to be similar in both spelling and 
meaning, the proposed distance measure is a combination of string similarity that is given 
by Jaro-Winkler edit distance (Winkler 1990), and the cosine similarity of FastText word 
embeddings.

Akhmetov et  al. (2020) introduced a language-independent lemmatizer based on the 
Random Forest classification algorithm. Firstly, all words are converted into vectors by 
a TF-IDF vectorizer  (Luhn 1957; Jones 1972) in the form of a sparse matrix. Then the 
transpose of this matrix is multiplied by itself to produce a character co-occurrence matrix, 
every row or column of which serves as character embedding. For every word-lemma pair 
in the given dictionary, the word form is encoded by the character co-occurrence matrix, 
whereas the lemma is encoded by the character ordinal numbers. For lemmatization, a 
Random Forest classifier with bootstrapping is adopted. Experiments show that this simple 
lemmatizer performs well across a wide range of languages.

6.3 � Neural transduction approach

The recent advancement of neural networks brings a fresh perspective to the transduction 
approach. The encoder-decoder architecture especially receives a lot of attention, as char-
acter-level Seq2Seq model is exceptionally adept at handling the string-to-string transduc-
tion task, able to capture more contextual information than the statistical approaches.

Kestemont et  al. (2017) described a deep learning approach to lemmatization for 
variation-rich languages. The proposed system consists of two basic components. One 
is temporal convolutions that model the orthography of input words at the character 
level. The other is distributional word embeddings from Skip-gram model, which rep-
resents the lexical context surrounding the input. Given a word, the system feeds the 
focus token into the convolutional component, and its left and right tokens into two 
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embedding components, respectively. The outputs of these three sub-nets, along with 
the one-hot encoding of the input token, are concatenated to form one single hidden 
representation, which is then passed through a final linear layer to produce the lemma.

Chakrabarty et al. (2017) introduced a composite Bidirectional Gated Recurrent Neu-
ral Network (BGRNN) architecture for language-independent, context-sensitive lemma-
tization. Following previous works (Chrupała et al. 2008; Müller et al. 2015), the task is 
defined as detecting the correct edit tree representing the transformation between a word 
form and its lemma. The proposed architecture consists of two stages. First, a BGRNN 
is used to extract the character level dependencies. The outputs are combined with the 
corresponding word embedding given by Word2Vec (Mikolov et al. 2013) to form the 
final word representations. Then, the representations are fed sentence-wise into the sec-
ond BGRNN to capture the contextual information of the input word, and to learn the 
mapping from word embeddings to word-lemma transformations. To further improve 
the performance, a subset of unique edit trees involving irregular transformations are 
sorted out from the corpus before training. This prior knowledge is represented as appli-
cable tree edit vectors, and combined with the hidden states form the second BGRNN 
to be passed on to the final classification layer. For the BGRNNs, the paper explores the 
combination of two BiLSTMs and two bidirectional GRUs. Experiments show that the 
former achieves higher accuracy.

Bergmanis and Goldwater (2018) proposed a context-sensitive lemmatizer called Lema-
tus, which is based on the standard attentional encoder-decoder architecture, and incorpo-
rated character-level sentence context. The system is based on a NMT model  (Sennrich 
et al. 2017), which consists of a 2-layer bidirectional GRU encoder, and a 2-layer decoder 
with a conditional GRU (Sennrich et al. 2017) in the first layer and a standard GRU in the 
second layer. The input sequence is a space-separated character representation of a given 
word in its n-character left and right sentence context. With this method, context is mod-
eled using solely the character contexts of the focus word, as oppose to additional POS 
information or word embeddings trained on large corpus.

To address the problem of low-resource languages, Bergmanis and Goldwater (2019) 
proposed a semi-supervised method that combines type-based learning and context-sensi-
tive approach. Using the above-mentioned lemmatizer Lematus as a baseline, they incorpo-
rated unambiguous word-lemma pairs in the inflection table from the Universal Morphol-
ogy project (UniMorph) (Kirov et al. 2018) as additional training data. They also collected 
sentence context for them from Wikipedia. Experiment results indicate that this data aug-
mentation indeed improves a baseline lemmatizer trained on low-resource language corpus.

Celano (2020) introduced a joint lemmatizer and POS tagger for Latin. Given a sen-
tence, gradient boosting machine called LightGBM  (Ke et  al. 2017) predicts the corre-
sponding POS tag sequence. Subsequently, the POS labels are combined with word embed-
ding pre-trained from large Latin corpora, and fed into a standard Seq2Seq model to output 
the lemma sequence.

Arakelyan et al. (2018) presented a LSTM-based neural network that jointly learns lem-
matization, POS tagging, and morphological feature extraction. Given a sentence, each 
word is represented by a concatenation of three vectors - a pre-trained word vector pro-
duced by FastText, a one-hot representation of casing features, and a character-level repre-
sentation extracted by a BiLSTM. The concatenated word representation is passed through 
three layers of LSTM to obtain the hidden states containing information about lemma, POS 
tags, and morphological features. For POS tagging and feature extraction, a linear layer is 
applied as the output layer. For lemmatization, a GRU-based decoder is added per word, 
all of which share weights and work in parallel. Finally, the output of each decoder is fed 
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to another linear layer, which produces a sequence of characters that form the predicted 
lemma.

Pütz et  al. (2018) proposed a morphologically-informed Seq2Seq-based lemmatizer. 
The model extends the standard encoder-decoder architecture with Luong-style mono-
tonic attention (Luong et al. 2015; Raffel et al. 2017). The hidden state outputted by the 
encoder is concatenated with the embedded morphological and POS tags, passing through 
a feed-forward layer with SELU activation function (Klambauer et al. 2017), and fed into 
the decoder to generate the predicted lemma. The proposed model is compared with LEM-
MING (Müller et  al. 2015) in German, achieving competitive accuracy. The results also 
indicate that a log-linear lemmatizer such as LEMMING is preferable when dealing with 
misspelled words, whereas Seq2Seq lemmatizer is able to generalize and handle OOV 
words better.

Kondratyuk et  al. (2018) proposed LemmaTag, which is a featureless bidirectional-
RNN-based architecture that jointly learns lemmatization and POS tagging. Given a sen-
tence, a GRU outputs the character-level embedding for every word, which is summed 
with the word embedding to form the final word embeddings. The resulting sequence is 
passed onto two layers of BiLSTM with residual connections, producing a sequence of 
word representations with sentence-level connections. The POS tagger, made up of a fully-
connected layer, predicts the tag values, concatenating them into a flat vector to pass onto 
the lemmatizer. The lemmatizer consists of a LSTM layer with character-level attention 
mechanism that takes in the the final word embedding, the character embedding, and the 
POS features of the focus word to generate the corresponding lemma.

Malaviya et al. (2019) introduced a simple LSTM-based joint learning model for lem-
matization and morphological tagging. Given a sentence, the morphological tagger obtains 
the word representation for each word using a character-level BiLSTM, which is then fed 
into a word-level BiLSTM to predict the corresponding morphological tag. For lemmatiza-
tion, a string-to-string transduction model (Wu and Cotterell 2019) is adopted, which is a 
Seq2Seq model with hard attention mechanism (Xu et al. 2015a; Rastogi et al. 2016). The 
joint probability of the input sentence is define as the product of the probability outputted 
by the tagger and all the probabilities outputted by the transducer.

Yildiz and Tantuğ (2019) proposed Morpheus, a joint contextual lemmatizer and mor-
phological tagger. Similarly to the above-mentioned works, given a sentence, firstly a char-
acter-level LSTM generates word vectors, which are then fed into a word-level Bi-LSTM 
to produce context-aware word representations. Subsequently, two separate LSTM decod-
ers are employed to predict morphological tags and edit operations from word forms to 
lemmas. More specifically, to find the minimum edit operations, a dynamic programming 
method based on Levenshtein distance is used.

Manjavacas et  al. (2019) also built upon the classic encoder-decoder architecture to 
acknowledge the difficulty of spelling variations in lemmatization for non-standard lan-
guage. Specifically, they presented a hierarchical sentence encoder that is jointly trained 
for lemmatization and language modeling, adopting the attention mechanism  (Bahdanau 
et al. 2014) to extract additional context. The hierarchical encoder consists of three levels. 
A bidirectional RNN first computes the character-level representation, which is fed into 
another bidirectional RNN to extract word-level features. Lastly, the final bidirectional 
RNN outputs the sentence-level features based on the word-level hidden state. To extract 
even higher quality sentence-level features, an additional word-level bidirectional language 
model is incorporated into the lemmatizer. Two softmax classifiers are used to predict the 
left and right tokens using the forward and backward sentence-level hidden states, respec-
tively. The losses of lemmatization and language modeling are jointly minimized. The 
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proposed lemmatizer is thus able to represent global sentence context information without 
the need for POS or morphological tags.

Kondratyuk (2019) presented a cross-lingual joint learning model for lemmatization and 
morphological tagging using multilingual BERT (Devlin et al. 2018). Given an input sen-
tence, a pre-trained multilingual cased-BERT is used to encode the tokens in the sentence. 
Subsequently, the encoded tokens are passed through two separate layer attention  (Kon-
dratyuk and Straka 2019) to produce embeddings that are specific to each task. Further-
more, the model also applies BiLSTM character embeddings (Ling et al. 2015b; Kim et al. 
2016) to generate enhanced morphological representations that are summed with the two 
task-specific embeddings, respectively. Following his previous work  (Kondratyuk et  al. 
2018), the decoder for each task consists of two successive layers of word-level bidirec-
tional residual LSTMs. For lemmatization, the final hidden state is fed into a feed-forward 
layer to map the focus token to one of the pre-computed SES (Chrupała 2006) that trans-
forms it to the correct lemma. Similarly for morphological tagging, a feed-forward layer 
takes in the hidden state and predicts the morphosyntactic description (MSD) class.

Taking joint learning a step further, Zalmout and Habash (2019) proposed a Seq2Seq-
based model that handles both lexicalized and non-lexicalized features. It jointly learns 
lemmatization, diacritization, normalization, as well as fine-grained morphological tag-
ging. This is achieved by means of applying parameter sharing strategies on top on the 
standard LSTM encoder-decoder architecture. On one hand, different non-lexicalized 
features are modeled on word-level by a Bi-LSTM tagger that shares parameters with the 
encoder. One the other hand, all lexicalized features are handled on character-level by the 
same encoder, and then sent to their corresponding decoders separately. The proposed 
model gains improvement across all of the joint tasks in two Arabic corpora.

Unlike previous contextual neural network approaches, which takes into account the 
whole sentence, Chakrabarty et al. (2019) hypothesized that a limited context is sufficient 
for lemmatization. Based on this notion, they introduced a BiLSTM-CNN lemmatizer. 
Given a sentence, a BiLSTM is applied to extract character-level embeddings, which are 
then arranged into a matrix and processed by a CNN to generate positional embeddings. 
The size of filters in the CNN is determined by the length of the context to include, which 
is set to be the trigram of focus tokens in the paper. Experiments show that BiLSTM-CNN 
indeed outperforms the BiLSTM-BiLSTM lemmatizer (Chakrabarty et al. 2017).

Schmitt and Constant (2019) focused on the lemmatization of multiword expressions 
(MWEs), which are combinations of several words that display the linguistic properties of 
a lexical unit, but are present in the lexicon like simple words. The main challenge of lem-
matizing MWE is that its unique properties require different classification rules on top of 
simple-word lemmatization knowledge. To acknowledge this problem, they propose a deep 
encoder-decoder lemmatizer solely based on the internal context of MWE. Given a MWE, 
a GRU encodes the character-level word embeddings, which are passed onto another GRU 
as a sequence to extract the internal context. The final word representation in an MWE is a 
concatenation of the character-level word embedding, its left internal context, its POS tag, 
its position and the length of the MWE. Then, a character-level conditional GRU with an 
attention mechanism decodes the final word representation to generate the corresponding 
lemma. Although the model generalizes well on unknown MWEs, the paper also addresses 
its limitations. First, the input MWE and the produced base form must contain the same 
number of words. Second, due to the one-to-one correspondence of its architecture, the 
model has difficulties in modeling lemmatizations that modify the word order.

Zalmout and Habash (2020) presented a character-level Seq2Seq lemmatization model, 
utilizing several sub-word features, namely FastText n-grams, greedy stem, orthographic 
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roots, and orthographic patterns. They used Lematus (Bergmanis and Goldwater 2018) as a 
baseline. Instead of fixed-size character window, they utilized the characters of the n words 
surrounding the focus word, employing LSTM instead of GRU. They explored two con-
figurations to incorporate sub-word features. At the encoder side, they condition on differ-
ent sub-words by concatenating their embeddings with the character embeddings before 
feeding them into the encoder. The embeddings for sub-words can be learned as a part 
of the system, or pre-trained on an external corpus. Alternatively, greedy stem, roots, and 
patterns can also be learned jointly as auxiliary tasks at the decoder side. In this configura-
tions, lemmatization and the auxiliary tasks share the same encoder, whilst having specific 
decoders for each task. Experiments indicate that though all the proposed methods outper-
form the standard Seq2Seq lemmatizer, incorporating pre-trained FastText n-grams at the 
encoder side yields the best result.

Milintsevich and Sirts (2021) proposed a novel hybrid approach that enhances the 
Seq2Seq lemmatizer with external resources. Their model is based on the lemmatization 
module from the Stanford parsing system (Qi et al. 2018, 2020), which takes the character-
level representation and the corresponding POS tag into a BiLSTM encoder and a BiL-
STM decoder with attention, outputting the predicted lemma using greedy decoding. To 
improve the performance of this baseline, they incorporated additional lemmas extracted 
from an external lexicon or a rule-based system. The model employs another encoder, 
which receives and processes the candidate lemmas from an external lexicon, or generated 
by a rule-based system. The decoder then learns via two separate attention mechanism to 
predict lemma using the combination of the classic string-to-string transduction as well 
as copying lemma characters from external candidates. Results indicate that the enhanced 
lemmatizer performs considerably better than a simple lexicon extension method based on 
the Stanford system.

6.4 � Summary

In conclusion, we divide the existing lemmatizers into two categories - transformation 
approaches and transduction approaches. Transformation approaches regard affix as the 
base unit for rule-based classifications. In early works, the machine can only learn rules 
that transform suffixes of fixed length  (Mladenic 2002; Plisson et  al. 2004; Juršič et  al. 
2007; Erjavec and Džeroski 2004). Such limitation can be solved by using LCS, which ena-
bles the machine to identify prefixes and suffixes of any length. Kanis and Müller (2005) 
specifically targeted missing full forms, unknown words, and compound words. Jongejan 
and Dalianis (2009) focused on detecting prefix and infix as well as suffix. Daelemans et al. 
(2009) utilized PBAC to enable efficient unsupervised learning. Gesmundo and Samardzic 
(2012) reframed lemmatization as a category labeling task, so that any tagging model can 
be applied as a lemmatizer.

Transduction approaches, on the other hand, view either character as the base unit 
for lemma generation, or the entire word as the base unit to map onto its lemma based 
on string similarity measures. Transduction-based methods are more flexible than the 
transformation-based ones, as they do not rely on an affix lookup table, manually-built 
or automatically-generated. Thus, transduction approach is better suited to handle irreg-
ular changes. In this paper, we further split the transduction approaches into statisti-
cal and neural-network-based methods, since the development of deep learning brings 
a new perspective to lemmatization. Statistical transduction approaches mostly rely on 
edit scripts, for instance, the data-driven SES mechanism  (Chrupała 2006; Chrupała 



5709A survey on syntactic processing techniques﻿	

1 3

et al. 2008; Chrupala 2010). Müller et al. (2015) improved SES by proposing edit tree, 
which does not encodes the LCSs and thus more capable of generalizing. Following 
their work,  Lyras et  al. (2007); Nicolai and Kondrak (2016) enhanced lemmatization 
with stemming. Toutanova and Cherry (2009) incorporated POS tagging as a sub-sys-
tem. Barteld et  al. (2016) further improved edit tree with LC, which is more adept at 
handling word-internal inflections. Dreyer et  al. (2008) proposed a window approach 
as an alternative to edit tree, which can handle more complex inflections, while it is 
restricted by a window size. Another alternative is to infer lemma from word embed-
dings (Gallay and Šimko 2016; Rosa and Žabokrtskỳ 2019; Akhmetov et al. 2020), pav-
ing the way for neural approaches.

Neural transduction approaches rely on neural networks to automatically learn the 
character-level correspondence between lemmas and words. Earlier methods use vari-
ous types of neural networks to produce character embeddings, concatenate it with word 
embeddings, and use another neural network to predict the corresponding lemma (Kes-
temont et al. 2017; Chakrabarty et al. 2017, 2019). Recent works mostly adopt the char-
acter-level encoder-decoder architecture  (Bergmanis and Goldwater 2018; Pütz et  al. 
2018). Schmitt and Constant (2019) modified the encoder-decoder structure to specifi-
cally target MWEs.  Bergmanis and Goldwater (2019) applied SSL to the architecture 
for low-resource domain. Milintsevich and Sirts (2021) enhanced Seq2Seq lemmatiza-
tion with external resources. Joint learning is often applied to improve the performance 
of lemmatization. Commonly used auxiliary tasks include POS tagging (Celano 2020; 
Arakelyan et al. 2018; Kondratyuk et al. 2018), morphological tagging (Arakelyan et al. 
2018; Malaviya et  al. 2019; Yildiz and Tantuğ 2019; Kondratyuk 2019; Zalmout and 
Habash 2019), and language modeling (Manjavacas et al. 2019). With a more linguisti-
cally-driven approach, Zalmout and Habash (2020) used subword modeling as an aux-
iliary task, and expanded the character-level representations to include the surrounding 
words of the focus word.

Table 13 shows a summary of all the introduced lemmatizers. Here we mark out the 
methods that utilize affix, syntactic, morphological, contextual, and character informa-
tion as features, either handcrafted or automatically learned. Specifically, syntactic fea-
tures refer to POS tags or coarse-grained POS categories. Contextual features are word 
n-grams or global information. Additionally, we indicate the mechanisms used by the 
lemmatizers to find the target lemma, namely, classification rule, edit script i.e. SES and 
edit tree, string similarity matching such as Levenshtein distance and vector shift, and 
character-level (or occasionally word-level) lemma generation. Among all, character-
level generation garners the most interest due to the advancement of generative Seq2Seq 
models. Lastly, we list the lemmatization algorithms that adopt joint learning with other 
tasks, e.g., POS tagging, morphological tagging, and language modeling. The com-
monly used corpa are listed in Table 12. A comparison of performance can be found in 
Table 14.

With the help of neural networks and joint learning, lemmatization has achieved 
remarkable accuracy, especially for less inflection-rich languages such as English. The next 
step could be exploring the application of more recent pre-train language models such as 
GPT (Radford et al. 2018), or further improving multitask frameworks for joint learning. 
On the other hand, lemmatization for resource-scarce languages is still lacking. Although 
neural network approaches are proven to effective in ancient languages compared to a rule-
based lemmatizer, for instance in Ancient Irish (Dereza 2018), there is still a lot of room 
for improvement. More research on unsupervised learning, semi-supervised learning, or 
transfer learning is called for resource-scarce language lemmatization.
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7 � Conclusion

We believe that syntactic processing is a significant step in developing neurosymbolic 
AI  and natural language understanding. As introduced  in previous sections, there have 
been some attempts to use simple syntactic processing techniques to improve more com-
plex NLP tasks. For instance, microtext normalization can highly improve sentiment analy-
sis (Satapathy et al. 2017, 2019b). SBD can be incorporated as a sub-system in information 
retrieval (Krallinger et al. 2017). In sentiment analysis, it can help identify negation scope 
to improve the performance (Councill et al. 2010). POS tagging is used as part of the fea-
ture extraction process for cyber-bullying detection (Nandhini and Sheeba 2015) and query-
based information retrieval  (Mahmood et  al. 2017).  Asghar et  al. (2014) suggested that 
POS tagging is also an important feature extraction step in sentiment analysis. Mubarok 
et al. (2017); Mao and Li (2021) applied it to aspect-based sentiment analysis and indeed 
obtained better results. Feng et al. (2019) proposed NMT decoding models that jointly pre-
dict target words and corresponding POS tag sequence, acquiring significant improvement. 
POS tagging is also used to provide syntactic structure in dialogue system (Meena et al. 
2014; Bang et al. 2015). As for text chunking, Gupta et al. (2016) used both POS tagging 
and chunking as subtasks to tackle text summarization. Song et al. (2005) utilized chunking 
technique to improve biomedical information extraction. Syed et al. (2014) integrated text 
chunking with sentiment analysis in Urdu. Lemmatization has long been used for infor-
mation retrieval (Halácsy and Trón 2006; Kanis and Skorkovská 2010; Balakrishnan and 
Lloyd-Yemoh 2014) and other tasks, e.g., text categorization  (Camastra and Razi 2020), 
sentiment analysis  (Mhatre et al. 2017), and Tweet stance classification (Priyanshu et al. 
2020).

In this paper, we provide an extensive review on the above mentioned low-level syn-
tactic processing techniques, summarizing different approaches, technical trends and chal-
lenges. We hope this survey can encourage more scholars to participate in the research of 
these fundamental techniques. We also hope this survey can inspire diverse neuro-symbolic 
AI systems to integrate these syntactic processing techniques in high-level NLP tasks in 
the future.
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