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Abstract
Sentiment analysis, one of the research hotspots in the natural language processing field, 
has attracted the attention of researchers, and research papers on the field are increasingly 
published. Many literature reviews on sentiment analysis involving techniques, methods, 
and applications have been produced using different survey methodologies and tools, 
but there has not been a survey dedicated to the evolution of research methods and top-
ics of sentiment analysis. There have also been few survey works leveraging keyword co-
occurrence on sentiment analysis. Therefore, this study presents a survey of sentiment 
analysis focusing on the evolution of research methods and topics. It incorporates keyword 
co-occurrence analysis with a community detection algorithm. This survey not only com-
pares and analyzes the connections between research methods and topics over the past two 
decades but also uncovers the hotspots and trends over time, thus providing guidance for 
researchers. Furthermore, this paper presents broad practical insights into the methods and 
topics of sentiment analysis, while also identifying technical directions, limitations, and 
future work.
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1 Introduction

Web 2.0 has driven the proliferation of user-generated content on the Internet. This con-
tent is closely related to the lives, emotions, and opinions of users. Therefore, analysis 
of this user-generated data is beneficial for monitoring public opinion and assisting in 
making decisions. Sentiment analysis, as one of the most popular applications of text-
based analytics, can be used to mine people’s attitudes, emotions, appraisals, and opin-
ions about issues, entities, topics, events, and products (Cambria et al. 2022a, b, c, d; 
Injadat et  al. 2016; Jiang et  al. 2017; Liang et  al. 2022; Oueslati et  al. 2020; Piryani 
et al. 2017). Sentiment analysis can help us interpret emotions in unstructured texts as 
positive, negative, or neutral, and even calculate how strong or weak the emotions are. 
Today, sentiment analysis is widely used in various fields, such as business, finance, 
politics, education, and services. This analytical technique has gained broad accept-
ance not only among researchers but also among governments, institutions, and compa-
nies (Khatua et al. 2020; Liu et al. 2012; Sánchez-Rada and Iglesias 2019; Wang et al. 
2020b). It helps policy leaders, businessmen, and service people make better decisions.

The majority of user-generated content data is unstructured text, which increases the 
great difficulty of sentiment analysis. Since 2000, researchers have been exploring tech-
niques and methods to enhance the accuracy of such analysis. The popularity of social 
media platforms has brought people around the world closer together. With the continu-
ous advancement of technology, the research topics, application fields, and core meth-
ods and technologies of sentiment analysis are also constantly changing.

Comparing and analyzing papers from specific disciplines can help researchers gain a 
comprehensive understanding of the field. There have been many surveys on sentiment 
analysis (Nair et al. 2019; Obiedat et al. 2021; Raghuvanshi and Patil 2016). However, 
there is a lack of adequate discussion on the connections between research methods and 
topics in the field, as well as on their evolution over time. In 1983, Callon et  al. pro-
posed co-word analysis (Callon et  al. 1983). It can effectively reflect the correlation 
strength of information items in text data. Co-word analysis based on the frequency of 
co-occurrence of keywords used to describe papers can reveal the core contents of the 
research in specific fields. An evolutionary analysis of the associations between core 
contents is helpful for a comprehensive understanding of the research hotspots and 
frontiers in the field (Deng et al. 2021). It can provide guidance for researchers, espe-
cially those who are new to the field, and help them determine research directions, avoid 
repetitive research, and better discover and grasp the research trends in this field (Wang 
et al. 2012). To fill in the gap in existing research, we conduct keyword co-occurrence 
analysis and evolution analysis with informetric tools to explore the research hotspots 
and trends of sentiment analysis.

The main contributions of this survey are as follows:

• Using keyword co-occurrence analysis and the informetric tools, the paper presents 
a survey on sentiment analysis, explores and discovers useful information.

• A keyword co-occurrence network is constructed by combining the paper title, 
abstract, and author keywords. Through the keyword co-occurrence network and 
community detection algorithm, the research methods and topics in the field of sen-
timent analysis, along with their evolution in the past two decades, are discussed.

• The paper summarizes the research hotspots and trends in sentiment analysis. It also 
highlights practical implications and technical directions.
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The remainder of this paper is organized as follows: In Sect.  2, we summarize and 
analyze the existing surveys on sentiment analysis and present the research purpose and 
methodologies of this paper. Section 3 details the survey methodology, including the col-
lection and processing of scientific publications, visualization, and analysis using differ-
ent methods and tools. In Sect. 4, we analyze the results obtained from the keyword co-
occurrence analysis and evolution analysis, along with the research hotspots and trends in 
sentiment analysis identified through the analysis results. Finally, in Sect. 5, we summarize 
the research conclusions as well as the practical implications and technical directions of 
sentiment analysis. We also clarify the limitations of this paper and make suggestions for 
future work.

2  Existing surveys on sentiment analysis

Sentiment analysis is a concept encompassing many tasks, such as sentiment extraction, 
sentiment classification, opinion summarization, review analysis, sarcasm detection or 
emotion detection, etc. Since the 2000s, sentiment analysis has become a popular research 
field in natural language processing (Hussein 2018). In the existing surveys, the researchers 
mainly conducted specific analyses of the tasks, technologies, methods, analysis granular-
ity, and application fields involved in the sentiment analysis process.

2.1  Surveys on contents and topics of sentiment analysis

When research on sentiment analysis was still in its infancy, the contents and topics of 
surveys mainly focused on sentiment analysis tasks, analysis granularity, and application 
areas. Kumer et  al. reviewed the basic terms, tasks, and levels of granularity related to 
sentiment analysis (Kumar and Sebastian 2012). They also discussed some key feature 
selection techniques and the applications of sentiment analysis in business, politics, recom-
mender systems and other fields. Nassirtoussi et al. explored the application of sentiment 
analysis in market prediction (Nassirtoussi et al. 2014). Medhat et al. analyzed the improve-
ment of the algorithms proposed in 2010–2013 and their application fields (Medhat et al. 
2014). Ravi et  al. analyzed the papers related to opinion mining and sentiment analysis 
from 2002 to 2015. Their study mainly discussed the necessary tasks, methods, applica-
tions, and unsolved problems in the field of sentiment analysis (Ravi and Ravi 2015).

Existing surveys of the applications of sentiment analysis have focused more on the 
domains of market research, medicine, and social media in recent years. Rambocas et al. 
examined the application of sentiment analysis in marketing research from three main per-
spectives, including the unit of analysis, sampling design, and methods used in sentiment 
detection and statistical analysis (Rambocas and Pacheco 2018). Cheng et al. summarized 
techniques based on semantic, sentiment, and event extraction, as well as hybrid methods 
employed in stock forecasting (Cheng et al. 2022). Yue et al. categorized and compared a 
large number of techniques and approaches in the social media domain. That study also 
introduced different types of data and advanced research tools, and discussed their limita-
tions (Yue et al. 2019). In the context of the COVID-19 epidemic, Alamoodi et al. reviewed 
and analyzed articles on the occurrence of different types of infectious diseases in the past 
10 years. They reviewed the applications of sentiment analysis from the identified 28 arti-
cles, summarizing the adopted techniques such as dictionary-based models, machine learn-
ing models, and mixed models (Alamoodi et al. 2021b); Alamoodi et al. also conducted 
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a review of the applications of sentiment analysis for vaccine hesitancy (Alamoodi et al. 
2021a). Researchers also reviewed the application of sentiment analysis in the fields of 
election prediction (Brito et al. 2021), education (Kastrati et al. 2021; Zhou and Ye 2020) 
and service industries (Adak et al. 2022).

Quite a number of research works investigated sentiment analysis works in non-Eng-
lish languages. Sentiment analysis in Chinese (Peng et al. 2017), Arabic (Al-Ayyoub et al. 
2019; Boudad et al. 2018; Nassif et al. 2021; Oueslati et al. 2020), Urdu (Khattak et al. 
2021), Spanish (Angel et al. 2021), and Portuguese (Pereira 2021) were conducted. They 
mainly reviewed the classification frameworks of the sentiment analysis process, supported 
language resources (dictionaries, natural language processing tools, corpora, ontologies, 
etc.), and deep learning models used (CNN, RNN, and transfer learning) for each of the 
languages involved.

2.2  Surveys on methods of sentiment analysis

Before machine learning technology became mature, researchers were particularly con-
cerned about feature extraction methods. For example, Feldman summarized methods for 
extracting preferred entities from indirect opinions and methods for dictionary acquisi-
tion (Feldman 2013). Asghar et  al. reviewed the natural language processing techniques 
for extracting features based on part of speech and term position; statistical techniques for 
extracting features based on word frequency and decision tree model; and techniques for 
combining part of speech tagging, syntactic feature analysis, and dictionaries (Asghar et al. 
2014). Koto et al. discussed the best features for Twitter sentiment analysis prior to 2014 
by comparing 9 feature sets (Koto and Adriani 2015). They found that the current best 
features for sentiment analysis of Twitter texts are AFINN (a list of English terms used 
for sentiment analysis manually rated by Finn Årup Nielsen) (Nielsen 2011) and Senti-
Strength (Thelwall et al. 2012). Taboada sorted out the characteristics of words, phrases, 
and sentence patterns in sentiment analysis from the perspective of linguistics (Taboada 
2016). Besides, Schouten and Frasinar conducted a comprehensive and in-depth critical 
evaluation of 15 sentiment analysis web tools (Schouten and Frasincar 2015). Medhat et al. 
(2014) and Ravi et al. (Ravi and Ravi 2015) also analyzed the early algorithms for senti-
ment analysis.

In the study by Schouten et  al., the authors focused on aspect-level sentiment analy-
sis, combing the techniques of aspect-level sentiment analysis before 2014, such as fre-
quency-based, syntax-based, supervised machine learning, unsupervised machine learning, 
and hybrid approaches. They concluded that the latest technology was moving beyond the 
early stages (Schouten and Frasincar 2015). As research into sentiment analysis became 
more and more popular and there was important progress made in the development of deep 
learning technologies, researchers started to pay more attention to the techniques and meth-
ods of sentiment analysis. Deep learning methods in particular became the focus of discus-
sions among researchers.

Prabha et al. analyzed various deep learning methods used in different applications at 
the level of sentence and aspect/object sentiment analysis, including Convolutional Neu-
ral Network (CNN), Recurrent Neural Network (RNN), and Long Short-term Memory 
(LSTM) (Prabha and Srikanth 2019). They discussed the advantages and disadvantages 
of these methods and their performance parameters. Ain et  al. introduced deep learning 
techniques such as Deep Neural Network (DNN), CNN and Deep Belief Network (DBN) 
to solve sentiment analysis tasks like sentiment classification, cross-lingual problems, 
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and product review analysis (Ain et al. 2017). Zhang et al. investigated deep learning and 
machine learning techniques for sentiment analysis in the contexts of aspect extraction and 
categorization, opinion expression extraction, opinion holder extraction, sarcasm analy-
sis, multimodal data, etc. (Zhang et al. 2018). Habimana et al. compared the performance 
of deep learning methods on specific datasets and proposed that performance could be 
improved using models including Bidirectional Encoder Representations from Transform-
ers (BERT), sentiment-specific word embedding models, cognitive-based attention models, 
and commonsense knowledge (Habimana et al. 2020). Wang et al. reviewed and discussed 
existing analytical models for sentiment classification and proposed a computational emo-
tion-sensing model (Wang et al. 2020b).

Some researchers also discussed web tools (Zucco et al. 2020), fuzzy logic algorithms 
(Serrano-Guerrero et al. 2021), transformer models (Acheampong et al. 2021), and sequen-
tial transfer learning (Chan et al. 2022) for sentiment analysis.

2.3  Overall survey methodology

With the increase in the popularity of sentiment analysis research, more related research 
results began to accumulate. Researchers needed to systematically organize and analyze 
results from a large number of publications to perform literature reviews. They used differ-
ent survey methodologies to conduct surveys of a large number of papers.

Content analysis is a powerful approach to characterizing the contents of each study by 
carefully reading its content and manually identifying, coding, and organizing key informa-
tion in it. A literature review is formed as a result of the repeated use of this approach (Elo 
and Kyngäs 2008; Stemler 2000). Content analysis has been used for different studies and 
systematic reviews (Qazi et  al. 2015, 2017). For example, Birjali et  al. have studied the 
most commonly used classification techniques in sentiment analysis from a large amount 
of literature and introduced the application areas and sentiment classification processes, 
including preprocessing and feature selection (Birjali et al. 2021). They conducted a com-
prehensive analysis of the papers, discovering that supervised machine learning algorithms 
are the most commonly used techniques in the field. A complete review of methods and 
evaluation for sentiment analysis tasks and their applications was conducted by Wankhade 
et al. (2022). They compared the strengths and weaknesses of the methods, and discussed 
the future challenges of sentiment analysis in terms of both the methods and the forms of 
the data. Although this method can review the research contents and penetrate into the 
cores of the papers most systematically, it requires a considerable amount of manpower and 
time for in-depth literature reading.

The systematic literature review guideline proposed by Kitchenham and Charters has 
gradually attracted the attention of researchers (Kitchenham 2004; Kitchenham and Char-
ters 2007; Sarsam et  al. 2020). This review process is divided into six stages: research 
question definition, search strategy formulation, inclusion and exclusion criteria definition, 
quality assessment, data extraction, and data synthesis. Researchers can eliminate a large 
number of retrieved papers by using this standard process and finally conducting further 
analysis and research on a small number of papers. Kumar et al. reviewed context-based 
sentiment analysis in social multimedia between 2006 and 2018. From the 573 papers 
retrieved in the initial search, they finally selected 37 papers to use in discussing sentiment 
analysis techniques (Kumar and Garg 2020). This approach was also used by Kumar et al. 
in their research on sentiment analysis on Twitter using soft computing techniques. They 
selected 60 articles out of 502 for follow-up analysis (Kumar and Jaiswal 2020). Zunic 
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et al. selected 86 papers from 299 papers retrieved in the period 2011–2019 to discuss the 
application of sentiment analysis techniques in the field of health and well-being (Zunic 
et al. 2020); Ligthart et al. followed Kitchenham’s guideline and identified 14 secondary 
studies. They provided an overview of specific sentiment analysis tasks and of the fea-
tures and methods required for different tasks (Ligthart et al. 2021). Obiedat (Obiedat et al. 
2021), Angel (Angel et al. 2021) and Lin (Lin et al. 2022) also all followed this guideline 
to select literature for further analysis. This method can reduce the amount of literature 
that requires in-depth reading, but in the case of a large amount of literature, more effort is 
still required to search and screen the material than in traditional literature review methods 
(Kitchenham and Charters 2007).

There are also a few authors who have used informetric methods to review papers. Piry-
ani et al. conducted an informetric analysis of research on opinion mining and sentiment 
analysis from 2000 to 2015 (Piryani et al. 2017). The authors used social network analysis, 
literature co-citation analysis, and other methods in the paper. They analyzed publication 
growth rates; the most productive countries, institutions, journals, and authors; and topic 
density maps and keyword bursts, among other elements. To a certain extent, they inter-
preted core authors, core papers, areas of research focus in this field, and the current state 
of national cooperation. In order to explore the application of sentiment analysis in build-
ing smart societies, Verma collected 353 papers published between 2010 and 2021 (Verma 
2022). Using a topic analysis perspective combined with the Louvain algorithm, the author 
identified four sub-topics in the research field. Similarly, Mantyla et  al. employed LDA 
techniques and manual classification to explore the topic structures of sentiment analysis 
articles (Mäntylä et  al. 2018). The informetric methods use natural language processing 
technologies to intuitively conduct topic mining and analysis of a large number of papers. 
Through topic clustering, the literature is organized and analyzed, which reduces the time 
researchers spend on reading the literature in depth. These methods are suitable for explor-
ing research topics and trends in the field.

2.4  Summary of advantages and disadvantages of the existing surveys

In the following, we discuss the advantages and disadvantages of the existing surveys from 
a number of different points of view.

2.4.1  From the point of view of the contents and topics of sentiment analysis

As summarized in Table 1, the researchers organized the literature and conducted depth 
investigations of the contents and topics of sentiment analysis. They reviewed the tasks of 
sentiment analysis (e.g., different text granularity, opinion mining, spam review detection, 
and emotion detection), the application areas of sentiment analysis (e.g. market, medicine, 
social media, and election prediction), and different languages for sentiment analysis, such 
as Chinese, Spanish, and Arabic (Adak et al. 2022; Al-Ayyoub et al. 2019; Alamoodi et al. 
(2021a, b); Alonso et al. 2021; Angel et al. 2021; Boudad et al. 2018; Brito et al. 2021; 
Cheng et al. 2022; Hussain et al. 2019; Kastrati et al. 2021; Khattak et al. 2021; Koto and 
Adriani 2015; Kumar and Sebastian 2012; Ligthart et al. 2021; Medhat et al. 2014; Nassif 
et al. 2021; Nassirtoussi et al. 2014; Oueslati et al. 2020; Peng et al. 2017; Pereira 2021; 
Rambocas and Pacheco 2018; Ravi and Ravi 2015; Schouten and Frasincar 2015; Sharma 
and Jain 2020; Yue et al. 2019; Zhou and Ye 2020). They summarized the methods and 
application prospects of sentiment analysis under different contents and topics. As the field 
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has grown, new topics have emerged, and knowledge from other fields has been gradu-
ally integrated into it. In recent years, the popularity of social media has aroused increas-
ing interest in sentiment analysis research, and the number of papers published, especially 
those related to different topics of sentiment analysis, has grown rapidly. However, the 
existing surveys cover a short time range, and there has not been a survey dedicated to the 
evolution of research contents or topics of sentiment analysis. There have also been few 
survey works analyzing the connections between topics and methods, or their evolution 
(e.g., how the contents and topics of sentiment analysis have changed over time).

2.4.2  From the point of view of the methods of sentiment analysis

Some researchers reviewed different techniques and methods of sentiment analysis in dif-
ferent application areas and tasks. They analyzed and discussed sentiment analysis meth-
ods based on lexicons, rules, part of speech, term position, statistical techniques, super-
vised and unsupervised machine learning methods, as well as deep learning methods like 
LSTM, CNN, RNN, DNN, DBN, BERT, and other hybrid approaches (Acheampong et al. 
2021; Ain et al. 2017; Alamoodi et al. 2021b; Asghar et al. 2014; Chan et al. 2022; Cheng 
et al. 2022; Feldman 2013; Habimana et al. 2020; Koto and Adriani 2015; Kumar, Akshi 
and Sebastian 2012; Medhat et al. 2014; Prabha and Srikanth 2019; Ravi and Ravi 2015; 
Schouten and Frasincar 2015; Serrano-Guerrero et  al. 2021; Taboada 2016; Wang et  al. 
2020b; Yue et al. 2019; Zhang et al. 2018; Zucco et al. 2020). These researchers also com-
pared the advantages and disadvantages of each method. As summarized in Table 1, even 
though existing surveys analyze the techniques and methods of sentiment analysis, pro-
viding good insights, there has not been a survey that analyzes the evolution of research 
methods over time. There have also been few survey works that focuses on the connections 
between topics and methods of sentiment analysis, and their evolution over time.

2.4.3  From the point of view of the overall survey methodology

The survey methods used have mainly been the content analysis method, Kitchenham and 
Charters’ guideline, and the informetric methods. As summarized in Table 1, the content 
analysis method can effectively analyze the contents of research papers in depth, but it 
does not address the issue of the evolution of the research methods and topics (Bengtsson 
2016; Birjali et al. 2021; Elo and Kyngäs 2008; Krippendorff 2018; Qazi et al. 2015, 2017; 
Wankhade et al. 2022). Although the number of papers that need to be read in depth can be 
reduced by following Kitchenham and Charters’ guideline, more effort is needed to search 
and screen literature than in traditional literature review methods (Angel et al. 2021; Kitch-
enham 2004; Kitchenham and Charters 2007; Kumar and Garg 2020; Ligthart et al. 2021; 
Lin et al. 2022; Obiedat et al. 2021; Sarsam et al. 2020; Zunic et al. 2020). The informet-
ric methods are best suited to investigating the research methods and topics of sentiment 
analysis (Bar-Ilan 2008; Mäntylä et al. 2018; Piryani et al. 2017; Santos et al. 2019; Verma 
2022). There are three surveys using informetric techniques and tools that are well suited 
for analysis of a large number of papers over many years (Mäntylä et al. 2018; Piryani et al. 
2017; Verma 2022). However, the evolution of research methods and topics of sentiment 
analysis over time has not been studied with informetric methods. There have also been 
few survey works that leverages keyword co-occurrence analysis and community detection 
to analyze the connections between research methods and topics, and their evolution over 
time.
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Therefore, to address the gaps in the existing surveys, this study presents a survey on the 
research methods and topics, and their evolution over time. It combines keyword co-occur-
rence analysis and informetric analysis tools to reveal the methods and topics of sentiment 
analysis and their evolution in this field from 2002 to 2022.

The following section, Sect. 3, describes our proposed survey methodology in detail.

3  The proposed survey methodology

This section describes our proposed survey methodology, including collection of scientific 
publications, processing of scientific publications, as well as visualization and analysis 
using different methods and tools. The overall scheme of this survey (Fig. 2) is also pre-
sented in the end of Sect. 3 to better visualize and summarize the proposed survey method-
ology in this research.

3.1  Collection of scientific publications

We collected research data from the Web of Science platform. We used keywords such as 
"sentiment analysis," "sentiment mining," and "sentiment classification" to search for rel-
evant papers as data samples. In examining the retrieved papers, we found that some paper 
topics, paper types, and publication journals were not related to sentiment analysis, so we 
excluded them. The papers we included were mainly related to the sentiment analysis of 
texts. We excluded papers on sentiment analysis related to image processing, video pro-
cessing, speech processing, biological signal processing, etc. Therefore, the retrieval strat-
egy was as follows:

Topic Search (TS) = ("sentiment analy*" or "sentiment mining" or "sentiment classifi-
cation") And Abstract (AB) = "sentiment" NOT TS = ("face image*" or "speech recogni-
tion" or "speech emotion" or "physiological signal*" or "music emotion*" or "facial fea-
ture extraction" or "video emotion" or "electroencephalography " or "biosignal*" or "image 
process*") NOT Title = ("facial" or "speech" or "sound*" or "face" or "dance" or "tempera-
ture" or "image*" or "spoken" or "electroencephalography" or "EEG" or "biosignal*" or 
"voice*" not AB = "facial."

The results in conferences are given the same relevance as journal papers. We chose 
four databases in the Web of Science: two conference citation databases (Conference 
Proceedings Citation Index—Social Sciences & Humanities [CPCI-SSH], and Confer-
ence Proceedings Citation Index—Science [CPCI-S]), and two journal citation databases 
(Science Citation Index Expanded [SCI-Expanded] and Social Sciences Citation Index 
[SSCI]). Given the various forms of words such as "analyzing" and "analysis," a truncated 
search technique (marked with an asterisk) was used to prevent the omission of relevant 
papers. The time frame of the retrieved papers was from January 2002 to January 2022, 
and the publication types of the papers included "article," "conference paper," "review," 
and "edited material." A total of 9,714 papers were obtained from the four databases above. 
These included 3,809 articles, 5,633 proceeding papers, 267 reviews, and 5 pieces of edito-
rial material from 2002 to 2022. Overall, there were 104 papers from January 2022. The 
number of papers each year from 2002 to 2021 is shown in Fig. 1.



8479Survey on sentiment analysis: evolution of research methods…

1 3

3.2  Processing of scientific publications

In this process, our purpose was to extract the key contents of the papers, which are used 
to analyze the research methods and topics in the field of sentiment analysis. Due to their 
limited number, the author keywords in each paper often cannot fully represent the key 
content of the paper. We found that combining the title and abstract could better reflect the 
core information. Therefore, we synthesized the title, abstract, and author keywords of each 
paper to extract keywords that represented the main research method and topic of the paper 
involved using KeyBERT1. KeyBERT is a keyword extraction technique that uses BERT 
embedding to create keywords and key phrases that most closely resemble document con-
tent (Grootendorst and Warmerdam 2021). The specific keyword extraction process was as 
follows:

First, we used KeyBERT to extract 8 keywords and eliminated keywords with a weight 
lower than 0.3. We then combined the extracted keywords with the author keywords and 
removed duplicates. After that, we standardized the whole collection of keywords and 
merged synonyms. Finally, we counted the number of keywords and removed meaningless 
terms like "sentiment analysis," "sentiment classification," and "sentiment mining."

After statistical analysis, we obtained 41,827 keywords with a total word frequency of 
88,104. As there were 9,714 papers and 41,827 keywords, we found that most of the key-
words with word frequency below 10 were not representative of the research contents of 
sentiment analysis. As a result, a total of 685 representative keywords were reserved for 
subsequent analysis. These keywords appeared a total of 30,801 times. Table 2 shows the 
keywords with word frequency in the top 50.

High-frequency keywords generally represent research hotspots. We therefore extracted 
high-frequency keywords to serve as the basis for the subsequent analysis. We found that 
most of the keywords with word frequency 18 and lower, such as "ranking," "mask," "expe-
rience," "affect," "online forum," and so on, were not relevant to sentiment analysis. There-
fore, the keywords with a word frequency higher than 18 were reserved for analysis. These 

Fig. 1  The number of papers each year from 2002 to 2021

1  https:// github. com/ Maart enGr/ KeyBE RT.

https://github.com/MaartenGr/KeyBERT
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keywords appeared 25,429 times in the collected data, accounting for close to 83% of all 
the keywords. We obtained 275 keywords, which were used to analyze the main methods 
and topics of sentiment analysis.

3.3  Visualization and analysis using different methods and tools

3.3.1  Analytical methods

Keywords are the core natural language vocabulary to express the subject, content, ideas, 
and research methods of the literature (You et al. 2021). Keywords represent the topics of 
the domain, and cluster analysis of these words can reflect the structure and association of 
topics. Keyword co-occurrence analysis counts the number of occurrences of a set of key-
words in the same document. The strength and number of associations between research 
contents can be obtained through keyword co-occurrence analysis. Dividing research meth-
ods and topics into sub-communities helps researchers to analyze hotspots and trends in 
methods and topics, as well as to obtain sub-fields of sentiment analysis research (Ding 
et al. 2001).

Table 2  Keywords with word frequency in the top 50

Rank Keywords Frequency Rank Keywords Frequency

1 Twitter 1393 26 Online review 202
2 Opinion mining 1177 27 Text analysis 200
3 Natural language processing 1098 28 Review 189
4 Machine learning 883 29 Covid-19 183
5 Social medium 834 30 Latent Dirichlet Allocation 171
6 Text mining 704 31 Feature selection 169
7 Deep learning 668 32 Product review 146
8 Sentiment lexicon 472 33 Prediction 146
9 SVM 464 34 Supervised learning 145
10 Social network 461 35 Attention mechanism 140
11 User review 458 36 Semantic 139
12 Word embedding 425 37 Semi-supervised learning 136
13 Topic model 422 38 Arabic language 135
14 Long Short-term Memory 370 39 Arabic sentiment analysis 133
15 Convolutional neural network 354 40 Aspect extraction 131
16 Big data 350 41 Text sentiment 129
17 Microblog 323 42 Aspect-based sentiment analysis 126
18 Text classification 309 43 Domain sentiment 125
19 Naive bayes 291 44 Lexicon-based 124
20 Aspect-based 286 45 Chinese language 119
21 Mining sentiment 283 46 Chinese text 115
22 Neural network 228 47 Domain adaptation 110
23 Data mining 228 48 Word2vec 107
24 Recurrent neural network 226 49 Transfer learning 106
25 Feature extraction 213 50 Polarity classification 100
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3.3.2  Visualization and analysis tools

BibExcel2 is a software tool for analyzing bibliographic data or any text-based data format-
ted in a similar way (Persson 2017). The tool generates structured data files that can be 
read by Excel for subsequent processing (Persson et al. 2009). Our processing steps are as 
follows. First, we imported the standardized bibliographic data into BibExcel. This tool can 
help structure the data. Second, we checked and corrected the data and used BibExcel to 
count the number of co-occurrences of keywords.

We then used Pajek3software to visualize the keyword co-occurrence network and 
divided the sub-communities. Pajek is a large and complex network analysis tool (Batagelj 
and Andrej 2022; Batagelj and Mrvar 1998). It can calculate certain indicators to reveal 
the state and properties of the network involved. In addition, Pajek’s Louvain community 
detection algorithm can help divide the keyword co-occurrence network into sub-commu-
nities, which represent sub-fields of sentiment analysis (Blondel et al. 2008; Leydesdorff 
et al. 2014; Rotta and Noack 2011). The Louvain community-detection algorithm unfolds 
a complete hierarchical community structure for the network. It has an advantage in subdi-
viding different areas of study: multiple knowledge structures and details can be shown in 
one network (Deng et al. 2021).

After that, we applied VOSviewer4 to optimize the visualization of sub-communities 
(Van Eck and Waltman 2010; VOSviewer 2021; Perianes-Rodriguez et al. 2016; Waltman 
and Van Eck 2013; Waltman et al. 2010). VOSviewer can help display the core keywords 
in each sub-community and the correlation between keywords. It can also reflect the close-
ness of the association between sub-communities. Finally, we used Excel to count the fre-
quency of keywords for each year and to map the evolution of research methods and topics 
in the field of sentiment analysis.

3.3.3  Graphical representation of the overall scheme of this survey

This paper proposes and conducts a new research survey on sentiment analysis. The 
graphical representation of the overall scheme of this survey is shown in Fig. 2. The main 
scheme includes four modules: Module A, Collection of scientific publications; Module 
B, Processing of scientific publications; Module C, Visualization and analysis through dif-
ferent methods and tools, and Module D, Result analysis and discussions based on various 
aspects.

In Module A, scientific publications are collected from the Web of Science (WOS) plat-
form, as has been detailed in Sect. 3.1 Collection of scientific publications above. Module 
B, Processing of scientific publications, has been detailed in Sect. 3.2 above. It performs 
a data processing procedure to obtain key information, which includes all the representa-
tive keywords and high-frequency keywords. The title, abstract and keywords of the papers 
are used to extract such key information using KeyBERT (Grootendorst and Warmerdam 
2021). Such key information is analyzed and visualized through different methods, includ-
ing different visualization tools, as introduced in Sect. 3.3 (Module C), Visualization and 
analysis using different methods and tools, above.

2 https:// homep age. univie. ac. at/ juan. gorra iz/ bibex cel/.
3 http:// mrvar. fdv. uni- lj. si/ pajek/.
4 https:// www. vosvi ewer. com/.

https://homepage.univie.ac.at/juan.gorraiz/bibexcel/
http://mrvar.fdv.uni-lj.si/pajek/
https://www.vosviewer.com/
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In Module C, the number of co-occurrences of keywords is obtained using BibExcel 
(Persson 2017), the co-occurrences of keywords are analyzed and visualized using Pajek 
(Blondel et  al. 2008; Leydesdorff et  al. 2014; Rotta and Noack 2011) and VOSviewer 
(Van Eck and Waltman 2010; VOSviewer 2021; Perianes-Rodriguez et  al. 2016; Walt-
man and Van Eck 2013; Waltman et al. 2010). The keyword community network and the 
keyword community evolution are analyzed and visualized using these tools, as described 
in Sect.  3.3 (Module C), Visualization and analysis using different methods and tools. 

Fig. 2  Graphical representation of the overall scheme of this survey. Module A: Collection of scientific 
publications; Module B: Processing of scientific publications; Module C: Visualization and analysis using 
different methods and tools; Module D: Result analysis and discussions considering various aspects
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According to the visualization and analysis results obtained in Module C, Module D, 
Result analysis and discussions, will be detailed in Sect. 4.

In the following section, Sect. 4 (Module D), results are analyzed and discussed con-
sidering various aspects, including the research methods and topics of sentiment analysis 
in each community, the evolution of research methods and topics along with the research 
hotspots and trends over time.

4  Results and analysis through various aspects

4.1  Research methods and topics of sentiment analysis

4.1.1  Overall characteristic analysis

The high-frequency keywords were presented in Table  2. These keywords can be 
regarded as the main research contents in the field of sentiment analysis. "Twitter" ranks 
at the top. It is followed by "opinion mining," "natural language processing," "machine 
learning," and so on. The high-frequency keywords cover the topics of the studies, the 
contents of the studies, and the techniques and methods used. Based on these keywords, 
we used Pajek’s Louvain method to construct a keyword co-occurrence network to 

Fig. 3  Keyword community network
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represent the research methods and topics as shown in Fig. 3. The keyword co-occur-
rence network is divided into six communities. The research methods and topics of the 
six communities include social media platforms (C1), machine learning methods (C2), 
natural language processing and deep learning methods (C3), opinion mining and text 
mining (C4), Arabic sentiment analysis (C5), and others, such as domain sentiment 
analysis and transfer learning, etc. (C6).

In Fig. 3, the size of the node represents the number of keywords. The thickness of the 
line between the nodes represents the number of collaborations between keywords. The 
top 20 keywords in each community are sorted in descending order, as shown in Table 3. 
The keyword co-occurrence network features of the six sub-communities are described in 
Table 4. The number of nodes shows the number of keywords in each community, and the 
number of links shows the correlations between the keywords.

Table 3  The top 20 keywords in each community

Community Keywords

C1 Twitter, social medium, social network, topic model, big data, microblog, data mining, text 
analysis, covid-19, Latent Dirichlet Allocation, emotion, artificial intelligence, topic senti-
ment, Facebook, emotion classification, content analysis, social medium analytics, data 
analysis, crowdsourcing, emotion analysis

C2 machine learning, svm, text classification, naive bayes, feature selection, prediction, super-
vised learning, tf-idf, stock market, random forest, genetic algorithm, algorithm, logistic 
regression, news, ensemble learning, predict stock, investor sentiment, text categorization, 
market sentiment, artificial neural network

C3 natural language processing, deep learning, word embedding, Long Short-term Memory, con-
volutional neural network, aspect-based, neural network, recurrent neural network, feature 
extraction, attention mechanism, semantic, text sentiment, aspect-based sentiment analysis, 
word2vec, deep neural network, task analysis, Bi-LSTM, attention network, multimodal 
sentiment, short text

C4 opinion mining, text mining, sentiment lexicon, user review, mining sentiment, online review, 
review, product review, aspect extraction, lexicon-based, Chinese language, Chinese text, 
polarity classification, movie review, sentiment dictionary, information retrieval, recom-
mender system, sentiment score, sentiwordnet, unsupervised learning

C5 Arabic language, Arabic sentiment analysis, entity recognition, corpus, Arabic tweet, named 
entity recognition, Arabic text, annotated corpus, sentiment annotation, annotation

C6 semi-supervised learning, domain sentiment, domain adaptation, transfer learning, cross-
domain, machine translation, lingual sentiment, adaptation model, sentiment knowledge, 
cross-lingual, active learning

Table 4  Global network 
characteristics of sub-
communities

Community Links between or within the communities Nodes

C1 C2 C3 C4 C5 C6

C1 466 535 742 991 101 87 47
C2 535 386 710 821 86 94 47
C3 742 710 1134 1306 143 246 74
C4 991 821 1306 1205 159 193 86
C5 101 86 143 159 25 19 10
C6 87 94 246 193 19 41 11
Global network 275
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As shown in Table 4, we can see from the number of links between sub-communities 
that there is a strong correlation between them, especially the link between C3 and C4, 
which has 1306 lines. The reason may be that the research methods of C4 focus on "opin-
ion mining" and "text mining," while those of C3 focus on "natural language processing" 
and "deep learning," and C3 provides more technical support for C4 research. In C5 and 
C6, the research methods and topics are scattered. Their internal links are also low, but the 
connections with C3 and C4 are relatively high. The contents of C5 and C6 may include 
some emerging research methods and topics. We will present a specific analysis on the 
methods and topics of each sub-community in the next subsection.

4.1.2  Analysis on research methods and topics of sub‑communities

4.1.2.1  Analysis on research methods and topics of the C1 community Figure 4 shows the 
keyword co-occurrence network of the C1 community. The research methods and topics of 
the C1 community focus on three areas: "social media," "topic models," and "covid-19." In 
the context of big data, web 2.0 technology provides users with a way to express reviews 
and opinions of services, events, and people. Various social media platforms, such as Twit-
ter, YouTube, and Weibo, have a large amount of users’ emotional data (Momtazi 2012). 
Compared to traditional news media, information on social media spreads more quickly, 
and people are able to express their feelings more freely. It is important to analyze the emo-
tions generated by the information shared and published on social media (Abdullah and 
Zolkepli 2017; Wang et al. 2014). Researchers have been extracting text data from social 

Fig. 4  The keyword co-occurrence network for the C1 community
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media platforms for years to detect unexpected events (Bai and Yu 2016; Preethi et al. 2015), 
improve the quality of products (Abrahams et al. 2012; Isah et al. 2014; Myslin et al. 2013), 
understand the direction of public opinion (Fink et al. 2013; Groshek and Al-Rawi 2013), 
and so on.

Users’ sentiments are often associated with the topics, and the accuracy of senti-
ment analysis can be improved through the introduction of topic models (Li et al. 2010). 
Among them, the Latent Dirichlet Allocation (LDA) method is cited most frequently. 
Previous studies found that the LDA method can be effective in subdividing topics and 
identifying the sentiments of the contents. This method is quite general, and there are 
also many improved models based on this one that can be applied to any type of web 
text, helping to enhance the accuracy of sentiment polarity calculation (Chen et  al. 
2019; Liu et al. 2020).

As the COVID-19 pandemic has unfolded, a large number of individuals, media and 
governments have been publishing news and opinions about the COVID-19 crisis on 
social media platforms. This has resulted in a lot of sentiment analysis studies focusing 
on COVID-19-related texts exploring the impact of the epidemic on people’s lives (Sari 
and Ruldeviyani 2020; Wang, T. et  al. 2020a), physical health (Berkovic et  al. 2020; 
Binkheder et al. 2021) and mental health (Yin et al. 2020), and so on. Therefore, we can 
see many related keywords, such as "infodemiology," "healthcare," and "mental health."

Fig. 5  The keyword co-occurrence network for the C2 community
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4.1.2.2  Analysis on research methods and topics of the C2 community The contents of 
the C2 community mainly focus on "machine learning," "text classification," "feature 
extraction," and "stock market" (see Fig. 5). Most keywords are related to the research 
methods of sentiment analysis. Machine learning approaches have expanded from topic 
recognition to more challenging tasks such as sentiment classification. It is very impor-
tant to explore and compare machine learning methods applied to sentiment classification 
(Li and Sun 2007). Methods like Support Vector Machine (SVM) and Naive Bayes mod-
els are widely used (Altrabsheh et al. 2013; Dereli et al. 2021; Shofiya and Abidi 2021; 
Tan et al. 2009; Wang and Lin 2020) and are used as benchmarks for the comparisons of 
models proposed by many researchers (Kumar et al. 2021; Sadamitsu et al. 2008; Waila 
et al. 2012; Zhang et al. 2019). Many algorithms, such as random forest (Al Amrani et al. 
2018; Fitri et al. 2019; Sutoyo et al. 2022), tf-idf (Arafin Mahtab et al. 2018; Awan et al. 
2021; Dey et al. 2017), logistic regression (Prabhat and Khullar 2017; Qasem et al. 2015; 
Sutoyo et al. 2022), and n-gram (Ikram and Afzal 2019; Singh and Kumari 2016; Xiong 
et al. 2021) are used to enhance the accuracy of machine learning, as shown in Fig. 5.

The trading volume and asset prices of financial commodities or financial instru-
ments are influenced by a variety of factors in the online environment. Machine learning 
and sentiment analysis are powerful tools that can help gather vast amounts of useful 
information to predict financial risk effectively (Li et  al. 2009). Research on the rela-
tionship between public sentiment and stock prices has always been the focus of many 
scholars (Smailović et  al. 2014; Xing et  al. 2018). They have used machine learning 
methods to explore the influence of sentiments on stock prices through sentiment analy-
sis of news articles, and then predicted the trend changes in the stock market (Ahuja 
et al. 2015; Januário et al. 2022; Maqsood et al. 2020; Picasso et al. 2019).

Fig. 6  The keyword co-occurrence network for the C3 community
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4.1.2.3  Analysis on  research methods and  topics of  the  C3 community The contents of 
the C3 community also mainly focus on the methods for sentiment analysis, like "natural 
language processing", "deep learning," "aspect-based sentiment analysis," and "task analy-
sis" (Fig. 6). Sentiment analysis is a sub-field of natural language processing (Nicholls and 
Song 2010), and natural language processing techniques have been widely used in sentiment 
analysis. Using natural language processing technology can help to better parse text fea-
tures, such as part-of-speech tagging, word sense disambiguation, keyword extraction, inter-
word dependency recognition, semantic parsing, and dictionary construction (Abbasi et al. 
2011; Syed et al. 2010; Trilla and Alías 2009). With the rise of deep learning technology, 
researchers began to introduce it to sentiment analysis. Neural network models like LSTM 
(Al-Dabet et al. 2021; Al-Smadi et al. 2019; Li and Qian 2016; Schuller et al. 2015; Tai et al. 
2015), CNN (Cai and Xia 2015; Jia and Wang 2022; Ouyang et al. 2015), RNN (Hassan and 
Mahmood 2017; Tembhurne and Diwan 2021; You et al. 2016), and some combination of 
these, as well as other models (An and Moon 2022; Li et al. 2022; Liu et al. 2020a; Salur 
and Aydin 2020; Zhao et al. 2021), have received significant attention.

Sentiment analysis granularity is subdivided into document level, sentence level, and 
aspect level. Document-level sentiment analysis takes the entire document as a unit, but the 
premise is that the document needs to have a clear attitude orientation—that is, the point of 
view needs to be clear (Shirsat et al. 2018; Wang and Wan 2011). Sentence-level sentiment 
analysis is intended to perform sentiment analysis of the sentences in the document alone 
(Arulmurugan et al. 2019; Liu et al. 2009; Nejat et al. 2017). Aspect-based analysis is a 
fundamental and significant task in sentiment analysis. The aim of aspect-level sentiment 
analysis is to separately summarize positive and negative views about different aspects of 
a product or entity, although overall sentiment toward a product or entity may tend to be 
positive or negative (Rao et  al. 2021; Thet et  al. 2010). Aspect-level sentiment analysis 
facilitates a more finely-grained analysis of sentiment than either document or sentence-
level analysis (Liang et  al. 2022; Wang et  al. 2020c). The traditional levels of analysis, 
such as sentence-level analysis can only calculate the comprehensive sentiment polarity of 
paragraphs or sentences (Wang et al. 2016; Zhang et al. 2021). In recent years, the aspect 
level has become more and more popular, and with the application of deep learning tech-
nology, it has become better at capturing the semantic relationship between aspect terms 
and words in a more quantifiable way (Huang et al. 2018). The process of sentiment analy-
sis involves the coordination of multiple tasks, and the subtasks include feature extraction 
(Bouktif et al. 2020; Lin et al. 2020), context analysis (Yu et al. 2019; Zuo et al. 2020), and 
the application of some analytical models (Tan et al. 2020).

4.1.2.4  Analysis on research methods and topics of the C4 community The C4 community 
mainly shows keywords related to the research methods and topics of "opinion mining" and 
"user review," which is the largest of the six sub-communities (Fig. 7). With the popularity 
of platforms like online review sites and personal blogs on the Internet, opinions and user 
reviews are readily available on the web. Opinion mining has always been a hot field of 
research (Khan et al. 2009; Poria et al. 2016). From Table 4, we can see that the link between 
C3 and C4 has 1306 lines. In opinion mining, researchers use many text mining methods 
to discover users’ opinions on goods or services, and then help improve the quality of cor-
responding products or services (Da’u et al. 2020; Lo and Potdar 2009; Martinez-Camara 
et al. 2011). In addition, scholars have found that the consideration of user opinions can help 
improve the overall quality of recommender systems (Artemenko et al. 2020; Da’u et al. 
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2020; Garg 2021; Malandri et al. 2022). Therefore, "recommendation system" has a strong 
correlation with "opinion mining."

Evaluation metrics for quantifying the existing approaches are also a popular topic 
related to opinion mining. There is a keyword named "performance sentiment" in the C4 
community. Precision, recall, accuracy and F1-score are the most commonly used evalu-
ation metrics (Dangi et  al. 2022; Jain et  al. 2022; JayaLakshmi and Kishore 2022; Li 
et  al. 2017; Wang et  al. 2021; Yi and Niblack 2005). Some researchers have also used 
runtimes to calculate the model efficiency (Abo et al. 2021; Ferilli et al. 2015), p-value to 
statistically evaluate the relationship or difference between two samples of classification 
results (JayaLakshmi and Kishore 2022; Salur and Aydin 2020), paired sample t-tests to 
verify that the results are not obtained by chance (Nhlabano and Lutu 2018), and standard 
deviation to measure the stability of the model (Chang et al. 2020). There have also been 
researchers who have used G-mean (Wang et  al. 2021), Pearson Correlation Coefficient 
(Corr) (Yang et  al. 2022), Mean Absolute Error (MAE) (Yang et  al. 2022), Normalized 
Information Transfer (NIT) and Entropy-Modified Accuracy (EMA) (Valverde-Albacete 
et al. 2013), Mean Squared Error (MSE) (Mao et al. 2022), Hamming loss (Liu and Chen 
2015), Area Under the Curve (AUC) (Abo et al. 2021), sensitivity and specificity (Thakur 
and Deshpande 2019), etc.

4.1.2.5  Analysis on research methods and topics of the C5 & C6 communities Both sub-
communities C5 (Fig. 8) and C6 (Fig. 9) are small in size. The C5 community has 25 nodes 
and the C6 community has 41 nodes. The core content of the C5 community is "Arabic 
sentiment analysis." Before 2011, most resources and systems built in the field of sentiment 
analysis were tailored to English and other Indo-European languages. It is increasingly nec-
essary to design sentiment analysis systems for other languages (Korayem et al. 2012), and 
researchers are increasingly interested in the study of tweets and texts in the Arabic language 

Fig. 7  The keyword co-occurrence network for C4 community
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(Heikal et al. 2018; Khasawneh et al. 2013; Oueslati et al. 2020). They use technologies 
such as named entity recognition (Al-Laith and Shahbaz 2021), deep learning (Al-Ayyoub 

Fig. 8  The keyword co-occurrence network for the C5 community

Fig. 9  The keyword co-occurrence network for the C6 community
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et al. 2018; Heikal et al. 2018), and corpus construction (Alayba et al. 2018) to enhance the 
accuracy of sentiment analysis.

The contents of the C6 community are not very concentrated. From the size of the circle, 
we can see that the keywords "domain adaptation"(Blitzer et al. 2007; Glorot et al. 2011), 
"domain sentiment," and "cross-domain" appear more frequently. Cross-domain sentiment 
classification is intended to address the lack of mass labeling data (Du et al. 2020a). It has 
attracted much attention (Du et al. 2020b; Hao et al. 2019; Yang et al. 2020b). Advances 
in communication technology have provided valuable interactive resources for people in 
different regions, and the processing of multilingual user comments has gradually become 
a key challenge in natural language processing (Martinez-Garcia et al. 2021). Therefore, 
some keywords related to "lingual" have appeared. Other keywords, such as "transfer learn-
ing," "active learning," and "semi-supervised learning," are mainly related to sentiment 
analysis technologies.

4.2  Evolution of research methods and topics of sentiment analysis

4.2.1  Overall evolution analysis

Annual changes in keyword frequency in sentiment analysis research can reflect the evolu-
tion of research methods and topics in this field. Based on the keyword community net-
work (Fig. 3), we counted the frequency of keywords in each sub-community for each year. 
The keyword community evolution diagram is shown in Fig. 10. Since there were fewer 
papers published before 2006, we combined the occurrences of keywords from 2002 to 
2006. We can see that the C1 community and the C3 community have shown a significant 
growth trend. The C2 community was in a state of growth until 2019, and the frequency of 
keywords decreased year by year after 2019. The frequency of C4 community keywords 
continued to increase until 2018 and declined after 2018. The number of keywords in the 
C5 community and in the C6 community both had a slow growth trend, but the trend was 
not obvious.

4.2.2  Evolution analysis of sub‑communities

We selected the high-frequency keywords under each category and plotted the change of 
word frequency in each year, as shown in Figs. 11 and 12. In the C1 community, "social 
medium," "Twitter," "social network," "covid-19," "Latent Dirichlet Allocation," "topic 
model," and "text analysis" all had significant increases in word frequency, and the growth 
trend in 2021 was obvious. "Covid-19" appears in 2020, and the word frequency increased 
rapidly in 2021. Social media platforms have always been the focus of researchers’ atten-
tion. Under the influence of COVID-19, more people express their emotions, stress, and 
thoughts through social media platforms. Sentiment analysis on data from social media 
platforms related to COVID-19 has become a hot topic (Boon-Itt and Skunkan 2020). We 
believe that due to the impact of COVID-19, the widespread use of social platforms in 
2020–2021 has led to a surge in the number of C1-related keywords.

The C2 community focuses on the method of "machine learning," and the C3 commu-
nity focuses on the methods of "deep learning" and "natural language processing." The 
keywords in the two communities are mainly related to the techniques and methods of sen-
timent analysis. We have found that before 2016 (Fig. 10), the frequency of keywords in 



8492 J. Cui et al.

1 3

Fi
g.

 1
0 

 K
ey

w
or

d 
co

m
m

un
ity

 e
vo

lu
tio

n 
di

ag
ra

m



8493Survey on sentiment analysis: evolution of research methods…

1 3

Fi
g.

 1
1 

 C
1,

 C
2,

 C
5,

 C
6 

co
m

m
un

iti
es

: H
ig

h-
fr

eq
ue

nc
y 

ke
yw

or
d 

ev
ol

ut
io

n 
di

ag
ra

m



8494 J. Cui et al.

1 3

Fi
g.

 1
2 

 C
3,

 C
4 

co
m

m
un

iti
es

: H
ig

h-
fr

eq
ue

nc
y 

ke
yw

or
d 

ev
ol

ut
io

n 
di

ag
ra

m



8495Survey on sentiment analysis: evolution of research methods…

1 3

the C2 community was higher than that in the C3 community, and in 2016 and later, the 
frequency of keywords in the C3 community gradually accounted for a larger proportion 
of the total. This reflects the fact that deep learning-related technologies and methods have 
become a research hotspot, and the attention given to SVM, Naive Bayes, supervised learn-
ing, and other technologies in machine learning has declined. In addition to deep learning 
models such as Bi-LSTM, Long Short-term Memory, and recurrent neural network in the 
C3 community, the number of "aspect based" and "feature extraction" keywords have also 
been growing, which shows that researchers now pay more attention to the aspect level of 
text granularity in the field of sentiment analysis.

Among the keywords found in the C4 community, the word frequency of the "opin-
ion mining" keyword has decreased since 2018. This shows that in the field of sentiment 
analysis, researchers have begun to reduce the attention they give to sentiment analysis of 
opinions on product or service quality, while still maintaining a certain degree of attention 
to "user review" and "online review." In addition, the number of keywords for "sentiment 
lexicon" and "lexicon-based" has declined. It may be because, in the context of the wide-
spread application of deep learning technology in recent years, the lexicon-based method 
requires more time and higher labor costs (Kaity and Balakrishnan 2020). However, its 
accuracy still attracts attention due to the high involvement of experts, especially in non-
English languages (Bakar et  al. 2019; Kydros et  al. 2021; Piryani et  al. 2020; Tammina 
2020; Xing et al. 2019; Yurtalan et al. 2019).

The high-frequency keywords in the C5 and C6 communities are "Arabic language," 
"Arabic sentiment analysis," and "transfer learning." Arabic has 30 variants, including the 
official Modern Standard Arabic (MSA) (ISO 639–3 2017). Arabic dialects are becom-
ing increasingly popular as the language of informal communication on blogs, forums, and 
social media networks (Lulu and Elnagar 2018). This makes them challenging languages 
for natural language processing and sentiment analysis (Alali et al. 2019; Elshakankery and 
Ahmed 2019; Sayed et  al. 2020). Transfer learning can solve the problem by leveraging 
knowledge obtained from a large-scale source domain to enhance the classification per-
formance of target domains (Heaton 2018). In recent years, based on the success of deep 
learning technology, this method has gradually attracted attention.

5  Research hotspots and trends

Through the analysis in Sects. 4.1 and 4.2, we found that the research methods and top-
ics of sentiment analysis are constantly changing. The keyword topic heat map is shown 
in Fig. 13. From this map, we can see that in the past two decades, research hotspots have 
included social media platforms (such as "social medium," "social network," and "Twit-
ter"); sentiment analysis techniques and methods (such as "machine learning," "svm," "nat-
ural language processing," "deep learning," "aspect-based," "text mining," and "sentiment 
lexicon"), mining of user comments or opinions (e.g., "opinion mining," "user review," and 
"online review"), and sentiment analysis for non-English languages (e.g., "Arabic senti-
ment analysis" and "Arabic language").

With the popularity of digitization, a large amount of user-generated content has 
appeared on the Internet, where users express their opinions and comments on different 
topics such as the news, events, activities, products, services, etc. through social media. 
This is especially so in the case of the Twitter mobile platform, launched in 2006, which 
has become the most popular social channel (Kumar and Jaiswal 2020). However, online 
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text data is mostly unstructured. In order to accurately analyze users’ sentiments, the 
research methods for sentiment analysis, such as natural language processing technology, 
and automatic sentiment analysis models have become the focus of researchers’ works. 
From Fig. 11, we can see that early technologies and methods are dominated by machine 
learning and that SVM and Naive Bayes have always been favored by researchers. This has 
also been confirmed in studies by Neha Raghuvanshi (Raghuvanshi and Patil 2016), Har-
preet Kaur (Kaur et al. 2017), and Marouane Birjali (Birjali et al. 2021). With the improve-
ment of neural network and artificial intelligence technology, deep learning technology has 
been widely used in sentiment analysis, and has resulted in good outcomes (Basiri et al. 
2021; Ma et al. 2018; Prabha and Srikanth 2019; Yuan et al. 2020). However, deep learn-
ing technology still has room for improvement, and the hybrid methods combining senti-
ment dictionary and semantic analysis are gradually becoming a trend (Prabha and Sri-
kanth 2019; Yang et al. 2020a).

The granularity of sentiment analysis ranges from the early text level to the sentence 
level and finally to the aspect level, which is currently gaining strong attention. The granu-
larity of sentiment analysis is gradually being refined, but the method is immature at pre-
sent, and further research work in the future is needed (Agüero-Torales et al. 2021; Li et al. 
2020; Trisna and Jie 2022).

Early sentiment analysis was mainly in the English language. In recent years, non-Eng-
lish languages such as Chinese (Lai et al. 2020; Peng et al. 2018), French (Apidianaki et al. 
2016; Pecore and Villaneau 2019), Spanish (Chaturvedi et al. 2016; Plaza-del-Arco et al. 

Fig. 13  Keyword topic heat map
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2020), Russian (Smetanin 2020), and Arabic (Alhumoud and Al Wazrah 2022; Ombabi 
et al. 2020) have attracted more and more attention. Furthermore, cross-domain sentiment 
analysis technology is in urgent need of research and discussion by researchers (Liu et al. 
2019; Singh et al. 2021).

6  Conclusion and future work

6.1  Conclusion

Judging from the increasing number of papers related to sentiment analysis research every 
year, sentiment analysis has been on the rise. Although there are many surveys on senti-
ment analysis research, there has not been a survey dedicated to the evolution of research 
methods and topics of sentiment analysis. This paper has used keyword co-occurrence 
analysis and the informetric tools to enrich the perspectives and methods of previous stud-
ies. Its aims have been to outline the evolution of the research methods and tools, research 
hotspots and trends and to provide research guidance for researchers.

By adopting keyword co-occurrence analysis and community detection methods, we 
analyzed the research methods and topics of sentiment analysis, as well as their connec-
tions and evolution trends, and summarized the research hotspots and trends in sentiment 
analysis. We found that research hotspots include social media platforms, sentiment analy-
sis techniques and methods, mining of user comments or opinions, and sentiment analysis 
for non-English languages. Moreover, deep learning technology, with its hybrid methods 
combining sentiment dictionary and semantic analysis, fine-grained sentiment analysis 
methods, and non-English language analysis methods, and cross-domain sentiment analy-
sis techniques have gradually become the research trends.

6.2  Practical implications and technical directions of sentiment analysis

Sentiment analysis has a wide range of application targets, such as e-commerce platforms, 
social platforms, public opinion platforms, and customer service platforms. Years of devel-
opment have led to many related tasks in sentiment analysis, such as sentiment analysis of 
different text granularity, sentiment recognition, opinion mining, dialogue sentiment analy-
sis, irony recognition, false information detection, etc. Such analysis can help structure user 
reviews, support product improvement decisions, discover public opinion hotspots, identify 
public positions, investigate user satisfaction with products, and so on. As long as user-
generated content is involved, sentiment analysis technology can be used to mine the emo-
tions of human actors associated with the content. The improvement of sentiment analysis 
technology can help machines better understand the thoughts and opinions of users, make 
machines more intelligent, and make better decisions for policy leaders, businessmen, and 
service people. However, most of the current sentiment analysis methods are based on 
sentiment dictionaries, sentiment rules, statistics-based machine learning models, neural 
network-based deep learning models, and pre-training models, and have yet to achieve true 
language understanding in the sense of comprehension at the deep semantic level, though 
this does not prevent them from being useful in certain practical applications.

As an important task in natural language understanding, sentiment analysis has 
received extensive attention from academia and industry. Coarse-grained sentiment anal-
ysis is increasingly unable to meet people’s decision-making needs, and for aspect-level 
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sentiment analysis and complex tasks, pure machine learning is still unable to flexibly 
achieve true language understanding. Once the scene or domain changes, problems such 
as the domain incompatibility of the sentiment dictionary and the low transfer effect 
of the model involved keep appearing. At present, the accuracy of sentiment analysis 
provided by machines is far less than that of humans. To achieve human-like perfor-
mance for machines, we believe that it is necessary to incorporate human commonsense 
knowledge and domain knowledge, as well as grounded definitions of concepts, in order 
for machines to understand natural language at a deeper level. These, combined with 
rules for affective reasoning to supplement interpretable information, will be effective in 
improving the performance of sentiment analysis. Future research in this direction can 
be strengthened to achieve true language understanding in machines.

6.3  Limitations and future work

There are some research limitations in this paper. First, we only studied papers writ-
ten in English and searched from the Web of Science platform. We believe there are 
papers in other languages or other databases (e.g., Scopus, PubMed, Sci-hub, etc.) that 
also involve sentiment analysis but that were not included in our study. In addition, the 
keywords we chose to search in the Web of Science were mainly "sentiment analysis," 
"sentiment mining," and "sentiment classification." There may be papers related to our 
research topic that do not have these keywords. To track developments in sentiment 
analysis research, future studies could replicate this work by employing more precise 
keywords and using different literature databases.

Second, we selected the main high-frequency keywords for analysis, and some 
important low-frequency keywords may have been ignored. In future work, we can ana-
lyze the changes in each keyword in detail from the perspective of time and obtain more 
comprehensive analysis results.

Third, the results show that the themes of sentiment analysis cover many fields, such 
as computer science, linguistics, and electrical engineering, which indicates the trend of 
interdisciplinary research. Therefore, future work should apply co-citation and diversity 
measures to explore the interdisciplinary nature of sentiment analysis research.
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