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Abstract—We address the main problem of self-learning LLM:
the question of what to learn. We propose a self-learning
LLM framework that enables an LLM to independently learn
previously unknown knowledge through self-assessment of their
own hallucinations. We introduce a concept called Point in the
Unknown (PiU) to identify atomic knowledge unknown to a
model, along with four methods for automatic PiUs identification,
facilitating the creation of a self-learning loop that focuses
exclusively on the absorption of currently unknown knowledge
into the model. Additionally, we developed evaluation metrics
to gauge an LLM’s self-learning capability. Our experiments
revealed that LLMs with at least 3B parameters that have
undergone some instruction training would be able to perform
self-learning well. We further proved the effectiveness of self-
learning by comparing the performance of a model that has
undergone self-learning to a model that has not. Our self-learning
concept allows more efficient LLM updates and opens new
perspectives for LLM knowledge exchange.

Index Terms—self-learning, hallucination, LLM, NLP.

I. INTRODUCTION

Commonly, Large Language Models (LLMs) are pre-trained
on large textual corpora and then fine-tuned using additional
data to be better adjusted to a given policy or domain. Simulta-
neously, other methods have been developed, which are based
on additional knowledge provided to the model directly in the
prompt, such as Retrieval Augmented Generation (RAG). In
this paper, we explore a different concept: self-learning LLM.
It is the persistent acquisition of new knowledge by the model
without data provision, taking advantage of three fundamental
mechanisms that are integrated in a continuous loop: (1)
identification of what knowledge to learn, (2) gathering new
relevant data, and (3) continuous model training.

The novelty of this self-learning framework and what sets
it apart from traditional continual learning is the ability of
the system to determine gaps in its own knowledge and
construct the dataset on which it can train itself without
repeating knowledge that it already knows. The self-learning
LLM utilizes hallucination on simple questions as an indicator
of unknown knowledge; while hallucination can be caused by a
wide range of factors, one of the main reasons for hallucination
on simple questions is due to the model not possessing the
factual knowledge that can answer the question [1], [2]. For
example, if a model hallucinates when asked, ”Who won the
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Fig. 1. The illustrative space of knowledge embeddings reduced to two
dimensions. It visualizes our four methods for the identification of Points
in the Unknown (PiUs), later exploited in the self-learning loop. Dashed lines
are the borders of the Known regions (darker green) – hallucination score
thresholds. Out of them are the Unknown regions (lighter green). White points
indicate prompts related to knowledge already known to the model, while red
points indicate PiUs. Different shapes depict different methods: (1) circles
represent extrinsic (external) triggers, i.e., user queries or trending topics; (2)
crosses denote open questions-prompts generated by the model itself within
a given topic represented by a dotted line; (3) triangles represent the induced
questions generated within a topic using 5W+1H; (4) stars indicate the random
sampling by selecting random points in the embedding space.

gold medal from men’s singles badminton in the 2024 Summer
Olympics?” it is likely that the model’s training did not include
the information related to the event.

The self-learning LLM is particularly useful for having an
up-to-date model without training a new one from scratch
while also minimizing human involvement, greatly reducing
development costs. It can be applied in application domains
where new facts continuously come up. One example is
personalized sentiment prediction and emotion recognition
[3]–[10]. When new users enter the system, the LLM would be
able to perform self-learning only on data related to the new
users. Another potential application is the knowledge exchange
between LLMs, allowing the knowledge of one LLM to be
learned by another LLM automatically.
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Fig. 2. Illustration of self-learning LLM with intrinsic inspiration.
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Fig. 3. Illustration of self-learning LLM with extrinsic inspiration.

The contribution presented in this paper covers: (1) the
concept of Points in the Unknown (PiUs) to identify knowl-
edge unknown to a model; (2) four different methods to
identify PiUs; (3) metrics to gauge the capability of a model to
conduct self-learning; (4) design of the self-learning LLM; (5)
experimental validation of the methods to identify PiUs; (6)
experimental validation of the self-learning LLM; (7) software
and data for reproducibility.

II. RELATED WORK

Hallucination in the context of LLM is the problem of
nonsensical or unfaithful information produced by a generative
model. Some works have studied the causes of hallucina-
tion [1], [2], [11], [12], as well as the detection meth-
ods [13]–[18]. Some solutions for overcoming hallucination
are proposed in [19]–[27]. Meanwhile, in Retrieval Augmented
Generation (RAG) [28], hallucination is avoided by supplying
the prompt with some context retrieved from an outside source,
allowing more factual generation without updating the model.

Continual Learning is a training paradigm where the
model is subjected to various tasks sequentially; in the con-
text of LLM, the tasks typically comprise domain-specific
datasets [29]–[31]. One challenge is preventing catastrophic
forgetting, in which the model loses knowledge from previ-
ous tasks [32], [33]. Solutions for adding or editing knowl-
edge while avoiding catastrophic forgetting have been pro-
posed [34]–[38].

III. WHY SELF-LEARNING IS NEEDED

Hallucination is a serious problem that hinders many LLM
applications. One of its main reasons is the model’s lack of
knowledge on a given topic, or the model’s knowledge on
the given topic has become obsolete [1], [2]. This problem
is typically overcome either by providing the knowledge as
additional context [28] without subjecting the model to more
learning or by continuous training using new data. With
the former, the model would still become outdated after
some period of time because most of its knowledge would
have become obsolete. With the latter, there is a problem
of determining what the model already knows and what it
does not know yet, especially if there is limited information
on the model’s past training data; if the training focuses on
knowledge already acquired by the model, it does not solve
the hallucination problem, and we needlessly waste a lot of
computing resources by merely repeating known knowledge.

Therefore, it is essential to identify the knowledge known
and unknown to the model in order to conduct continuous
training as efficiently as possible. The self-learning LLM
would be able to distinguish unknown knowledge to create
a dataset for its own training automatically. This would
reduce the required computing resources as well as human
involvement, making continuous training much more efficient.
One major concern would be catastrophic forgetting; however,
in Section X, we will show that catastrophic forgetting can
be avoided by carefully choosing the training technique and
architecture.

IV. THE CONCEPT OF POINT IN THE UNKNOWN (PIU)

We introduce the concepts of The Known and The Unknown
to define the problem more precisely. First of all, if we
represent each atomic piece of human knowledge as a vector,
it would be possible to form an abstract space that includes
all pieces of human knowledge. We call this abstract space as
Human Knowledge Space (HKS).

The Known refers to an area in HKS where our LLM does
not hallucinate, i.e., it possesses sufficient knowledge related
to this region. We call each point in such an area as Point in
the Known (PiK, plural: PiKs).

The Unknown refers to an area in HKS where our LLM
hallucinates; each point in it is called Point in the Unknown
(PiU, plural: PiUs). A PiU represents an atomic piece of
knowledge that our LLM lacks, which we want the model
to identify and acquire.

Finding the boundaries between The Known and The Un-
known is non-trivial. However, if we utilize hallucination on
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simple questions as an indicator of unknown knowledge, it
would be possible to adopt a hallucination detection method
that provides a numerical scoring system to approximate
such boundaries. One such method is SelfCheckGPT [16],
a sampling-based hallucination detection method. Given a
prompt x, it first makes the LLM generate the main passage,
a response to the prompt generated using greedy decoding.
Then, it makes the LLM generate n samples; these are
responses to the prompt generated using multinomial sampling
with the temperature set to 1.0. Next, SelfCheckGPT checks
the consistency between the main passage and the samples to
output a hallucination score h(x) ∈ [0, 1], where h(x) = 1
indicates certain hallucination (lack of any knowledge about
x) and h(x) = 0 means no hallucination (certain knowledge
of x). In this case, the median between the two values,
LIMIT = 0.5, would serve as an intuitive and reasonable
constant threshold to approximate the boundary between The
Known and The Unknown. Therefore:

Known = {x : h(x) < LIMIT ;x ∈ HKS}
Unknown = {x : h(x) ≥ LIMIT ;x ∈ HKS}

As mentioned before, PiK ∈ Known and PiU ∈
Unknown . Note that Known ∩Unknown = ∅ and Known ∪
Unknown = HKS , even though the sizes of Known and
Unknown may change after training.

Alternatively, we could have exploited some other meth-
ods for h(x), like SAPLMA [15], DoLa [26], or Lookback
Lens [27]. However, SAPLMA and DoLa would require
access to the model’s internal features, limiting the feasibility,
while Lookback Lens is primarily aimed at RAG applications.
Therefore, we decided to stick with SelfCheckGPT, at least
for the current work.

SelfCheckGPT has several variants. While the LLM-based
variant using GPT-3.5-turbo gave the best results in the origi-
nal paper, we chose the NLI-based variant. It is recommended
if dependency on another LLM is not desired and works faster
while still providing decent performance. This variant works
by treating each sentence in the main passage as a hypothesis
and each sample as a potential premise, using probabilities
of entailment and contradiction to output a normalized score
bounded between 0.0 and 1.0. In our experiments, we generate
10 samples per main passage, as the original paper’s ablation
study showed that performance plateaus at 10 samples, with
no significant gain from using more.

V. METHODS FOR IDENTIFICATION OF PIUS

Identification of PiUs can be done by evaluating the model’s
hallucination score h(x) on some question-prompt x. The
question, or the inspiration for the question, can come from
outside the system, supplied by an external entity; such a
method would be considered to have an extrinsic nature. On
the other hand, we can create a built-in oracle inside the sys-
tem that guides automatic question generation in a bicameral-
mind manner [39], in which case the method is deemed intrin-
sic. We propose one extrinsic and three intrinsic methods for

PiU identification, Figure 1. All of them differently generate
x, which, if tested according to h(x) ≥ LIMIT , may be
identified as PiU.

A. External Prompt (extrinsic)
There are some existing ideas related to collecting prompts

that cause hallucination and constructing a dataset based on
them for finetuning [17], [24], [25], [35]. However, they
require manual curation of the prompts collected from users
or datasets, so the model does not learn fully independently.

In our approach, we utilize an external API to collect trend-
ing topics as inspiration for formulating concrete questions.
Every item returned by the API is a list of related phrases; we
treat each list as a single topic. Then, the model is asked to
generate a specific question x based on each topic. Next, the
model is asked to answer the question in order to evaluate
its hallucination h(x). This approach allows the model to
continuously learn by itself as long as the external API is
available; however, the tested space is limited only to trending
topics indirectly provided by humans.

B. Open Generation (intrinsic)
In this method, the oracle asks the model to propose some

topics to learn about. Then, the oracle asks the model to
consider those topics and formulate one question (x), to which
the model believes it does not know the answer. Finally, the
oracle asks the model to answer the question x in order to
evaluate its hallucination h(x).

C. Induced Generation (intrinsic)
It is based on Five Ws and How, which are widely consid-

ered basic questions for information comprehension and data
gathering. Here, the oracle also asks the model to propose
some topics. Then, the oracle asks the model to formulate a
question x using a particular question word; this is repeated six
times for what, who, why, where, when, and how, resulting in
six different questions. Finally, the oracle also asks the model
to answer each question and evaluate its hallucination h(x).

D. Oracle-Selected (intrinsic)
This method starts by constructing a topic embedding space,

which contains all candidate topics represented in a vectorial
form. Then, the oracle randomly selects a point in the topic
embedding space and samples the nearest neighbors to that
point. This results in a set of oracle-selected topics. Next, the
oracle asks the model to consider those topics and formulate
one question x. Afterward, the oracle asks the model to answer
this question and evaluates the hallucination h(x).

VI. SELF-LEARNING LLM
Self-learning is a process where our LLM identifies its own

PiUs, searches for the knowledge related to these PiUs, and
trains itself on the collected data. It is made possible by incor-
porating three fundamental mechanisms in a continuous loop:
Self-Questioning, Knowledge Searching, and Model Training.
Self-learning LLM with an intrinsic method is illustrated in
Figure 2, while self-learning LLM with an extrinsic method
is illustrated in Figure 3.
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A. Self-Questioning

Self-Questioning is generally performed through topic gen-
eration (or topic collection), question generation, and hallu-
cination scoring. Depending on the selected method for the
identification of PiUs, the logical implementation of Self-
Questioning may differ slightly. Self-Questioning is repeated
in a loop for N iterations; the primary output consists of a
list of generated questions with hallucination (QH ) and a list
of generated questions with no hallucination (QNH ). In other
words, QH ⊂ Unknown and QNH ⊂ Known. A question
is categorized into QH if the hallucination score of the main
passage is greater than 0.5 or into QNH otherwise.

B. Knowledge Searching

After Self-Questioning and filtering, Knowledge Searching
queries an external source to collect knowledge that can an-
swer QH in order to build the dataset Dtrain. Notably, Knowl-
edge Searching may be implemented inside Self-Questioning
by immediately searching for the answer to an individual ques-
tion whenever a hallucination is detected. However, having
Knowledge Searching separately is more practical, allowing
additional processing without creating a bottleneck for the
Self-Questioning process.

C. Model Training

The model is trained on Dtrain to absorb the knowledge
for answering QH . Once training is done, PiUs should become
PiKs, effectively increasing the Known regions and decreasing
the Unknown regions of the model. Afterward, the next self-
learning cycle can start to find more PiUs.

VII. METRICS FOR CHOOSING A BASE MODEL FOR
SELF-LEARNING

Self-learning requires a pretrained model that already pos-
sesses a sufficient understanding of instructions. In our initial
experiments, we observed that some models are better at
asking the ”right” questions (questions on which the model
would actually hallucinate) than others. The ability of a model
to ask such questions would directly affect the success of self-
learning. Therefore, we propose some metrics to evaluate the
capability of a model to self-learn.

A. Curiosity Score

It measures how likely a model would explore different
questions. A high Curiosity score indicates the model tends to
ask unique, different questions over multiple iterations of Self-
Questioning and, hence, is more likely to explore Unknown
regions. It is calculated as follows:

Cur =
#Qunique

#Q
(1)

where #Qunique is the number of unique questions generated,
and #Q is the total number of questions generated.

#Qunique is determined by doing HDBSCAN cluster-
ing [40] with the ”leaf” cluster selection method on the
question embeddings, counting the number of clusters and

outliers. The question embeddings are acquired by using all-
MiniLM-L12-v2 from Sentence Transformers [41] on the
questions generated by our self-learning LLM.

B. Knowledge-Limit Awareness Score

It indicates how likely a model would come up with a
question that it cannot answer without hallucination during
Self-Questioning – how likely a model is aware of its own
knowledge limitation. It is calculated as follows:

Kaw =
#QH

#Q
(2)

where #QH is the number of generated questions with hallu-
cination, and #Q is the total number of questions generated.

C. Brevity Coefficient

It is used to penalize the evaluation when the brevity con-
straint is violated (e.g. when the model fails to formulate one
concrete question without elaboration). The brevity coefficient
brev is calculated as follows:

ideal len = 100 (3)

∆len =

∑ntext

i=1 |leni − ideal len|
ntext

(4)

brev =


0, if ∆len ≥ 100

1, if 0 ≤ ∆len ≤ 50

1− ∆len

ideal len + 1
2 , otherwise

(5)

where ideal len is the assumed ideal average text length
measured in character count, leni is the length of the i -th
text, ntext is the number of texts, and ∆len is the average
difference between ideal len and the text lengths.

The brevity coefficient has been designed to decrease grad-
ually in a linear manner as the average text length goes further
from the range [50,150] before dropping immediately to zero
when the average text length becomes too far from the ideal.
The thresholds of 50 and 150 are roughly based on the re-
search by Miller, Newman, and Friedman [42]; such thresholds
represent the approximated minimum and maximum lengths
of a typical sentence in the English language. We also found
in our initial exploration that these thresholds are suitable for
the task of generating a single concrete question in the English
language.

D. Self-Learning Capability (SLC) Score

It is a simple average of the two components, Curiosity
score and Knowledge-Limit Awareness score, multiplied by
the brevity coefficient. Such an aggregation is meant to allow
easy comparison between models. It is calculated as follows:

SLC = brev ∗ Cur +Kaw

2
(6)

where brev is the brevity coefficient, Cur is the Curiosity
score, and Kaw is the Knowledge-Limit Awareness score.

A higher SLC score indicates the model is more suitable
for self-learning, being more likely to ask different questions
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and also to ask questions on which it would hallucinate.
Note, however, that a model that has been trained extensively
to retain a huge amount of knowledge may struggle to ask
questions on which it would actually hallucinate. In such a
case, the model may achieve a relatively low SLC score, which
means ”plain” self-learning would not be beneficial for the
model. This brings the question about an entirely new learning
task: how to make a model aware of its own knowledge
limitation so that it would ask questions that would expand its
own knowledge; it will be discussed further in Section XII.

VIII. EXPERIMENTAL SETUP

All experiments were conducted with Python 3.10. The ma-
chine featured 8 CPU cores, 300GB RAM, and one NVIDIA
H100 94GB. The full code and archived results are available
publicly with GPL-3.0 license1. All work is intended only for
scientific research.

IX. EXPERIMENT 1: SELF-LEARNING CAPABILITY

Experiments were performed to investigate the feasibility
of creating a self-learning LLM using different pretrained
models. In addition, we would also like to investigate the
effectiveness of different methods for the identification of
PiUs.

A. Models
The details of seven pretrained models, some of which have

also been instruction-finetuned or aligned, are presented in
Table I. The column ”HF Name” in the table provides the
models’ names on the HuggingFace platform. Mistral-dpo is
a 7B-Mistral model that has been aligned with DPO [43]
by Intel. Mistral-instruct is a 7B-Mistral model that has
been instruction-finetuned by Mistral. Both of them are ac-
tually based on the same pretrained model, which is code-
named mistral-base [44] in our experiments. We also included
TinyLlama [45], Phi-3-small, Phi-3-mini [46], and RWKV5-
Eagle [47] for comparison. Finally, we defined a baseline,
which is a deterministic dummy model which would always
respond with the same text f(x) when given the same prompt
x, i.e., f(x1) = f(x2) ⇐⇒ x1 = x2.

B. Data
The experiment with the Open Generation method involved

3000 self-questioning iterations, resulting in 3000 total gen-
erated questions. The same was true for the experiment with
the Oracle-Selected method. Meanwhile, the experiment with
Induced Generation involved 500 self-questioning iterations
to produce 3000 total generated questions. The experiment
with External Prompt utilized the Google Trends API from
SerpApi2 and involved 10 self-questioning iterations; since
the list of items returned by the API from each request had
a variable length, this resulted in 576 generated questions. To
allow fair comparison between models, we cached the received
trending topics so that all models were given the same topics
for self-questioning. All data is in the English language.

1https://github.com/teddy-f-47/self-learning-llm-public
2https://serpapi.com/google-trends-api

C. Results

Table II enumerates the experiment results with differ-
ent methods. ”Cur” is the Curiosity score, ”Kaw” is the
Knowledge-Limit Awareness score, ”brev” is the brevity co-
efficient, and ”SLC” is the Self-Learning Capability score.

Instruction training. Our experimental results suggest that
instruction training, either inflicted through supervised fine-
tuning (SFT) or some alignment technique, plays a crucial
aspect in allowing self-learning. Instruction training enables
the model to understand the self-learning instruction to form
a concise question. As shown by mistral-base’s results, the
non-finetuned model would always fail to formulate a concise
question, preventing an effective self-learning to take place.
On the other hand, finetuning also reduces the tendency of a
model to hallucinate: the Knowledge-Limit Awareness scores
of mistral-dpo and mistral-instruct were always lower than
mistral-base’s. This is because the mistral-base does not yet
know how to answer a lot of questions properly. Self-learning
could be beneficial for such a model if it was able to formulate
concise questions. Interestingly, rwkv5-eagle, which has not
been finetuned, consistently achieved high SLC scores; this
can be attributed to the nature of its pretraining data, which
contained some instruction examples, allowing the model to
understand the command to form concise questions.

Model size. The model size is also quite important; if the
model is too small, it may lack the capacity to understand and
follow instructions properly. This is indicated by the results
from tiny-llama-chat. Although it has undergone instruction
training, it still often fails to generate concise questions
without excessive elaboration. On the other hand, the phi-3-
mini is slightly larger, and it was able to formulate concise
questions for self-learning.

Intrinsic and Extrinsic Inspiration. In a real-world sce-
nario, choosing the kind of method for the identification of
PiUs primarily depends on the use-case requirements and
constraints. For instance, if keeping the model updated with
the latest popular news is pivotal, then an extrinsic method
would be best. Conversely, if dependency on an external entity
is not desired, or if finding all of the model’s PiUs is more
important, then an intrinsic method is arguably better. In terms
of the effectiveness of different methods, we can find some
interesting findings from the experiments.

Open Generation and Induced Generation are generally less
effective compared to the other two methods because they
rely on the topics proposed by the model itself. Depending
on the model’s past training data, some topics may have
a very high probability of being generated, while others
are very low. However, it might be possible to make these
methods more effective by increasing the temperature of the
multinomial sampling during topic generation. This requires
further investigation and is within our future directions. Mean-
while, Oracle-Selected allowed rwkv5-eagle and phi-3-mini to
achieve the highest SLC score. Its inherent randomness led
to the exploration of a wide range of topics, including some
obscure ones, making it particularly effective.
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TABLE I
DETAILS OF LLMS USED IN THE EXPERIMENTS. ”MODEL NAME” SHOWS THE MODEL’S CODENAME IN OUR WORK, WHILE ”HF NAME” PROVIDES THE

MODEL’S ID AVAILABLE ON THE HUGGINGFACE PLATFORM.

Model Name HF Name Number of Parameters Finetuned or Aligned?
mistral-dpo Intel/neural-chat-7b-v3-3 7.2B Yes - DPO
mistral-instruct mistralai/Mistral-7B-Instruct-v0.2 7.2B Yes - SFT
mistral-base mistralai/Mistral-7B-v0.1 7.2B No
rwkv5-eagle RWKV/v5-Eagle-7B-HF 7.5B Partial instruct tuning
phi-3-small microsoft/Phi-3-small-8k-instruct 7.4B Yes - SFT and DPO
phi-3-mini microsoft/Phi-3-mini-4k-instruct 3.8B Yes - SFT and DPO
tiny-llama-chat TinyLlama/TinyLlama-1.1B-Chat-v1.0 1.1B Yes - SFT and DPO

TABLE II
EXPERIMENTAL RESULTS. EACH ROW PRESENTS EACH MODEL’S

EVALUATION RESULT USING A PARTICULAR METHOD FOR IDENTIFICATION
OF PIUS. ”CUR” INDICATES THE CURIOSITY SCORE, ”KAW” INDICATES
THE KNOWLEDGE-LIMIT AWARENESS SCORE, ”BREV” INDICATES THE
BREVITY PENALTY, AND ”SLC” IS THE SELF-LEARNING CAPABILITY

SCORE.

Model Name Method Cur Kaw brev SLC
mistral-dpo Open Gen. 0.73 0.04 1.00 0.38
mistral-dpo Induced Gen. 0.75 0.08 1.00 0.42
mistral-dpo Oracle-Select. 0.96 0.18 1.00 0.57
mistral-dpo Ext. Prompt 0.73 0.12 1.00 0.42
mistral-instruct Open Gen. 0.39 0.29 0.99 0.34
mistral-instruct Induced Gen. 0.63 0.17 0.59 0.24
mistral-instruct Oracle-Select. 0.97 0.31 0.92 0.58
mistral-instruct Ext. Prompt 0.60 0.26 1.00 0.43
mistral-base Open Gen. 0.82 0.81 0.00 0.00
mistral-base Induced Gen. 0.79 0.82 0.00 0.00
mistral-base Oracle-Select. 0.95 0.76 0.00 0.00
mistral-base Ext. Prompt 0.95 0.79 0.00 0.00
rwkv5-eagle Open Gen. 0.90 0.41 0.59 0.39
rwkv5-eagle Induced Gen. 0.92 0.48 0.75 0.53
rwkv5-eagle Oracle-Select. 0.97 0.45 0.93 0.66
rwkv5-eagle Ext. Prompt 0.70 0.45 1.00 0.58
phi-3-small Open Gen. 0.47 0.09 1.00 0.28
phi-3-small Induced Gen. 0.59 0.21 1.00 0.40
phi-3-small Oracle-Select. 0.94 0.33 1.00 0.63
phi-3-small Ext. Prompt 0.76 0.38 1.00 0.57
phi-3-mini Open Gen. 0.72 0.08 1.00 0.40
phi-3-mini Induced Gen. 0.76 0.21 1.00 0.49
phi-3-mini Oracle-Select. 0.96 0.36 1.00 0.66
phi-3-mini Ext. Prompt 0.68 0.47 1.00 0.57
tiny-llama-chat Open Gen. 0.92 0.22 0.00 0.00
tiny-llama-chat Induced Gen. 0.88 0.20 0.00 0.00
tiny-llama-chat Oracle-Select. 0.99 0.29 0.00 0.00
tiny-llama-chat Ext. Prompt 0.81 0.34 0.00 0.00
baseline Open Gen. 0.0003 0.00 0.00 0.00
baseline Induced Gen. 0.002 0.00 0.00 0.00
baseline Oracle-Select. 0.98 0.00 0.00 0.00
baseline Ext. Prompt 0.62 0.00 0.00 0.00

X. EXPERIMENT 2: MODEL PERFORMANCE AFTER
SELF-LEARNING

This section provides a simple demonstration of one full
self-learning cycle. The goal of the experiments is to compare
the performance of a model that has undergone self-learning
against its counterpart that has not performed self-learning.

A. Models

For this experiment, we used mistral-instruct as the base
of the self-learning LLM. The training was conducted using
LoRA [48] and the DPO trainer. By using LoRA, we were able

to explore two architectural approaches: (1) Plain LoRA and
(2) Dynamic-Adapter (Dyn-Adapt). In the case of Plain LoRA,
the adapter was simply merged into the base model after
training, effectively altering the model’s weights. Meanwhile,
Dyn-Adapt was inspired by SERAC [38] and DAP-Adapter
[31]; in this case, the adapter was not merged. Each cycle
of self-learning would produce a new adapter containing
the recently learned knowledge. During inference, Dyn-Adapt
would enable the most suitable adapter for a given prompt
when necessary or disable all adapters if the base model is
deemed best for answering the prompt. The adapter enabling
was controlled by a router-classifier model, which was trained
on a mix of samples from QH and QNH .

B. Data

We used the output from the Oracle-Selected experiment
with mistral-instruct for self-learning. Of the 3,000 total gen-
erated questions, 930 were classified into QH . After dedu-
plication, 922 unique questions were identified and became
the basis for creating Dtrain for training. We utilized the
model gpt-4o-2024-05-13 [49] to find the answers to
these questions and verified the quality of the answers man-
ually. Dtrain was then constructed as a preference dataset
consisting of questions, chosen answers, and rejected answers.
We distinguished cases where the model was unsure and the
model did not know by using gpt-4o-2024-05-13 as a
judge to compare the similarity between the model’s original
predictions and the ground truth. The model was unsure
when the original prediction was similar to the ground truth
despite the high hallucination score; in this case, we used the
original prediction as the chosen answer and ”-” as the rejected
answer. Meanwhile, the model did not know when the original
prediction was indeed different from the ground truth; in this
case, the ground truth was selected as the chosen answer while
the model’s original prediction was put as the rejected answer.
From 922 unique questions, we found 283 unsure cases and
639 did not know cases.

For evaluation, we used three datasets: QH , Wiki, and
Alpaca. The QH dataset is the same 930 questions from
the Oracle-Selected experiment and was used for the sake of
checking if hallucination on these questions would decrease
after self-learning. The Wiki dataset was acquired from the
2023-12-01 dump of Simple English Wikipedia [50]3, serving

3https://huggingface.co/datasets/olm/wikipedia
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as a test dataset to observe catastrophic forgetting; we ran-
domly selected 1,000 rows from the dataset for evaluation.
Finally, we also used the cleaned version of Alpaca [51]4 as
a test dataset to observe if the model would lose unrelated
knowledge after self-learning; also 1,000 rows were randomly
selected for evaluation.

C. Training Hyperparameters

The model was trained on Dtrain for three epochs. The
learning rate was set to 3e-5. With a micro-batch size of 4
and gradient accumulation of 8, the effective global batch size
was 32. Finally, for the LoRA configuration, we used r=64,
alpha=128, dropout=0.05, and bias=”none”, targeting the q and
v projection modules.

D. Metrics

On the QH dataset, besides measuring the hallucina-
tion score, we also used ROUGE-Lsum [52] to measure
the similarity between the model’s answer and the ground
truth acquired from Knowledge Searching. Additionally, we
used gpt-4o-2024-05-13 to judge the correctness of the
model’s answer relative to the ground truth. The LLM-Judge
was prompted to answer ”yes” if the model’s answer could
capture the meaning contained in the ground truth; ”partly”
if the model’s answer could be considered partially correct
relative to the ground truth; ”no” if the model’s answer was
completely different from the ground truth. The responses
from the LLM-Judge were then normalized: ”yes” answers
were converted to 1.0; ”partly” answers were converted to 0.5;
”no” answers, as well as any other response not following the
instruction, were converted to 0.0.

On the Wiki dataset, we measured the perplexity, a com-
monly used metric to estimate the language modeling capa-
bility of an LLM. A drastic increase in perplexity after self-
learning would indicate catastrophic forgetting. Finally, on the
Alpaca dataset, we also used ROUGE-Lsum and LLM-Judge.

E. Results

Table III presents the full evaluation results. The column
”Baseline” shows the metric values before self-learning.

TABLE III
MISTRAL-INSTRUCT EVALUATION RESULTS BEFORE AND AFTER

SELF-LEARNING. ”BASELINE” SHOWS THE METRIC VALUES BEFORE
SELF-LEARNING; ”LORA” SHOWS THE METRIC VALUES AFTER

SELF-LEARNING USING PLAIN LORA; ”DYN-ADAPT” SHOWS THE
METRIC VALUES AFTER SELF-LEARNING USING DYNAMIC-ADAPTER.

Dataset Metric Baseline LoRA Dyn-Adapt
QH Hallucination Score 0.73 0.30 0.29

ROUGE-Lsum 0.36 0.42 0.42
LLM-Judge 0.19 0.30 0.30

Wiki Perplexity 12.02 13.11 12.86
Alpaca ROUGE-Lsum 0.30 0.33 0.33

LLM-Judge 0.28 0.31 0.32

In both approaches, despite the small size of the data
and merely three epochs of training, we can observe greatly

4https://huggingface.co/datasets/yahma/alpaca-cleaned

reduced hallucination on QH after self-learning. The model
has become more consistent in answering these particular
questions. Furthermore, the LLM-Judge score was also in-
creased by 11 percentage points (pp.) in both cases, from 19%
to 30%. A higher number of training epochs might be needed
to make the model’s answers more faithful to the ground truth
and increase the LLM-Judge score further. Interestingly, the
model also gained some improvement on the Alpaca dataset,
with 3pp. increase using Plain LoRA and 4pp. increase using
Dyn-Adapt.

Both Plain LoRA and Dyn-Adapt exhibited slightly in-
creased perplexity on the Wiki dataset: 1.09 points in the
former and 0.84 points in the latter. In both cases, the increase
in perplexity was very low, so catastrophic forgetting did not
happen. This can be attributed to the adapter technique, which
only changed a small number of weights in the model. Plain
LoRA experienced a bigger increase in perplexity because
the adapter was merged, permanently changing the affected
weights. Meanwhile, with Dyn-Adapt, the adapter was enabled
only in some examples, while the original weights of the model
were unaffected. The significant reduction of hallucination on
QH after training proves the possibility of self-learning to
increase the Known regions and reduce the Unknown regions
of the model.

TABLE IV
PHI-3-MINI EVALUATION RESULTS BEFORE AND AFTER SELF-LEARNING.

”BASELINE” SHOWS THE METRIC VALUES BEFORE SELF-LEARNING;
”LORA” SHOWS THE METRIC VALUES AFTER SELF-LEARNING USING

PLAIN LORA; ”DYN-ADAPT” SHOWS THE METRIC VALUES AFTER
SELF-LEARNING USING DYNAMIC-ADAPTER.

Dataset Metric Baseline LoRA Dyn-Adapt
QH Hallucination Score 0.73 0.38 0.42

ROUGE-Lsum 0.47 0.48 0.48
LLM-Judge 0.39 0.39 0.39

Wiki Perplexity 8.33 11.41 11.41
Alpaca ROUGE-Lsum 0.34 0.35 0.34

LLM-Judge 0.25 0.27 0.25

To ensure the generalizability of our findings, we performed
one additional experiment using phi-3-mini as the base of the
self-learning LLM, utilizing the corresponding output from
the Oracle-Selected experiment. The results are presented in
Table IV. Both Plain LoRA and Dyn-Adapt were able to
greatly reduce the hallucination on QH after self-learning, in-
dicating more consistent answering of those questions. Despite
the steep drop in hallucination, the changes in ROUGE-Lsum
and LLM-Judge scores were very minuscule; this is because
the initial model was already able to answer many questions
at least partially correct before self-learning. Notably, the
increase in perplexity on the Wiki dataset after self-learning
was relatively higher compared to the previous experiment
with mistral-instruct. This can be explained by the fact that
phi-3-mini is a smaller model; small models tend to be more
sensitive to minute changes in the parameters. Still, the per-
plexity increase is considered quite small. Manual inspection
into the model’s responses did not reveal any degradation in
the text generation quality.
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XI. POSSIBLE ISSUES AND POTENTIAL EXTENSIONS

Choosing a knowledge source. The knowledge source for
Knowledge Searching can be a simple API to a search engine
or an online wiki. In an organizational environment, it can
also be a carefully maintained document database or even a
group of human experts tasked with answering the LLM’s
questions. Finally, the knowledge source can be a stronger
LLM, as shown in our experiment, or even several LLMs that
are exchanging knowledge with each other, which is discussed
in more detail in Section XII.

Dealing with bias, incorrectness, or non-factuality in re-
trieved data during Knowledge Searching. Regardless of the
knowledge source, a concern during Knowledge Searching is
the possibility of biased, incorrect, or non-factual information
in the retrieved data. We acknowledge that complete mitigation
of these issues is challenging. Still, it can be partially solved
by implementing a Curator that is responsible for automatic
filtering and scoring of the retrieved data. The Curator would
use a classifier model for detecting unwanted types of data
and a scorer model for putting more weight on the relevant
and preferable data. Alternatively, involving human experts is
also an option.

Catastrophic forgetting. Catastrophic forgetting is a risk
when performing multiple training cycles in sequence, but
in Section II, we have pointed out some existing potential
solutions. Furthermore, we have experimentally proven that
catastrophic forgetting can be avoided by careful training and
an effective architectural choice. While the robustness of such
solutions still needs to be evaluated for multiple cycles of
self-learning, they offer promising starting points. The Dyn-
Adapt architecture could be especially effective at preventing
catastrophic forgetting in long-term self-learning.

Limitations of self-learning. The goal of self-learning is to
enable more efficient model updates, especially in application
domains where new information is constantly emerging. This
approach excels in dynamic environments. However, it may
offer little to no benefits in narrow, closed application domains,
such as chatbots that are designed to answer questions about
specific products or services. In such cases, the better approach
is to simply prepare training data with complete facts of the
domain from the beginning. Furthermore, self-learning heavily
depends on the quality of the initial model. If the initial model
is not sufficiently strong, it may generate nonsensical questions
during self-learning. Because of this, it is advised to evaluate
the model’s Self-Learning Capability before subjecting it to
independent learning.

XII. APPLICATIONS

(1) Efficient Training. The idea of identification of the
Unknown and Known using hallucination score h(x) can be
used to filter data used for model training in order to focus on
more valuable content.

(2) Knowledge Exchanging LLMs. Two or more LLMs
can exchange their knowledge without external engagement
using their self-learning. Model M1 identifies PiUs based
on h1(x) > LIMIT . Another model M2 checks h2(x) <

LIMIT . If so, M2 provides learning cases related to x,
which are used by M1 in its self-learning loop. In this way,
models exchange only unknown knowledge. Such self-learning
with multiple LLMs asking each other would allow efficient
knowledge sharing with only useful knowledge.

(3) Direct Awareness Optimization. Model hidden states
can be used to detect hallucinations. Then, we can use self-
learning to collect examples related to hallucinations and adapt
DPO [43] to make the model answer ”I don’t know” instead of
hallucinating. Here, the goal is to make the model aware of its
own hidden states as the trigger of answering ”I don’t know”,
rather than associating concrete concepts/words with ”I don’t
know”. This idea is similar to [25], though there, the focus was
on increasing the model’s factuality. In [24], RLHF was used,
even though it highlights a similar idea of making the model
aware of its own hidden states. In [23], they use a reward
function to make the model admit ”I don’t know”. Meanwhile,
[53] described a learning task that was coincidentally also
termed ”Into the Unknown”, but their definition is slightly
different: it is a learning task where the model is asked to
choose from two options the piece of information that would
provide new knowledge to the available context, yet the other
option might trap the model due to closely resembling the
existing knowledge.

Direct Awareness Optimization could improve the self-
learning capability of a model. Making the model aware of its
own knowledge limit would allow it to ask ”better” questions
during self-learning; better in the sense that the answers to
those questions would actually widen the knowledge span of
the model. Another aspect of better is whether those questions
could be considered meaningful or not; for example, we might
find the question ”How fast does F-16 fly?” meaningful and
could be learned while the question ”How fast do cats fly on
Mars?” not meaningful and does not need to be learned. Such
Direct Awareness Optimization is one of our future directions.

(4) Learning Multiple Point of Views (PoVs). By adapting
DPO and our self-learning concept, it is possible to make
the model learn about different PoVs on a certain topic.
For example, if topic T has 5 relevant PoVs, the training
dataset is then constructed such that a given prompt can have
5 example responses with very similar preferability scores.
In another data pair, we alter the prompt by adding some
particular context and also increase the preferability score of
one example response. This would associate the context of
the prompt with a particular PoV. Similarly, adapting DPO
would allow better learning on hard-to-answer open questions.
Questions like ”Who can explain the relationship between AI
and quantum computing?” can have multiple valid answers.

(5) Decision Making, AGI, Sentience. Having a model that
automatically learns about the latest trends can be very useful
for decision-making systems, for example, for an AI tasked
with leading a business or trading. Self-learning is also a step
towards Artificial General Intelligence (AGI). Making a model
aware of what it knows might lead to a sentient AI.
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XIII. LIMITATIONS

(1) Model’s confidence on incorrect knowledge. We
assume that the pretrained models have been subjected to
correct knowledge, so consistency of sampled responses would
correlate with factuality. This is similar to the assumption
in [25] and supported by the findings in [16]. However, if
some incorrect knowledge was repeated in the models’ past
training data, either accidentally or through deliberate poison-
ing, the models may become consistent in producing incorrect
information. One of our future directions is investigating the
integration of a reference-based truthfulness checker, such as
FactScore [14], in the self-learning loop, which may allow the
model to correct wrong understandings and biases by itself.

(2) Long-term self-learning. The focus of this paper is to
prove the effectiveness of the methods for the identification
of PiUs and the feasibility of self-learning LLM. We have
provided a successful demonstration of one full self-learning
cycle in our experiment. Still, a deeper study into extensive
cycles of self-learning is needed.

(3) Experiments were limited to the English language.
We believe that self-learning can be performed in any lan-
guage. However, further studies would be required to calibrate
the brevity coefficient for the SLC score when working with
a different language.

XIV. CONCLUSION

In this work, we show how the concepts of The Known
and The Unknown can be utilized to identify atomic pieces
of knowledge that an LLM already knows (PiKs) and does
not know yet (PiUs). We also propose one extrinsic and
three intrinsic methods for the identification of PiUs, which
consequently bring up the concept of the self-learning LLM.
We formulated the Self-Learning Capability (SLC) Score to
gauge the aptitude of an LLM to conduct self-learning.

From the experiments, we concluded that Oracle-Selected
is especially effective at enhancing an LLM’s capability to
Self-Learn. We also found that small models tend to struggle
to learn independently. Finetuning or alignment can improve
SLC by allowing the model to understand instructions. Yet, if a
model’s pretraining data contained some instruction examples,
the model might be able to Self-Learn even though it has not
been explicitly instruction-tuned. Finally, we discussed various
possible issues, extensions, and applications of self-learning.
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for Computational Linguistics, May 2022.

[31] Z. Ke, Y. Shao, H. Lin, T. Konishi, G. Kim, and B. Liu, “Continual
pre-training of language models,” in The Eleventh International
Conference on Learning Representations, 2023. [Online]. Available:
https://arxiv.org/abs/2302.03241

[32] M. McCloskey and N. J. Cohen, “Catastrophic interference in connec-
tionist networks: The sequential learning problem,” in Psychology of
Learning and Motivation, G. H. Bower, Ed. Academic Press, 1989,
vol. 24, pp. 109–165.

[33] R. Ratcliff, “Connectionist models of recognition memory: Constraints
imposed by learning and forgetting functions.” Psychological Review,
vol. 97, no. 2, pp. 285–308, 1990.

[34] J. Kirkpatrick, R. Pascanu, N. Rabinowitz, J. Veness, G. Desjardins,
A. A. Rusu, K. Milan, J. Quan, T. Ramalho, A. Grabska-Barwinska,
D. Hassabis, C. Clopath, D. Kumaran, and R. Hadsell, “Overcoming
catastrophic forgetting in neural networks,” Proceedings of the National
Academy of Sciences, vol. 114, no. 13, pp. 3521–3526, 2017.

[35] C. Zhu, A. S. Rawat, M. Zaheer, S. Bhojanapalli, D. Li, F. Yu, and
S. Kumar, “Modifying memories in transformer models,” 2020.

[36] A. Sinitsin, V. Plokhotnyuk, D. Pyrkin, S. Popov, and A. Babenko,
“Editable neural networks,” in International Conference on Learning
Representations, 2020. [Online]. Available: https://arxiv.org/pdf/2004.
00345.pdf

[37] Z. Ke, B. Liu, N. Ma, H. Xu, and L. Shu, “Achieving forgetting
prevention and knowledge transfer in continual learning,” in Advances
in Neural Information Processing Systems, M. Ranzato, A. Beygelzimer,
Y. Dauphin, P. Liang, and J. W. Vaughan, Eds., vol. 34. Curran
Associates, Inc., 2021, pp. 22 443–22 456.

[38] E. Mitchell, C. Lin, A. Bosselut, C. Finn, and C. D. Manning,
“Memory-based model editing at scale,” in International Conference
on Machine Learning, 2022. [Online]. Available: https://arxiv.org/pdf/
2206.06520.pdf

[39] J. Jaynes, The origin of consciousness in the breakdown of the bicam-
eral mind., ser. The origin of consciousness in the breakdown of the
bicameral mind. Boston, MA, US: Houghton, Mifflin and Company,
1990.

[40] L. McInnes, J. Healy, and S. Astels, “hdbscan: Hierarchical density
based clustering,” The Journal of Open Source Software, vol. 2, no. 11,
p. 205, 2017.

[41] N. Reimers and I. Gurevych, “Sentence-bert: Sentence embeddings using
siamese bert-networks,” in Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing. Association for
Computational Linguistics, 11 2019.

[42] G. Miller, E. Newman, and E. Friedman, “Length-frequency statistics for
written english,” Information and Control, vol. 1, no. 4, pp. 370–389,
1958.

[43] R. Rafailov, A. Sharma, E. Mitchell, C. D. Manning, S. Ermon,
and C. Finn, “Direct preference optimization: Your language model
is secretly a reward model,” in Thirty-seventh Conference on Neural
Information Processing Systems, 2023.

[44] A. Q. Jiang, A. Sablayrolles, A. Mensch, C. Bamford, D. S. Chaplot,
D. de las Casas, F. Bressand, G. Lengyel, G. Lample, L. Saulnier,
L. R. Lavaud, M.-A. Lachaux, P. Stock, T. L. Scao, T. Lavril, T. Wang,
T. Lacroix, and W. E. Sayed, “Mistral 7b,” 2023.

[45] P. Zhang, G. Zeng, T. Wang, and W. Lu, “Tinyllama: An open-source
small language model,” 2024.

[46] M. Abdin, S. A. Jacobs, A. A. Awan, J. Aneja, A. Awadallah, and H. A.
et al., “Phi-3 technical report: A highly capable language model locally
on your phone,” 2024.

[47] B. Peng, D. Goldstein, Q. Anthony, A. Albalak, E. Alcaide, S. Biderman,
E. Cheah, X. Du, T. Ferdinan, H. Hou, P. Kazienko, K. K. GV, J. Kocoń,
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