Domain Adaptation Using Domain Similarity- and Domain Complexity-based Instance Selection for Cross-domain Sentiment Analysis

Robert Remus
rrremus@informatik.uni-leipzig.de

Natural Language Processing Group
Department of Computer Science
University of Leipzig, Germany

IEEE ICDM SENTIRE-2012 — December 10, 2012
Sentiment analysis and its subtasks are domain-dependent

- To overcome domain dependencies, a lot of NLP and ML research focuses on domain adaptation (DA): transfer a model from a source domain d_{src} to a target domain d_{tgt} with minimal performance loss.

- We consider a domain as a genre attribute, that describes the topics sth. deals with, e.g.
 - news articles (= genre) of different sections, e.g.
 - sports or politics (= domains)
[Ponomareva & Thelwall, 2012] hypothesized, that the optimal parameter setting of their DA algorithm is related to the notions of domain similarity and domain complexity

- domain similarity = corpus similarity
- domain complexity = corpus complexity

Our idea: “Tailor” a d_{src} training set to a given d_{tgt} based on their similarity and complexity
Method — Measuring Domain Similarity

- Similarity of domains \(d_{src}, d_{tgt}\) is measured as Jensen-Shannon (JS) divergence between \(d_{src}, d_{tgt}\)'s term unigram distributions
 - Unigram probabilities are estimated via relative frequencies
- JS divergence \(D_{JS}\) is based on Kullback-Leibler divergence \(D_{KL}\):

\[
D_{KL}(Q||R) = \sum_{w \in W} Q(w) \log \frac{Q(w)}{R(w)}
\]

where \(Q, R\) are probability distributions over a finite set \(W\), e.g. words.

\[
D_{JS}(Q||R) = \frac{1}{2} [D_{KL}(Q||M) + D_{KL}(R||M)]
\]

where \(M = \frac{1}{2}(Q + R)\) is the average distribution of \(Q\) and \(R\) and \(0 \leq D_{JS}(Q||R) \leq 1\)
Method — Measuring Domain Complexity

- Domain complexity is measured according to a procedure proposed by [Kilgarriff & Rose, 1998]:
 1. Shuffle corpus
 2. Split corpus into 2 equally-sized sub-corpora
 3. Measure similarity between sub-corpora
 4. Iterate and calculate mean similarity over all (here: 10) iterations

- Again, our similarity measure is JS divergence
Goal: Automatically select d_{src} training instances, that are likely to help in estimation of a more accurate d_{tgt} model

- How many/which d_{src} training instances to select?

Assumptions:

- The more similar d_{src} and d_{tgt} are, the more ...
- The more the complexity varies among d_{src} and d_{tgt}, the less ...

...the d_{src} training data helps to estimate a more accurate d_{tgt} model &

- The more similar a single d_{src} training instance is to a d_{tgt}, the more it helps to estimate a more accurate d_{tgt} model
Method — DA via Instance Selection II

1. d_{src} training instances are ranked acc. to their similarity to the d_{tgt}
2. A training set size reduction factor $r_{d_{src},d_{tgt}}$ is estimated as

$$\tilde{r}_{d_{src},d_{tgt}} = 1.0 - (\alpha \cdot s_{d_{src},d_{tgt}} + \beta \cdot |\Delta c_{d_{src},d_{tgt}}|)$$ (3)

where

- $s_{d_{src},d_{tgt}}$ is the domain similarity
- $\Delta c_{d_{src},d_{tgt}} = c_{d_{src}} - c_{d_{tgt}}$ is the domain complexity variance
- α, β are scaling parameters

3. Top $100 \cdot \tilde{r}_{d_{src},d_{tgt}}$ % instances are kept while the rest is discarded
Evaluation — Setup I

- Task: Document-level cross-domain polarity classification in a semi-supervised setting
- Classifier: SVMs
 - Linear “kernel”
 - Cost C fixed to 2.0, no further optimization
- Features encode word unigram absence/presence
 - No feature selection
 - No feature weighting
 - No further pre-processing
- Gold standard: Reviews from 10 domains of [Blitzer et al., 2007]’s Multi-domain Sentiment Dataset v2.0
- For each $d_{src} - d_{tgt}$ pair:
 - 2,000 labeled d_{src} instances, 200 labeled d_{tgt} instances for training
 - 1,800 labeled d_{tgt} instances for testing
 - 2,000 unlabeled d_{tgt} instances for training (if required)
Evaluation — Setup II

- Instance selection IS
- Baselines:
 - “SrcOnly”, “TgtOnly” and “All”
 - EA and EA++ [Daumé III, 2007, Daumé III et al., 2010]
- IS combined with EA/++: IS-EA, IS-EA++
- “Sanity checks”
 - $IS_{r=0.8}$: fixed $\tilde{r}_{d_{src},d_{tgt}}$ of 0.8 (= average “optimal” r)
 - IS_{random}: random $\tilde{r}_{d_{src},d_{tgt}}$; instance selection without ranking
We experimented with different scaling parameter settings (Recall α scales domain similarity measure, β scales domain complexity variance):

- $\alpha \in [0,1]$ (step size .1) and $\beta \in [0,6]$ (step size .5)
- Best overall result when $\alpha = 0.2$, $\beta = 5.5$
- “Stable” results when $\alpha \in [0.2, 0.4] \& \beta \in [0.5, 5.5]$
- IS outperforms strongest baseline (“All”) for when $\alpha \in [0.1, 0.8]$

IS is successful without fine-tuning α, β!
Evaluation — Results II

- Evaluation on all \(\frac{10!}{(10-2)!} = 90 \) possible \(d_{src} - d_{tgt} \) pairs
- Averaged accuracy \(A \):

<table>
<thead>
<tr>
<th>Method</th>
<th>(A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SrcOnly</td>
<td>72.2</td>
</tr>
<tr>
<td>TgtOnly</td>
<td>68.43</td>
</tr>
<tr>
<td>All</td>
<td>74.25</td>
</tr>
<tr>
<td>IS</td>
<td>74.68&</td>
</tr>
<tr>
<td>EA</td>
<td>74.02</td>
</tr>
<tr>
<td>EA++</td>
<td>74.5</td>
</tr>
<tr>
<td>IS-EA</td>
<td>73.74</td>
</tr>
<tr>
<td>IS-EA++</td>
<td>74.28</td>
</tr>
</tbody>
</table>

- IS is significantly better \((p < 0.005) \) than all “SrcOnly”, “TgtOnly”, “All”, IS\(_{random} \) (71.47), IS\(_{r=0.8} \) (74.31)
 - Level of statistical significance is determined by “stratified shuffling”
Conclusions & Future Work

■ We proposed an approach to DA via instance selection, that is . . .
 □ based on similarity and complexity variance of d_{src} and d_{tgt}
 □ a pre-processing step before learning a model

■ Future work: Apply IS to other cross-domain tasks, e.g. parsing, to answer whether . . .
 □ IS is general?
 □ IS is task-bound or feature-specific?
Thanks!

Any questions?
Appendix — Literature I

(2007).
Proceedings of the 45th Annual Meeting of the Association for Computational Linguistics (ACL).

Biographies, bollywood, boom-boxes and blenders: Domain adaptation for sentiment classification.
In [acl, 2007], (S. 440–447).

Frustratingly easy domain adaptation.
In [acl, 2007], (S. 256–263).
Appendix — Literature II

Appendix — Literature III

Computational Natural Language Learning (CoNLL) (S. 655–665).