STARLET: Multi-document Summarization of Service and Product Reviews with Balanced Rating Distributions

Giuseppe “Pino” Di Fabbrizio*, Ahmet Aker ^, and Rob Gaizauskas ^

ICDM 2011 – SENTIRE Workshop – Vancouver, CA
December 11, 2011
Outline

• Introduction
• Summarization as search problem
 ▪ A* search
 ▪ Feature extraction
 ▪ Star rating prediction model
 ▪ Training
• Experiments
• Results and discussion
Questions

• Summarization - What does it mean to summarize reviews?
• Star ratings – Does the number of star provide enough information?
• Selection process – What is important to preserve?
• Learning from data – Can we learn what is relevant from data?
• Controversiality – What do we do about contradictory information?
A reasonable goal

- Given a set of reviews evaluating a specific entity (restaurant, hotel, digital camera, etc.) and related aspects describing the entity (food, service, atmosphere, etc.)

 ✷ Extract the sentences with relevant information about the evaluated aspects preserving the average opinions distributions

<table>
<thead>
<tr>
<th>N</th>
<th>Review 931–5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Rude employees</td>
</tr>
<tr>
<td>2</td>
<td>Bartenders are the worst</td>
</tr>
<tr>
<td>3</td>
<td>An extremely local hang out</td>
</tr>
<tr>
<td>4</td>
<td>If not a friend of the crew be prepared to wait and no friendly attitudes</td>
</tr>
<tr>
<td>5</td>
<td>Bar top a mess and always wet</td>
</tr>
<tr>
<td>6</td>
<td>Best thing is the T.V.'s showing sports</td>
</tr>
<tr>
<td>7</td>
<td>Live music there is ok not great</td>
</tr>
<tr>
<td>8</td>
<td>Some nice decor and there are pool tables with room to play</td>
</tr>
<tr>
<td>9</td>
<td>More for the day crowd</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Aspects</th>
<th>Ratings</th>
<th>Stars</th>
</tr>
</thead>
<tbody>
<tr>
<td>atmosphere</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>food</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>overall</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>price</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>service</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>N</th>
<th>Review 931–4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Not a place to go for dinner</td>
</tr>
<tr>
<td>2</td>
<td>This is the type of place you go for live music reggae punk ska live sound system</td>
</tr>
</tbody>
</table>

Dec 11, 2011
Automatic summarization

The process of distilling the most important information from a **text** to produce an **abridged** version for a particular task and users.

[Mani and MayBury, 1999]

- **Methods**
 - Extractive – text units (phrase / sentence) selection
 - Compression – text simplification
 - Abstractive – natural language generation

- **Evaluation metrics**
 - Intrinsic – human generated (gold) reference
 - Extrinsic – evaluated according some utility function (i.e., document snippet accuracy in web search)

- **Input / Output**
 - Text, speech, graphics (any combination)
Multi-document summarization

- Traditional multi-document summarization (DUC, TAC)
 - Focuses on facts, usually coherent and non contradictory
 - Edited, high quality written text
 - Limited number of documents (<<100)
 - Typical approach
 - Sentences clustering, selection, and ordering in a domain-independent way
Typical summarization tasks

- News articles
 - [McKeown et al., 2002]
- Medical literature
 - [Elhadad et al., 2005]
- Biographies
 - [Copeck et al., 2002]
- Technical articles
 - [Saggion and Guy, 2001]
- Blogs
 - [Mithhun and Kosseim, 2009]
Multi-document summarization (opinion)

- Multi-document summarization for **evaluative text**
 - Contradictory opinions
 - Poorly written (typos, misspellings, ungrammatical, jargon)
 - 20 different ways to misspell *atmosphere*:
 atmosphere, atmopshere, atmoshere, atmosphere, atmosphere, atmosphere, atmospphere, atmospshere, atmospere, atmosphere, atmosphere, atmoslhere, atmospheric, atmosphere, atmosphere, atmosphere, atmosphere, atmosphere, atmosphere, atomosphere, atomosphere
 - Vast range of domains (restaurants, hotels, cars, books, toasters, etc.)
 - Number of documents could be large for popular products (>200)
- Typical approach
 - Sentence selection on sentiment-laden sentences
 - Template-based natural language generation
MEAD*
[Carenini et al., 2006, Carenini et al. 2011]

• Based on MEAD [Radev et al., 2003], an open source, PERL-based extractive summarizer

• Three steps process
 ▪ Feature calculation – evaluate how informative is the sentence. Use centroids and evaluative features
 ▪ Classification – combine features in one score
 ▪ Reranking – sentence scores adjustments based on the number of opinions present in a sentence (regardless of the polarity)

• Drawbacks
 ▪ Sentence selection based on most frequently discussed aspects
 ▪ Polarity of sentences is ignored (positive and negative sentences have the same contribution)
 ▪ Summarization features based on expert knowledge
Summarization as search problem

- Scoring function as linear combination of summarization features

\[s(y|x) = \Phi(y|x; \lambda) \]

where

- \(x \) is a vector of indexes representing the \(N \) sentences in the document set to summarize

- \(y \subseteq \{1, \ldots, N\} \) is the set of indexes selected for the summary of length \(|y| = M \)

- \(\lambda = \{\lambda_1, \ldots, \lambda_F\} \) is the weight vector of parameters for the \(F \) features that optimizes the summary evaluation metrics

- \(\Phi(\cdot|\cdot) \) is a function that returns a set of features for each candidate summary
Summarization model

- Assuming that the features are independent

\[s(y|x) = \sum_{i \in y} \phi(x_i) \lambda_i \]

- Find the parameters \(\lambda_i \) such that \(\hat{y} \) score is similar to the score from a gold standard summary

\[\hat{y} = \arg \max_y s(y|x) \]

- Exponentially large search space

\[O(S^{L(W)}) \]

- where \(S \) is the total number of sentences and \(L(W) \) is the number of sentences that best matches the required summary word length \(W \)
Goal

Find the best scoring path from S to E

Reviews

Sentences

Summaries

[S] Aker et al., 2010

Dec 11, 2011
A* search

- Sooo many stars ...
- Informed search algorithm
- Best-first strategy

Guarantee to find optimal solution if heuristic function is **monotonic** or follows the **admissible heuristic** requirement:

- Estimated cost from the current node to the goal node never overestimates the actual cost
- For the node n: $f(n) = s(n) + h(n)$
- Where
 - $s(n)$ - sum of the current scores based on the summary so far
 - $h(n)$ - heuristic function to estimate how far from the final summary length [Aker et al., 2010]

- Heuristic keeps in consideration global constraints such as ‘summary length’
Model parameter optimization

- Find the parameters λ_i such that \hat{y} score is similar to the score from a gold standard summary

$$\hat{y} = \arg \max_y s(y|x)$$

- ROUGE metric to measure accuracy of the current summary \hat{y} with a gold reference summary r

- Minimize the loss function

$$\hat{\lambda} = \arg \min_\lambda \Delta(\hat{y}|r)$$

- Minimum error rate training (MERT) [Och, 2003]
- First order approximation method using Powell search (not convex)
- Iterative method, uses n-best candidates in A* search to find parameters
Feature extraction

- Rating prediction model

For each aspect \(a_i \in \{ \text{food, service, ambience, value, overall} \} \) estimate the ratings \(r_i \in \{1, \ldots, 5\} \) for any document \(d_j \in \mathcal{D} \)

\[
\hat{r}_i = \arg \max_{r \in \mathcal{R}} P(r_i|d_j) \quad (1)
\]

\[
= \arg \max_{r \in \mathcal{R}} P(r_i|s_{1,j}, s_{2,j}, \ldots, s_{n,j}) \quad (2)
\]

- MaxEnt classification algorithm trained on 6,823 restaurant reviews with an average rank loss of 0.63

- Predicts rating distributions (after proper confidence score normalization)
Predicted and target ratings

Dec 11, 2011

pino

Predicted food ratings

Average food ratings
Review ratings as summarization features

- For each review document set
 - For each aspect i, average the ratings by aspect to create target reference distribution \bar{r}_i
 - For each sentence j, calculate aspect rating predictions $\hat{r}_{i,j}$
 - For each sentence, calculate Kullback–Leibler divergence with the reference summary
 \[D_{KL}^{i,j}(\hat{r}_{i,j} \mid \bar{r}_i) \]
- KL-divergence is used then used during training to find optimal parameters
Data

- From 3,866 available restaurants (we8there.com), selected 131 with more than five reviews
- Selected 60 over 131 restaurants that had reviews on tripadvisor.com highly voted by by readers as useful
- Created the GOLD reference by selecting the 20 reviews from tripadvisor.com with the highest number of “helpful votes” (same time frame as the we8there.com reviews)
- Remaining 40 restaurants used as training set

<table>
<thead>
<tr>
<th>Table I</th>
<th>Test data set (20 restaurants) values per document set</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Min</td>
</tr>
<tr>
<td>Reviews</td>
<td>6</td>
</tr>
<tr>
<td>Sentences</td>
<td>15</td>
</tr>
<tr>
<td>Words</td>
<td>206</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table II</th>
<th>Train data set (40 restaurants) values per document set</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Min</td>
</tr>
<tr>
<td>Reviews</td>
<td>6</td>
</tr>
<tr>
<td>Sentences</td>
<td>15</td>
</tr>
<tr>
<td>Words</td>
<td>205</td>
</tr>
</tbody>
</table>
Experimental setup

- Target length: 100 words
- Baseline
 - Randomly selected sentences with no repetition till it reaches the target length
- MEAD
 - Traditional multi-document summarization
- Starlet
 - Using only rating distributions as feature and web-based GOLD reference
Random Summary
We ended up waiting 45 minutes for a table 15 minutes for a waitress and by that time they had sold out of fish fry s. This would be at least 4 visits in the last three years and the last visit was in March 2004. During a recent business trip I ate at the Fireside Inn 3 times the food was so good I did n't care to try anyplace else. I always enjoy meeting friends here when I am in town. The food especially pasta calabria is delicious. I like eating at a resturant where I can not see the plate when my entry is served.

MEAD Summary
During a recent business trip I ate at the Fireside Inn 3 times the food was so good I did n't care to try anyplace else. I have had the pleasure to visit the Fireside on every trip I make to the Buffalo area. The Fireside not only has great food it is one of the most comfortable places we have seen in a long time The service was as good as the meal from the time we walked in to the time we left we could have not had a better experience We most certainly will be back many times.

Starlet Summary
Delicious.
Can't wait for my next trip to Buffalo.
GREAT WINGS.
I have reorarranged business trips so that I could stop in and have a helping or two of their wings.

We were seated promptly and the staff was courteous.
The service was not rushed and was very timely.

2 thumbs UP.
A great night for all.
The food is very good and well presented.
The price is more than competitve.

It took 30 minutes to get our orders.
ROUGE evaluation

<table>
<thead>
<tr>
<th>Metric</th>
<th>Random</th>
<th>MEAD</th>
<th>STARLET</th>
</tr>
</thead>
<tbody>
<tr>
<td>R-1</td>
<td>0.2769</td>
<td>0.2603</td>
<td>0.2894</td>
</tr>
<tr>
<td>R-2</td>
<td>0.0329</td>
<td>0.0377</td>
<td>0.0454</td>
</tr>
<tr>
<td>R-SU4</td>
<td>0.0790</td>
<td>0.0727</td>
<td>0.0881</td>
</tr>
</tbody>
</table>
Manual evaluation

- Three judges (two native speakers)
- Rating scale: 5 (very good) to 1 (very poor)
- Evaluations
 - Grammaticality - grammatically correct and without artifacts
 - Redundancy - absence of unnecessary repetitions;
 - Clarity - easy to read
 - Coverage - level of coverage for the aspects and the polarity expressed in the summary
 - Coherence - well structured and organized

<table>
<thead>
<tr>
<th></th>
<th>Random</th>
<th>MEAD</th>
<th>Starlet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grammatically</td>
<td>3.53</td>
<td>3.68</td>
<td>3.67</td>
</tr>
<tr>
<td>Redundancy</td>
<td>2.82</td>
<td>2.92</td>
<td>3.00</td>
</tr>
<tr>
<td>Clarity</td>
<td>2.78</td>
<td>2.97</td>
<td>3.05</td>
</tr>
<tr>
<td>Coverage</td>
<td>2.67</td>
<td>2.33</td>
<td>3.23</td>
</tr>
<tr>
<td>Coherence</td>
<td>2.05</td>
<td>2.57</td>
<td>2.62</td>
</tr>
</tbody>
</table>
Discussion

- **Grammatically** - consistent across the three methods and depend only on the quality of the source sentence
- Poorly written sentences can be penalized by introducing **new features** during training that take into consideration the number of misspellings
- **Redundancy** - slightly better for Starlet. Sentence similarity features can be added during training by using centroid-based clustering and demote similar sentences to these already included in the summary.
- **Clarity** and **coherence** - slightly better in Starlet, but more investigation is necessary
- **Coverage** - decidedly better than for the other approaches, showing that Starlet correctly selects information relevant to the users
Conclusions

- Summarization - What does it mean to summarize reviews?
- Star ratings – Does the number of star provide enough information?
- Selection process – What is important to preserve?
- Learning from data – Can we learn what is relevant from data?
- Controversiality – What do we do about contradictory information?