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ABSTRACT
Deep learning has unlocked new paths towards the emulation of

the peculiarly-human capability of learning from examples. While

this kind of bottom-up learning works well for tasks such as im-

age classification or object detection, it is not as effective when it

comes to natural language processing. Communication is much

more than learning a sequence of letters and words: it requires a

basic understanding of the world and social norms, cultural aware-

ness, commonsense knowledge, etc.; all things that we mostly learn

in a top-down manner. In this work, we integrate top-down and

bottom-up learning via an ensemble of symbolic and subsymbolic

AI tools, which we apply to the interesting problem of polarity

detection from text. In particular, we integrate logical reasoning

within deep learning architectures to build a new version of Sentic-

Net, a commonsense knowledge base for sentiment analysis.
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1 INTRODUCTION
The AI gold rush has become increasingly intense for the huge

potential AI offers for human development and growth. Most of

what is considered AI today is actually subsymbolic AI, i.e., machine

learning: an extremely powerful tool for exploring large amounts
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of data and, for instance, making predictions, suggestions, and cat-

egorizations based on them. All such classifications are made by

transforming real items that need to be classified into numbers or

features in order to later calculate distances between them. While

this is good for making comparison between such items and cluster

them accordingly, it does not tell us much about the items them-

selves. Thanks to machine learning, we may find out that apples

are similar to oranges but this information is only useful to clus-

ter oranges and apples together: it does not actually tell us what

an apple is, what it is usually used for, where it is usually found,

how does it taste, etc. Throughout the span of our lives, we learn a

lot of things by example but many others are learnt via our own

personal (kinaesthetic) experience of the world and taught to us by

our parents, mentors, and friends. If we want to replicate human

intelligence into a machine, we cannot avoid implementing this

kind of top-down learning.

Integrating logical reasoning within deep learning architectures

has been a major goal of modern AI systems [19, 61, 65]. Most

of such systems, however, merely transform symbolic logic into

a high-dimensional vector space using neural networks. In this

work, instead, we do the opposite: we employ subsymbolic AI

for recognizing meaningful patterns in natural language text and,

hence, represent these in a knowledge base, termed SenticNet 6,

using symbolic logic. In particular, we use deep learning to gen-

eralize words and multiword expressions into primitives, which

are later defined in terms of superprimitives. For example, expres-

sions like shop_for_iphone11, purchase_samsung_galaxy_S20
or buy_huawei_mate are all generalized as BUY(PHONE) and later

reduced to smaller units thanks to definitions such as BUY(x)=
GET(x) ∧ GIVE($), where GET(x) for example is defined in terms

of the superprimitive HAVE as !HAVE(x)→ HAVE(x).
While this does not solve the symbol grounding problem, it helps

reducing it to a great degree and, hence, improves the accuracy

of natural language processing (NLP) tasks for which statistical

analysis alone is usually not enough, e.g., narrative understanding,

dialogue systems and sentiment analysis. In this work, we focus

on sentiment analysis where this ensemble application of symbolic

and subsymbolic AI is superior to both symbolic representations

and subsymbolic approaches, respectively.
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Figure 1: An example of sentic algebra.

By deconstructing multiword expressions into primitives and su-

perprimitives, in fact, there is no need to build a lexicon that assigns

polarity to thousands of words and multiword expressions: all we

need is the polarity of superprimitives. For example, expressions

like grow_profit, enhance_reward or intensify_benefit are all
generalized as INCREASE(GAIN) and, hence, classified as positive

(Fig. 1). Likewise, this approach is also superior to most subsym-

bolic approaches that simply classify text based on word occur-

rence frequencies. For example, a purely statistical approach would

classify expressions like lessen_agony, reduce_affliction or

diminish_suffering as negative because of the statistically nega-

tive words that compose them. In SenticNet 6, however, such ex-

pressions are all generalized as DECREASE(PAIN) and thus correctly
classified (Fig. 1).

The remainder of the paper is organized as follows: Section 2

briefly discusses related works in the field of sentiment analysis;

Section 3 describes in detail how to discover affect-bearing primi-

tives for this task; Section 4 explains how to define such primitives

in terms of denotative and connotative information; Section 5 pro-

poses experimental results on 9 different datasets; finally, Section 6

provides concluding remarks.

2 RELATEDWORK
Sentiment analysis is an NLP task that has raised growing interest

within both the scientific community, for the many exciting open

challenges, as well as the business world, due to the remarkable ben-

efits to be had from marketing and financial prediction. While most

works approach it as a simple categorization problem, sentiment

analysis is actually a complex research problem that requires tack-

ling many NLP tasks, including subjectivity detection, anaphora

resolution, word sense disambiguation, sarcasm detection, aspect

extraction, and more.

Sentiment analysis research can be broadly categorized into

symbolic approaches (i.e., ontologies and lexica) and subsymbolic

approaches (i.e., statistical NLP). The former school of thought fo-

cuses on the construction of knowledge bases for the identification

of polarity in text, e.g., WordNet-Affect [55], SentiWordNet [3], and

SenticNet [10]. The latter school of thought leverages statistics-

based approaches for the same task, with a special focus on su-

pervised statistical methods. Pang et al. [43] pioneered this trend

by comparing the performance of different machine learning algo-

rithms on a movie review dataset and obtained 82% accuracy for

polarity detection. Later, Socher et al. [53] obtained 85% accuracy

on the same dataset using a recursive neural tensor network (NTN).

With the advent of Web 2.0, researchers started exploiting mi-

croblogging text or Twitter-specific features such as emoticons,

hashtags, URLs, @symbols, capitalizations, and elongations to en-

hance the accuracy of social media sentiment analysis. For example,

Tang et al. [58] used a convolutional neural network (CNN) to ob-

tain word embeddings for words frequently used in tweets and dos

Santos and Gatti [17] employed a deep CNN for sentiment detection

in short texts. More recent approaches have been focusing on the

development of sentiment-specific word embeddings [44], which

are able to encode more affective clues than regular word vectors,

and on the use of context-aware subsymbolic approaches such as

attention modeling [32, 33] and capsule networks [13, 66].

3 PRIMITIVE DISCOVERY
While the bag-of-words model is good enough for simple NLP

tasks such as autocategorization of documents, it does not work

well for complex NLP tasks such as sentiment analysis, for which

context awareness is often required. Extracting concepts or mul-

tiword expressions from text has always been a “pain in the neck

for NLP” [49]. Semantic parsing and n-gram models have taken a

bottom-up approach to solve this issue by automatically extract-

ing concepts from raw data. The resulting multiword expressions,

however, are prone to errors due to both richness and ambigu-

ity of natural language. A more effective way to overcome this

hurdle is to take a top-down approach by generalizing semantically-

related concepts (e.g., sell_pizza, offer_noodles_for_sale and
vend_ice_cream and) via a set of primitives, i.e., a set of ontological

parents or more general terms (e.g., SELL_FOOD). In this way, most

concept inflections can be captured by SenticNet 6: noun concepts

like pasta, cheese_cake, steak are replaced with the primitive

FOODwhile verb concepts like offer_for_sale, put_on_sale, and
vend are all represented as the primitive SELL, which is later de-

constructed into simpler primitives, e.g., SELL(x)= BARTER(x,$),
where BARTER(x,y)= GIVE(x)∧ GET(y).

The main goal of this generalization is to get away from asso-

ciating polarity to a static list of affect keywords or multiword

expressions by letting SenticNet 6 figure out such polarity on the

fly based on the building blocks of meaning. This way, SenticNet 6

reduces the symbol grounding problem and, hence, gets one step

closer to natural language understanding. As preached by the field

of semiotics, in fact, words are “completely arbitrary signs" [18]

that we automatically and almost instinctively connect to semantic

representations in our mind. Such process is far from being auto-

matic for an AI, since it never got the chance to learn a language

or experience the world the way we did during the first years of

our existence. In order to bridge this huge gap between symbols

and meaning, we need to ground words (and their associations)

into some form of semantic representation, e.g., a structure of se-

mantic features in the Katz-Fodor semantics [28] or in Jackendoff’s

conceptual structure [26].

While this would be a formidable task for NLP research, it is still

manageable in the context of sentiment analysis because, in this

domain, the description of such features would be more connotative

than denotative. In other words, we do not need define what a

concept really is but simply what kind of emotions it generates or

evokes.
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While the set of mental primitives and the principles of mental

combination governing their interaction are potentially infinite

for NLP, in the context of sentiment analysis these are bounded

by a finite set of emotion categories and much simpler interaction

principles that lead to an either positive or negative outcome. Thus,

in this work, we leverage subsymbolic AI to automatically discover

the primitives that can better generalize SenticNet’s commonsense

knowledge. This generalization is inspired by different theories on

conceptual primitives, including Roger Schank’s conceptual depen-

dency theory [51], Ray Jackendoff’s work on explanatory semantic

representation [25], and Anna Wierzbicka’s book on primes and

universals [62], but also theoretical studies on knowledge repre-

sentation [37, 48]. All such theories claim that a decompositional

method is necessary to explore conceptualization.

In the same manner as a physical scientist understands matter

by breaking it down into progressively smaller parts, a scientific

study of conceptualization proceeds by decomposing meaning into

smaller parts. Clearly, this decomposition cannot go on forever: at

some point we must find semantic atoms that cannot be further

decomposed. In SenticNet 6, this ‘decomposition’ translates into

the generalization of words and multiword expressions into primi-

tives and subsequently superprimitives, from which they inherit a

specific set of emotions and, hence, a particular polarity.

One of the main reasons why conceptual dependency theory, and

many other symbolic methods, were abandoned in favor of subsym-

bolic techniques was the amount of time and effort required to come

up with a comprehensive set of rules. Subsymbolic techniques do

not require much time nor effort to perform classification but they

are data-dependent and function in a black-box manner (i.e., we do

not really know how and why classification labels are produced). In

this work, we leverage the representation learning power of long

short-term memory (LSTM) networks to automatically discover

primitives for sentiment analysis. The deconstruction of primitives

into superprimitives is currently a manual process: we leave the au-

tomatic (or semi-automatic) discovery of superprimitives to future

work.

A sentence S can be represented as a sequence of words, i.e.,

S = [w1,w2, ...wn ] where n is the number of words in the sen-

tence. The sentence can be split into sections such that the prefix:

[w1, ...wi−1] form the left context sentence with l words and the

suffix: [wi+1, ...wn ] form the right context sentence with r words.
Here, c = wi is the target word. In the first step, we represent these

words in a low-dimensional distributed representation, i.e., word

embeddings. Specifically, we use the pre-trained 300-dimensional

word2vec embeddings [36] trained on the 3-billion-word Google

News corpus. The context sentences and target concept can now

be represented as a sequence of word vectors, thus constituting

matrices, L ∈ Rdw×l , R ∈ Rdw×r and C ∈ Rdw×1 (dw = 300) for

left context, right context and target word, respectively.

3.1 biLSTM
To extract the contextual features from these subsentences, we use

the biLSTM model on L and C independently. Given that we repre-

sent the word vector for the t th word in a sentence as xt , the LSTM
transformation can be performed as:

X =

[
ht−1
xt

]
(1)

ft = σ (Wf .X + bf ) (2)

it = σ (Wi .X + bi ) (3)

ot = σ (Wo .X + bo ) (4)

ct = ft ⊙ ct−1 + it ⊙ tanh(Wc .X + bc ) (5)

ht = ot ⊙ tanh(ct ) (6)

where d is the dimension of the hidden representations andWi ,Wf ,

Wo ,Wc ∈ R
d×(d+dw )

, bi ,bf ,bo ∈ R
d
are parameters to be learnt

during the training (Table 1). σ is the sigmoid function and ⊙ is

element-wise multiplication. The optimal values of the d and k
were set to 300 and 100, respectively (based on experiment results

on the validation dataset). We used 10 negative samples.

When a biLSTM is employed, these operations are applied in both

directions of the sequence and the outputs for each timestep are

merged to form the overall representation for that word. Thus, for

each sentence matrix, after applying biLSTM, we get the recurrent

representation feature matrix as HLC ∈ R
2d×l

, and HRC ∈ R
2d×r

.

3.2 Target Word Representation
The final feature vector c for target word c is generated by passingC
through a multilayer neural network. The equations are as follows:

C∗ = tanh(Wa .c + ba ) (7)

c = tanh(Wb .C
∗ + bb ) (8)

where Wa ∈ R
d×dw ,Wb ∈ R

k×d ,ba ∈ R
d
and bb ∈ R

k
are

parameters (Table 1) and c ∈ Rk is the final target word vector.

3.3 Sentential Context Representation
For our model to be able to attend to subphrases which are impor-

tant in providing contexts, we incorporate an attention module on

top of our biLSTM for our context sentences. The attention module

consists of an augmented neural network having a hidden layer

followed by a softmax output (Fig. 2).

Figure 2: Overall framework for context and word embed-
ding generation.
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It generates a vector which provides weights corresponding to

the relevance of the underlying context across the sentence. Below,

we describe the attention formulation applied on the left context

sentence. HLC can be represented as a sequence of [ht ] where
t ∈ [1, l]. Let A denote the attention network for this sentence. The

attention mechanism of A produces an attention weight vector α
and a weighted hidden representation r as follows:

P = tanh(Wh .HLC ) (9)

α = so f tmax(wT .P) (10)

r = HLC .α
T

(11)

where P ∈ Rd×l ,α ∈ Rl , r ∈ R2d . And,Wh ∈ R
d×2d ,w ∈ Rd are

projection parameters (Table 1). Finally, the sentence representation

is generated as:

r∗ = tanh(Wp .r ) (12)

Here, r∗ ∈ R2d andWp ∈ R
d×2d

is the weight to be learnt while

training. This generates the overall sentential context representa-

tion for the left context sentence: ELC = r∗. Similarly, attention is

also applied to the right context sentence to get the right context

sentence ERC . To get a comprehensive feature representation of

the context for a particular concept, we fuse the two sentential con-

text representations, ELC and ERC , using a NTN [52]. It involves

a neural tensor T ∈ R2d×2d×k which performs a bilinear fusion

across k dimensions. Along with a single layer neural model, the

overall fusion can be shown as:

v = tanh(ETLC .T
[1:k ].ERC +W .

[
ELC
ERC

]
+ b) (13)

Here, the tensor product ETLC .T
[1:k ].ERC is calculated to get a

vector v∗ ∈ Rk such that each entry in the vector v∗ is calculated
as v∗i = ETLC .T

[i].ERC , where T
[i]

is the ith slice of the tensor

T . W ∈ Rk×4d and b ∈ Rk are the parameters (Table 1). The

tensor fusion network thus finally provides the sentential context

representation v.

3.4 Negative Sampling
To learn the appropriate representation of sentential context and

target word, we use word2vec’s negative sampling objective func-

tion. Here, a positive pair is described as a valid context and word

pair and the negative pairs are created by sampling random words

from a unigram distribution. Formally, our aim is to maximize the

following objective function:

Obj =
∑
c,v
(loд(σ (c.v)) +

z∑
i=1

loд(σ (−ci .v))) (14)

Here, the overall objective is calculated across all the valid word

and context pairs. We choose z invalid word-context pairs where

each −ci refers to an invalid word with respect to a context.

3.5 Context embedding using BERT
We leverage the BERT architecture [16] to obtain the sentential

context embedding of a word. BERT utilizes a transformer net-

work to pre-train a language model for extracting contextual word

embeddings. Unlike ELMo and OpenAI-GPT, BERT uses different

pre-training tasks for language modeling.

Algorithm 1 Context and target word embedding generation

1: procedure TrainEmbeddings
2: Given sentence S = [w1,w2, ...wn ] s.t.wi is target word.

3: L ← E([w1,w2, ...wi−1]) ▷ E() : word2vec embedding

4: R ← E([wi+1,w2, ...wn ])

5: C ← E(wi )

6: c←TargetWordEmbedding(C)

7: v←ContextEmbedding(L,R)

8: NegativeSampling(c, v)
9: procedure TargetWordEmbedding(C)

10: C∗ = tanh(Wa .c + ba )
11: c = tanh(Wb .C

∗ + bb )
12: return c
13: procedure ContextEmbedding(L, R)
14: HLC ← ϕ
15: ht−1 ← 0

16: for t:[1,i − 1] do
17: ht ← LSTM(ht−1,Lt )
18: HLC ← HLC ∪ ht
19: ht−1 ← ht
20: HRC ← ϕ
21: ht−1 ← 0

22: for t:[i + 1,n] do
23: ht ← LSTM(ht−1,Rt )
24: HRC ← HRC ∪ ht
25: ht−1 ← ht
26: ELC ←Attention(HLC )

27: ERC ←Attention(HRC )

28: v←NTN(ELC ,ERC )
29: return v
30: procedure LSTM(ht−1,xt )

31: X =

[
ht−1
xt

]
32: ft = σ (Wf .X + bf )
33: it = σ (Wi .X + bi )
34: ot = σ (Wo .X + bo )
35: ct = ft ⊙ ct−1 + it ⊙ tanh(Wc .X + bc )
36: ht = ot ⊙ tanh(ct )
37: return ht
38: procedure Attention(H )

39: P = tanh(Wh .H )
40: α = so f tmax(wT .P)
41: r = H .αT

42: return r
43: procedure NTN(ELC ,ERC )

44: v = tanh(ETLC .T
[1:k ].ERC +W .

[
ELC
ERC

]
+ b)

45: return v

In one of the tasks, BERT randomly masks a percentage of words

in the sentences and only predicts those masked words. In the

other task, BERT predicts the next sentence given a sentence. This

task, in particular, tries to model the relationship among two sen-

tences which is supposedly not captured by traditional bidirectional

language models.
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Figure 3: An example of primitive specification.

Consequently, this particular pre-training scheme helps BERT

to outperform state-of-the-art techniques by a large margin on

key NLP tasks such as question answering and natural language

inference where understanding the relation among two sentences

is very important. In SenticNet 6, we utilize BERT as follows:

• First, we fine-tune the pre-trained BERT network on the

ukWaC corpus [4].

• Next, we calculate the embedding for the context v. For this,
we first remove the target word c, i.e., either the verb or

noun from the sentence. The remainder of the sentence is

then fed to the BERT architecture which returns the context

embedding.

• Finally, we adopt a new similarity measure in order to find

the replacement of theword. For this, we need the embedding

of the target word which we obtain by simply feeding the

word to BERT pre-trained network. Given a target word c
and its sentential context v, we calculate the cosine distance
of all the other words in the embedding hyperspace with

both c and v. If b is a candidate word, the distance is then

calculated as:

dist(b, (c, v)) = cos(b, c) + cos(b, v) +
cos(BERT (v, b),BERT (v, c))

(15)

where BERT (v, b) is the BERT-produced embedding of the

sentence formed by replacing word c with the candidate

word b in the sentence. Similarly, BERT (v, c) is the embed-

ding of the original sentence which consists of word c.
A stricter rule to ensure high similarity between the target

and candidate word is to apply multiplication instead of

addition:

dist(b, (c, v)) = cos(b, c) · cos(b, v)·
cos(BERT (v, b),BERT (v, c))

(16)

We rank the candidates as per their cosine distance and

generate the list of possible lexical substitutes.

First, we extract all the concepts of the form verb-noun and

adjective-noun present in ConceptNet 5 [54]. An example sentence

for each of these concepts is also extracted. Then, we take one word

from the concept (either a verb/adjective or a noun) to be the target

word and the remaining sentence serves as the context.

The goal now is to find a substitute for the target word having

the same parts of speech in the given context. To achieve this, we

obtain the context and target word embeddings (v and c) from the

joint hyperspace of the network. For all possible substitute words b,
we then calculate the cosine similarity using equation 16 and rank

them using this metric for possible substitutes. This substitution

leads to new verb-noun or adjective-noun pairs which bear the

same conceptual meaning in the given context. The context2vec

code for primitive discovery is available on our github
1
.

4 PRIMITIVE SPECIFICATION
The deep learning framework described in the previous section

allows for the automatic discovery of concept clusters that are se-

mantically related and share a similar lexical function. The label

of each of such cluster is a primitive and it is assigned by select-

ing the most typical of the terms. In the verb cluster {increase,
enlarge, intensify, grow, expand, strengthen, extend,
widen, build_up, accumulate...}, for example, the term with the

highest occurrence frequency in text (the one people most com-

monly use in conversation) is increase.
Hence, the cluster is named after it, i.e., labeled by the prim-

itive INCREASE and later defined either via symbolic logic, e.g.,

INCREASE(x) = x + a(x), where a(x) is an undefined quantity

related to x , or in terms of polar transitions, e.g., INCREASE: LESS
→ MORE (Fig. 3). Symbolic logic is usually used to define super-

primitives or neutral primitives. Polar transitions are used to define

polarity-bearing verb primitives in terms of polar state change

(from positive to negative and vice versa) via a ying-yang kind of

clustering [64].

In both cases, the goal is to define the connotative information

associated with primitives and, hence, associate a polarity to them

(explained in the next section). Such a polarity is later transferred

to words and multiword expressions via a four-layered knowledge

representation (Fig. 4).

1
http://github.com/senticnet/context2vec

Parameters

Weights

Wi ,Wf ,Wo ,Wc ∈ Rd×(d+dw ) Wp ∈ Rd×2d

Wb ∈ Rk×d Bias

Wa ∈ Rd×dw bi ,bf ,bo ∈ Rd

T ∈ R2d×2d×k ba ∈ Rd

Wh ∈ Rd×2d b ∈ Rk

W ∈ Rk×4d bb ∈ Rk

w ∈ Rd

Hyperparameters

d dimension of LSTM hidden unit

k NTN tensor dimension

z negative sampling invalid pairs

Table 1: Summary of notations used inAlgorithm1. Note:dw
is the word embedding size. All the hyperparameters were
set using random search [5].
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Figure 4: SenticNet 6’s dependency graph structure.

In this representation, in particular, named entities are linked to

commonsense concepts by IsA relationships from IsaCore [11], a

large subsumption knowledge base mined from 1.68 billion web-

pages. Commonsense concepts are later generalized into primitives

by means of deep learning (as explained in the previous section).

Primitives are finally deconstructed into superprimitives, basic

states and actions that are defined by means of first order logic, e.g.,

HAVE(subj,obj)= ∃ obj @ subj.

4.1 Key Polar State Specification
In order to automatically discover words and multiword expres-

sions that are both semantically and affectively related to key polar

states such as EASY versus HARD or STABLE versus UNSTABLE, we
use AffectiveSpace [7], a vector space of affective commonsense

knowledge built by means of semantic multidimensional scaling.

By exploiting the information sharing property of random projec-

tions, AffectiveSpace maps a dataset of high-dimensional semantic

and affective features into a much lower-dimensional subspace in

which concepts conveying the same polarity and similar meaning

fall near each other. In past works, this vector space model has been

used to classify concepts as positive or negative by calculating the

dot product between new concepts and prototype concepts.

In this case, rather than a distance, we need a discrete path

between a key polar state and its opposite (e.g., CLEAN and DIRTY)
throughout the vector space manifolds. While the shortest path (in

a k-means sense) between two polar states in AffectiveSpace risks

to include many irrelevant concepts, in fact, a path that follows

the topological structure of the vector space from one state to its

antithetic partner is more likely to contain concepts that are both

semantically and affectively relevant. To calculate such a path, we

use regularized k-means (RKM) [20], a novel algorithm that finds a

morphism between a given point set and two reference points in a

vector space X ∈ Rd where d ∈ N+ by exploiting the information

provided by the available data.

Such morphism is described as a discrete path, composed by a

set of prototypes selected based on the data manifolds. Consider

a set of points X = {x j ∈ Rd }, j = 1, ...,N and two points w0

andwNc ∈ R
d
. The path connecting the two pointsw0 andwNc+1

is described as an ordered setW of Nc prototypes w ∈ Rd . Such
path is found by minimizing standard k-means cost function with

the addition of a regularization term that considers the distance

between ordered centroids.

The cost function can be formalized as:

min

W

γ

2

N∑
i=1

Nc∑
j=1
∥x i −w j ∥

2δ (ui , j) +
λ

2

Nc∑
i=0
∥wi+1 −wi ∥

2
(17)

where ui is the datum cluster.

The novel cost function is composed of two terms weighted by

the hyper-parameters γ and λ:

Ω(W ,u,X ,γ , λ) = γΩX (W ,u,X ) + λΩW (W ). (18)

The first term coincides with the standard k-means cost func-

tion while the second one induces a path topology based on the

centroids ordering and controls the level of smoothness of the path.
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Figure 5: Hyper-parameters influence in the shape of the
path.

Fig. 5 proposes a graphical example of the algorithm’s behavior

for different values of the regularization hyper-parameters: data

are represented as blue dots and centroids as crosses; the blue line

refers to a configuration in which the first cost function term is

prominent; the green one to a configuration where the second term

of the cost function is preponderant; finally, the red line refers to a

configuration with a good trade-off between the two.

In our case, letC be the set of N concepts belonging to a specific

primitive cluster and let {x1, ..,xN } ∈ R
d
their projections induced

by embedding F . Additionally, let pstar t , pend ∈ C be the two key

polar states corresponding to the two extremes of the path under

analysis. Accordingly, RKM is used to identify the path that connects

pstar t with pend in AffectiveSpace. Thus, the algorithm’s output

is the list of intermediate concepts that characterize the transition

induced by the data distribution.

Because positive and negative concepts are found in diametri-

cally opposite zones of the space, we expect the paths calculated

by means of RKM to traverse AffectiveSpace from one end to the

other. This ensures the discovery of enough concepts that are both

semantically and affectively related to both polar states. Towards

the center of the space, however, there are many low-intensity (al-

most neutral) concepts. Hence, we only consider the first 20 nearest

concepts to each polar state within the discovered morphism. If

we set pstar t = CLEAN and pend = DIRTY, for example, we only as-

sign the first 20 concepts of the path (e.g., cleaned, spotless, and
immaculate) to pstar t and the last 20 concepts of the path (e.g.,

filthy, stained, and soiled) to pend .
We also use this morphism to assign emotion labels to key polar

states, based on the average distance (dot product) between the con-

cepts of the path (the first 20 and the last 20, respectively) and the

key concepts in AffectiveSpace that represent emotion labels (posi-

tive and negative, respectively) of the Hourglass of Emotions [56],

an emotion categorization model for sentiment analysis consist-

ing of 24 basic emotions organized around four independent but

concomitant affective dimensions (Fig. 6).

In the previous example, for instance, CLEAN would be assigned

the label pleasantness because it is the nearest emotion concept to

cleaned, spotless, immaculate, etc. on average. Likewise, DIRTY
would be assigned the label disgust because it is the nearest emo-

tion concept to filthy, stained, soiled, etc. on average.

This way, key polar states get mapped to emotion categories

of the Hourglass model and, by the transitive property, all the

concepts connected to such states inherit the same emotion and

polarity classification (Fig. 7).

5 EXPERIMENTS
In this section, we evaluate the performance of both the subsymbolic

and symbolic segments of SenticNet 6 (the former being the deep

learning framework for primitive discovery, the latter being the

logic framework for primitive specification) on 9 different datasets.

5.1 Subsymbolic Evaluation
In order to evaluate the performance of our context2vec framework

for primitive discovery, we employed it to solve the problem of

lexical substitution. We used ukWaC as the training corpus. We

removed sentences with length greater than 80 (which resulted

in a 7% reduction of the corpus), lower-cased text, and removed

tokens with low occurrence. Finally, we were left with a corpus of

173,000 words. As for lexical substitution evaluation datasets, we

used the LST-07 dataset from the lexical substitution task of the

2007 Semantic Evaluation (SemEval) challenge [34] and the 15,000

target word all-words LST-14 dataset from SemEval-2014 [30].
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Figure 6: The Hourglass of Emotions.
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Figure 7: A sketch of SenticNet 6’s semantic network.

The first one comes with a 300-sentence dev set and a 1710-

sentence test set split; the second one comes with a 35% and 65%

split, which we used as the dev set and test set, respectively. The

performance is measured using generalized average precision in

which we rank the lexical substitutes of a word based on the cosine

similarity score calculated among a substitution and the context

embedding. This ranking is compared to the gold standard lexical

substitution ranking provided in the dataset.

Model LST-07 [34] LST-14 [30]

Baseline 1 52.35% 50.05%

Baseline 2 55.10% 53.60%

Context2vec 59.48% 57.32%

Table 2: Comparison between our approach and two base-
lines on two datasets for lexical substitution.

The performance of this approach is shown in Table 2, in which

we compare it with two baselines. Baseline 1 has been implemented

by training the skipgram model on the learning corpus and then

simply taking the average of the words present in the context as

context representation. The cosine similarity among this context

representation and the target word embeddings is calculated to

find a match for the lexical substitution. Baseline 2 is a model

proposed by [35] to find lexical substitution of a target based on

skipgram word embeddings and incorporating syntactic relations

in the skipgram model.

5.2 Symbolic Evaluation
As mentioned earlier, the deconstruction of primitives into super-

primitives is currently performed manually and, hence, it does not

require evaluation. Therefore, we only evaluate the quality of key

polar state specification using RKM (as shown in Table 3) in compar-

ison with k-means and sentic medoids [8] on a LiveJournal corpus

of 5,000 concepts (LJ-5k).

Model LJ-5k

K-means 77.91%

Sentic medoids 82.76%

RKM 91.54%

Table 3: Comparison between RKM and two baselines on a
dataset for concept polarity detection.

5.3 Ensemble Evaluation
We tested SenticNet 6 (available both as a standalone XML reposi-

tory
2
and as an API

3
) against six commonly used benchmarks for

sentence-level sentiment analysis, namely: STS [50], an evaluation

dataset for Twitter sentiment analysis developed in 2013 consisting

of 1,402 negative tweets and 632 positive ones; SST [53], a dataset

built in 2013 consisting of 11,855 movie reviews and containing

4,871 positive sentences and 4,650 negative ones; SemEval-2013 [40],

a dataset consisting of 2,186 negative and 5,349 positives tweets

constructed for the Twitter sentiment analysis task (Task 2) in the

2013 SemEval challenge; SemEval-2015 [47], a dataset built for Task

10 of SemEval 2015 consisting 15,195 tweets and containing 5,809

positive sentences and 2,407 negative ones; SemEval-2016 [39], a

dataset constructed in 2016 for Task 4 of the SemEval challenge

consisting of 17,639 tweets about 100 topics and containing 13,942

positive sentences and 3,697 negative ones; finally, Sanders [2], a

dataset consisting of 5,512 tweets on four different topics of which

654 are negative and 570 positive.

We used these six datasets to compare SenticNet 6 with 15 pop-

ular sentiment lexica, namely: ANEW [6], a list of 1,030 words

created in 1999; WordNet-Affect [55], an extension of WordNet

made of 4,787 words developed in 2004; Opinion Lexicon [22], a

lexicon of 6,789 words built in the same year by means of opin-

ion word extraction from product reviews; Opinion Finder [63],

a lexicon of 8,221 words created in 2005 using a polarity classi-

fier; Micro WNOp [12], a lexicon of 5,636 words created in 2007;

Sentiment140 [21], a lexicon of 62,466 words developed in 2009;

SentiStrength [59] and SentiWordNet [3], two lexica created in

2010 consisting of 2,546 and 23,089 words, respectively; General

Inquirer [57], a lexicon of 8,639 words with 1,916 of them contain-

ing polarity built in 2011; AFINN [41], a lexicon of 2,477 words

constructed in the same year; EmoLex [38], a lexicon of 5,636 words

built in 2013; NRC HS Lexicon [67] and VADER [23], two lexica

developed in 2014 containing 54,128 and 7,503 words, respectively;

MPQA [15], a lexicon of 8,222 words built in 2015; finally, Sentic-

Net 5, the predecessor of SenticNet 6, a knowledge base of 100,000

commonsense concepts.

We set the experiment as a binary classification problem so the

labels of both datasets and lexica were reduced to simply positive

versus negative. To be fair to all lexica, two basic linguistic pat-

terns [45] were used, namely: negation and adversative patterns.

If we do not apply such patterns, in fact, sentences like “The car

is very old but rather not expensive” would be wrongly classified

by all lexica although most of them correctly list both ‘old’ and

‘expensive’ as negative (Fig. 8).

2
http://sentic.net/downloads

3
http://sentic.net/api
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Model Year SST Dataset [53] STS Dataset [50] SemEval-2013 [40] SemEval-2015 [47] SemEval-2016 [39] Sanders [2]

ANEW [6] 1999 31.21% 36.77% 42.72% 33.13% 42.20% 27.70%

WordNet-Affect [55] 2004 04.51% 11.98% 03.82% 03.27% 03.53% 05.64%

Opinion Lexicon [22] 2004 54.21% 60.72% 41.00% 43.15% 37.83% 54.33%

Opinion Finder [63] 2005 53.60% 55.71% 47.50% 43.97% 46.75% 46.98%

Micro WNOp [12] 2007 15.45% 18.94% 19.13% 16.97% 17.85% 15.36%

Sentiment140 [21] 2009 55.75% 67.69% 45.67% 50.92% 41.70% 64.95%
SentiStrength [59] 2010 36.76% 51.53% 37.28% 41.51% 33.97% 44.85%

SentiWordNet [3] 2010 50.19% 48.75% 50.15% 50.31% 49.62% 43.55%

General Inquirer [57] 2011 25.91% 11.14% 16.06% 12.47% 16.78% 10.29%

AFINN [41] 2011 44.81% 58.50% 43.82% 44.99% 40.13% 53.19%

EmoLex [38] 2013 46.94% 47.63% 45.12% 42.33% 42.38% 44.12%

NRC HS Lexicon [67] 2014 47.90% 49.86% 28.56% 42.54% 25.28% 54.33%

VADER [23] 2014 50.72% 64.90% 50.36% 49.08% 45.93% 57.27%
MPQA [15] 2015 53.71% 55.43% 46.75% 43.97% 45.42% 46.57%

SenticNet 5 [10] 2018 53.61% 55.71% 68.17% 56.03% 70.80% 48.37%

SenticNet 6 2020 75.43% 83.82% 81.79% 80.19% 82.23% 77.62%

Table 4: Comparison with 15 popular lexica on 6 benchmark datasets for sentiment analysis (top 3 results in bold).

Since most of the datasets we used are for Twitter sentiment

analysis, initially we also wanted to apply microtext normalization

to all sentences before processing them through the lexica. If we did

that, however, we should have also applied many other NLP tasks

required for proper polarity detection [9], e.g., anaphora resolution

and sarcasm detection, so eventually we refrained from doing so.

Classification results are shown in Table 4. SenticNet 6 was the

best-performing lexicon mostly because of its bigger size (200,000

words and multiword expressions). Most of the classification errors

made by other lexica, in fact, were due to a missing entry in the

knowledge base. Most of the sentences misclassified by SenticNet 6,

instead, were using sarcasm or contained microtext.

6 CONCLUSION
In the past, SenticNet has been employed for many different tasks

other than polarity detection, e.g., recommendation systems [24],

stock market prediction [31], political forecasting [46], irony de-

tection [60], drug effectiveness measurement [42], depression de-

tection [14], mental health triage [1], vaccination behavior detec-

tion [27], psychological studies [29], and more.

Figure 8: Sentiment data flow for the sentence “The car is
very old but rather not expensive” using linguistic patterns.

To enhance the accuracy of all such tasks, we propose a new

version of SenticNet built using an approach to knowledge rep-

resentation that is both top-down and bottom-up: top-down for

the fact that it leverages symbolic models (i.e., logic and semantic

networks) to encode meaning; bottom-up because it uses subsym-

bolic methods (i.e., biLSTM and BERT) to implicitly learn syntactic

patterns from data. We believe that coupling symbolic and subsym-

bolic AI is key for stepping forward in the path from NLP to natural

language understanding. Machine learning is only useful to make

a ‘good guess’ based on past experience because it simply encodes

correlation and its decision-making process is merely probabilistic.

As professed by Noam Chomsky, natural language understanding

requires much more than that: “you do not get discoveries in the

sciences by taking huge amounts of data, throwing them into a

computer and doing statistical analysis of them: that’s not the way

you understand things, you have to have theoretical insights”.
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