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Abstract

With the recent development of deep learning, research in
AI has gained new vigor and prominence. While machine
learning has succeeded in revitalizing many research fields,
such as computer vision, speech recognition, and medical di-
agnosis, we are yet to witness impressive progress in natural
language understanding. One of the reasons behind this un-
matched expectation is that, while a bottom-up approach is
feasible for pattern recognition, reasoning and understanding
often require a top-down approach. In this work, we couple
sub-symbolic and symbolic AI to automatically discover con-
ceptual primitives from text and link them to commonsense
concepts and named entities in a new three-level knowledge
representation for sentiment analysis. In particular, we em-
ploy recurrent neural networks to infer primitives by lexical
substitution and use them for grounding common and com-
monsense knowledge by means of multi-dimensional scaling.

Introduction

Recently, AI has been the acronym on everyone’s lips. Al-
though nobody knows when the so-called AI revolution will
actually take place, the AI gold rush has become increas-
ingly intense in the past few years. Most of what is con-
sidered AI today is actually sub-symbolic AI, i.e., machine
learning: an extremely powerful tool for exploring large
amounts of data and, for instance, making predictions, sug-
gestions, and categorizations based on them. Machine learn-
ing, however, suffers from three big issues, namely:

1. Dependency: it requires (a lot of) training data and is
domain-dependent;

2. Consistency: different training or tweaking leads to dif-
ferent results;

3. Transparency: the reasoning process is unintelligible
(black-box algorithms).
In the context of natural language processing (NLP), these

issues are particularly crucial because, unlike in other fields,
they prevent AI from achieving human-like performance. To
this end, AI researchers need to bridge the gap between sta-
tistical NLP and many other disciplines that are necessary
for understanding human language, such as linguistics, com-
monsense reasoning, and affective computing.
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They will have to develop an approach to NLP that is both
top-down and bottom-up: top-down for the fact that they
should leverage symbolic models (e.g., semantic networks)
to encode meaning; bottom-up because they should use sub-
symbolic methods (e.g., neural networks) to infer syntactic
patterns from data. Coupling symbolic and sub-symbolic AI
is key for stepping forward in the path from NLP to nat-
ural language understanding. Relying solely on machine
learning, in fact, is simply useful to make a ‘good guess’
based on past experience, because sub-symbolic methods
only encode correlation and their decision-making process is
merely probabilistic. Natural language understanding, how-
ever, requires much more than that. To use Noam Chom-
sky’s words, “you do not get discoveries in the sciences by
taking huge amounts of data, throwing them into a computer
and doing statistical analysis of them: that’s not the way you
understand things, you have to have theoretical insights”.

In this work, we propose an ensemble of symbolic and
sub-symbolic AI techniques to perform sentiment analysis,
a NLP problem that has raised growing interest within both
the scientific community, for the many exciting open chal-
lenges, as well as the business world, due to the remark-
able benefits to be had from marketing and financial pre-
diction (Cambria et al. 2017). In particular, we employ a
long short-term memory (LSTM) network (Hochreiter and
Schmidhuber 1997) to discover verb-noun primitives by lex-
ical substitution, and, hence, build a new three-level knowl-
edge representation for sentiment analysis, termed Sentic-
Net 5. SenticNet 5 encodes the denotative and connotative
information commonly associated with real-world objects,
actions, events, and people. It steps away from blindly using
keywords and word co-occurrence counts, and instead relies
on the implicit meaning associated with commonsense con-
cepts. Superior to purely syntactic techniques, SenticNet 5
can detect subtly expressed sentiments by enabling the anal-
ysis of multiword expressions that do not explicitly convey
emotion, but are instead related to concepts that do so.

The rest of the paper is organized as follows: firstly, we
present related works in the field of sentiment analysis and
explain the importance of conceptual primitives for this task;
secondly, we describe in detail how to discover primitives
and how to link them to concepts and entities; finally, we
propose experimental results on several benchmark datasets
and provide concluding remarks.
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Related Work

Sentiment analysis systems can be broadly categorized into
knowledge-based and statistics-based systems.While the use
of knowledge bases was initially more popular for the iden-
tification of sentiment polarity in text, recently sentiment
analysis researchers have been increasingly using statistics-
based approaches, with a special focus on supervised sta-
tistical methods. Pang et al. (Pang, Lee, and Vaithyanathan
2002) pioneered this trend by comparing the performance
of different machine learning algorithms on a movie review
dataset and obtained 82% accuracy for polarity detection.

A recent approach by Socher et al. (Socher et al. 2013b)
obtained 85% accuracy on the same dataset using a recursive
neural tensor network (NTN). Yu and Hatzivassiloglou (Yu
and Hatzivassiloglou 2003) used semantic orientation of
words to identify polarity at sentence level. Melville et
al. (Melville, Gryc, and Lawrence 2009) developed a frame-
work that exploits word-class association information for
domain-dependent sentiment analysis.

More recent studies exploit microblogging text or Twitter-
specific features such as emoticons, hashtags, URLs, @sym-
bols, capitalizations, and elongations to enhance sentiment
analysis of tweets. Tang et al. (Tang et al. 2014a) used a
convolutional neural network (CNN) to obtain word embed-
dings for words frequently used in tweets and Dos Santos
et al. (dos Santos and Gatti 2014) employed a deep CNN
for sentiment detection in short texts. Recent approaches
also focus on developing word embeddings based on senti-
ment corpora (Tang et al. 2014b). Such word vectors include
more affective clues than regular word vectors and produce
better results for tasks such as emotion recognition (Poria et
al. 2017), sarcasm detection (Poria et al. 2016) and aspect
extraction (Poria, Cambria, and Gelbukh 2016).

By relying on large semantic knowledge bases, such ap-
proaches step away from the blind use of keywords and
word co-occurrence counts, relying instead on the implicit
features associated with natural language concepts. Unlike
purely syntactic techniques, concept-based approaches are
also able to detect sentiments expressed in a subtle manner;
e.g., through the analysis of concepts that do not explicitly
convey any emotion, but which are implicitly linked to other
concepts that do so.

The bag-of-concepts model can represent semantics as-
sociated with natural language much better than bag-of-
words. In the latter, in fact, concepts like pretty ugly
or sad smile would be split into two separate words, dis-
rupting both semantics and polarity of the input sentence.

The Importance of Conceptual Primitives

The main limitation of concept-level sentiment analysis and
the bag-of-concepts model is that they cannot achieve a
comprehensive coverage of meaningful concepts, i.e., a full
list of multiword expressions that actually make sense (e.g.,
verb-noun pairs). Semantic parsing and n-gram models have
taken a bottom-up approach to solve this issue by automati-
cally extracting concepts from raw data. The resulting mul-
tiword expressions, however, are prone to errors due to both
richness and ambiguity of natural language.

A more effective way to overcome this hurdle is to take
a top-down approach by generalizing semantically-related
concepts, such as munch toast and slurp noodles,
into a conceptual primitive, such as EAT FOOD. In this way,
most concept inflections can be captured by the knowledge
base: verb concepts like ingest, slurp, munch are all
represented by their conceptual primitive EAT while noun
concepts like pasta, noodles, steak are replaced with
their ontological parent FOOD. The idea behind this gener-
alization is that there is a finite set of mental primitives for
affect-bearing concepts and a finite set of principles of men-
tal combination governing their interaction.

It is inherent to human nature to try to categorize things,
events and people, finding patterns and forms they have in
common. One of the most intuitive ways to relate two en-
tities is through their similarity. According to Gestalt the-
ory (Smith 1988), similarity is one of six principles that
guide human perception of the world. Similarity is a qual-
ity that makes one thing or person like another and ‘similar’
means having characteristics in common. There are many
ways in which objects can be perceived as similar, based on
things like color, shape, size and texture. If we move away
from mere visual stimuli, we can apply the same principles
to define similarity between concepts based on shared se-
mantic features. Previous versions of SenticNet exploited
this principle to cluster natural language concepts sharing
similar affective properties (Cambria et al. 2015). Finding
groups of similar concepts, however, does not ensure full
coverage of all possible semantic inflections of multiword
expressions.

In this work, we leverage sub-symbolic AI to automati-
cally discover the conceptual primitives that can better gen-
eralize SenticNet’s commonsense knowledge. This general-
ization is inspired by different theories on conceptual primi-
tives (Schank 1972; Jackendoff 1976; Wierzbicka 1996), but
also theoretical studies on knowledge representation (Min-
sky 1975; Rumelhart and Ortony 1977). All such theories
claim that a decompositional method is necessary to explore
conceptualization.

In the same manner a physical scientist understands mat-
ter by breaking it down into progressively smaller parts, a
scientific study of conceptualization proceeds by decompos-
ing meaning into smaller parts. Clearly, this decomposition
cannot go on forever: at some point we must find semantic
atoms that cannot be further decomposed. This is the level
of conceptual structure; mental representation that encodes
basic understanding and commonsense by means of primi-
tive conceptual elements out of which meanings are built.

In SenticNet, this ‘decomposition’ translates into the gen-
eralization of multiword expressions that convey a specific
set of emotions and, hence, carry a particular polarity. The
motivation behind this process of generalization is that there
are countless ways to express the same concept in natural
language and having a comprehensive list of all the possible
concept inflections is almost impossible. While lexical in-
flections such as conjugation and declension can be solved
with lemmatization, semantic inflections such as the use of
synonyms or semantically-related concepts need to be tack-
led by conceptual dependency and analogical reasoning.
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One of the main reasons why conceptual dependency the-
ory, and many other symbolic methods, were abandoned
in favor of sub-symbolic techniques was the amount of
time and effort required to come up with a comprehensive-
enough set of rules. Sub-symbolic techniques do not require
much time nor effort to perform classification but they are
data-dependent and function in a black-box manner (i.e., we
do not really know how and why classification labels are
produced). In this work, leverage the generalization power
of recurrent neural networks to automatically discover con-
ceptual primitives for sentiment analysis.

This is not only useful for extending the coverage of Sen-
ticNet (100,000 concepts) but also interesting because it rep-
resents one of the first efforts to merge symbolic and sub-
symbolic AI in the context of sentiment analysis. In particu-
lar, we exploit an ensemble of bottom-up data-driven infer-
ence (word embeddings and recurrent neural networks) and
top-down knowledge representation (conceptual primitives
and semantic networks) for polarity detection from text.

Discovering Primitives

A sentence S can be represented as a sequence of words, i.e.,
S = [w1, w2, ...wn] where n is the number of words in the
sentence. The sentence can be split into sections such that
the prefix: [w1, ...wi−1] form the left context sentence with
l words and the suffix: [wi+1, ...wn] form the right context
sentence with r words. Here, c = wi is the target word.

In the first step, we represent these words in a low-
dimensional distributed representation known as word em-
beddings. Specifically, we use the pre-trained 300-
dimensional word2vec embeddings provided by (Mikolov et
al. 2013) trained on the 3-billion-word Google News corpus.
Our context sentences and target concept can now be repre-
sented as a sequence of word vectors, thus constituting ma-
trices, L ∈ Rdw×l, R ∈ Rdw×r and C ∈ Rdw×1 (dw = 300)
for left context, right context and target word, respectively.

biLSTM

To extract the contextual features from these subsentences,
we use the biLSTM model on L and C independently. Given
that we represent the word vector for the tth word in a sen-
tence as xt, the LSTM transformation can be performed as:

X =

[
ht−1

xt

]
(1)

ft = σ(Wf .X + bf ) (2)
it = σ(Wi.X + bi) (3)
ot = σ(Wo.X + bo) (4)

ct = ft � ct−1 + it � tanh(Wc.X + bc) (5)
ht = ot � tanh(ct) (6)

where d is the dimension of the hidden representations
and Wi,Wf ,Wo,Wc ∈ R

d×(d+dw), bi, bf , bo ∈ R
d are

parameters to be learnt during the training (Table 1). σ is
the sigmoid function and � is element-wise multiplication.
The optimal values of the d and k were set to 300 and 100,
respectively (based on experiment results on the validation
dataset). We used 10 negative samples.

Figure 1: Overall framework for context and word embed-
ding generation.

When a biLSTM is employed, these operations are ap-
plied in both directions of the sequence and the outputs for
each timestep are merged to form the overall representation
for that word. Thus, for each sentence matrix, after applying
biLSTM, we get the recurrent representation feature matrix
as HLC ∈ R2d×l, and HRC ∈ R2d×r.

Target Word Representation

The final feature vector c for target word c is generated by
passing C through a multilayer neural network. The equa-
tions are as follows:

C∗ = tanh(Wa.C + ba) (7)
c = tanh(Wb.C

∗ + bb) (8)

where Wa ∈ Rd×dw ,Wb ∈ Rk×d, ba ∈ Rd and bb ∈ Rk

are parameters (Table 1) and c ∈ Rk is the final target word
vector.

Sentential Context Representation

For our model to be able to attend to subphrases which are
important in providing context, we incorporate an attention
module on top of our biLSTM for our context sentences.
The attention module consists of an augmentary neural net-
work having a hidden layer followed by a softmax output
(Fig. 1). It generates a vector which provides weights cor-
responding to the relevance of the underlying context across
the sentence. Below, we describe the attention formulation
applied on the left context sentence.
HLC can be represented as a sequence of [ht] where t ∈

[1, l]. Let A denote the attention network for this sentence.
The attention mechanism of A produces an attention weight
vector α and a weighted hidden representation r as follows:

P = tanh(Wh.HLC) (9)

α = softmax(wT .P ) (10)

r = HLC .α
T (11)

where, P ∈ R
d×l, α ∈ R

l, r ∈ R
2d. And, Wh ∈

R
d×2d, w ∈ R

d are projection parameters (Table 1).
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Finally, the sentence representation is generated as:

r∗ = tanh(Wp.r) (12)

Here, r∗ ∈ R
2d and Wp ∈ R

d×2d is the weight to be
learnt while training. This generates the overall sentential
context representation for the left context sentence: ELC =
r∗. Similarly, attention is also applied to the right context
sentence to get ERC .

To get a comprehensive feature representation of the con-
text for a particular concept, we fuse the two sentential con-
text representations, ELC and ERC , using a neural tensor
network (Socher et al. 2013a). It involves a neural tensor
T ∈ R2d×2d×k which performs a bilinear fusion across k
dimensions. Along with a single layer neural model, the
overall fusion can be shown as:

v = tanh(ET
LC .T

[1:k].ERC +W.

[
ELC

ERC

]
+ b) (13)

Here, the tensor product ET
LC .T

[1:k].ERC is calculated to
get a vector v∗ ∈ Rk such that each entry in the vector v∗ is
calculated as v∗

i = ET
LC .T

[i].ERC , where T [i] is the ith slice
of the tensor T . W ∈ Rk×4d and b ∈ Rk are the parameters
(Table 1). The tensor fusion network thus finally provides
the sentential context representation v.

Negative Sampling

To learn the appropriate representation of sentential context
and target word, we use word2vec’s negative sampling ob-
jective function. Here, a positive pair is described as a valid
context and word pair and the negative pairs are created by
sampling random words from a unigram distribution. For-
mally, the objective function can be defined as:

Obj =
∑
c,v

(log(σ(c.v)) +

z∑
i=1

log(σ(−ci.v))) (14)

Here, the overall objective is calculated across all the valid
word and context pairs. We choose z invalid word-context
pairs where each −ci refers to an invalid word with respect
to a context.

Similarity Index

Once the joint embeddings of the target words and their re-
spective sentential contexts are generated, substitution can
be effectively performed. Our approach is based on the as-
sumption that a relevant lexical substitute should be both se-
mantically similar to the target word and have similar con-
textual background.

Thus, given a target word c and its sentential context v,
we calculate the cosine distance of all the other words in the
embedding hyperspace with both c and v. If b is a candidate
word, the distance is then calculated as:

dist(b, (c, v) = cos(b, c) + cos(b, v) (15)

A stricter rule to ensure high similarity between the target
and candidate word is to apply multiplication instead of ad-
dition:

dist(b, (c, v) = cos(b, c).cos(b, v) (16)

Parameters
Weights

Wi,Wf ,Wo,Wc ∈ R
d×(d+dw) Wp ∈ R

d×2d

Wb ∈ Rk×d Bias
Wa ∈ Rd×dw bi, bf , bo ∈ R

d

T ∈ R2d×2d×k ba ∈ Rd

Wh ∈ R
d×2d b ∈ Rk

W ∈ Rk×4d bb ∈ Rk

w ∈ R
d

Hyperparameters
d dimension of LSTM hidden unit
k NTN tensor dimension
z negative sampling invalid pairs

Table 1: Summary of notations used in Algorithm 1. Note:
dw is the word embedding size. All the hyperparameters
were set using Random Search (Bergstra and Bengio 2012).

We rank the candidates as per their cosine distance and
generate the list of possible lexical substitutes. First, we ex-
tract all the concepts of the form verb-noun and adjective-
noun present in ConceptNet 5. An example sentence for
each of these concepts is also extracted. Then, we take one
word from the concept (either a verb/adjective or a noun) to
be the target word and the remainder sentence acts as the
context. The goal now is to find a substitute for the target
word having same parts of speech in the given context.

To achieve this, we obtain the context and target word em-
beddings (v and c) from the joint hyperspace of the network.
For all possible substitute words b, we then calculate the
cosine similarity using equation (16) and rank them using
this metric for possible substitutes. This substitution leads to
new verb-noun or adjective-noun pairs which bear the same
conceptual meaning in the given context.

Linking Primitives to Concepts and Entities

The deep learning framework described in the previous sec-
tion allows for the automatic discovery of concept clusters
that are semantically related and share a similar lexical func-
tion. The label of each of such cluster is a conceptual prim-
itive. The deep framework will not name the clusters au-
tomatically so the definition of a conceptual primitive will
have to be performed either manually or by automatically
selecting the most typical of the terms.

In the verb cluster {munch, eat, dine, devour,
slurp, ingest, ...}, for example, the term with the
highest occurrence frequency in text (the one people most
commonly use in conversation) is the second (eat). Hence,
the cluster will be named as EAT and this label will serve as
the conceptual primitive to identify the cluster. Thanks to the
similarity index, each concept will be assigned to only one
cluster (based on highest dot product). These newly discov-
ered clusters will translate into special links to traverse the
knowledge graph from Concept Level to Primitive Level.

SenticNet 5 is a three-level semantic network: the Primi-
tive Level is where basic states and actions (and the interac-
tions between them) are defined by means of primitives; the
Concept Level is where commonsense concepts are inter-
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Algorithm 1 Context and target word embedding generation
1: procedure TRAINEMBEDDINGS
2: Given sentence S = [w1, w2, ...wn] s.t. wi is target word.
3: L ← E([w1, w2, ...wi−1]) � E() : word2vec embedding
4: R ← E([wi+1, w2, ...wn])
5: C ← E(wi)
6: c ←TargetWordEmbedding(C)
7: v ←ContextEmbedding(L,R)
8: NegativeSampling(c, v)

9: procedure TARGETWORDEMBEDDING(C)
10: C∗ = tanh(Wa.C + ba)
11: c = tanh(Wb.C

∗ + bb)
12: return c

13: procedure CONTEXTEMBEDDING(L, R)
14: HLC ← φ
15: ht−1 ← 0
16: for t:[1,i− 1] do
17: ht ← LSTM(ht−1, Lt)
18: HLC ← HLC ∪ ht

19: ht−1 ← ht

20: HRC ← φ
21: ht−1 ← 0
22: for t:[i+ 1,n] do
23: ht ← LSTM(ht−1, Rt)
24: HRC ← HRC ∪ ht

25: ht−1 ← ht

26: ELC ←Attention(HLC )
27: ERC ←Attention(HRC )
28: v ←NTN(ELC , ERC )
29: return v

30: procedure LSTM(ht−1,xt)

31: X =

[
ht−1

xt

]

32: ft = σ(Wf .X + bf )
33: it = σ(Wi.X + bi)
34: ot = σ(Wo.X + bo)
35: ct = ft � ct−1 + it � tanh(Wc.X + bc)
36: ht = ot � tanh(ct)
37: return ht

38: procedure ATTENTION(H)
39: P = tanh(Wh.H)
40: α = softmax(wT .P )
41: r = H.αT

42: return r

43: procedure NTN(ELC , ERC )

44: v = tanh(ET
LC .T

[1:k].ERC +W.

[
ELC

ERC

]
+ b)

45: return v

connected through semantic relationships; finally, the Entity
Level is a layer of named entities that are linked to common-
sense concepts by IsA relationships.

While developing a knowledge representation of this kind
for general commonsense reasoning would be a formidable
task, it is feasible in the context of sentiment analysis be-
cause we only aim to encode subjective commonsense con-
cepts, i.e., concepts that convey either positive or negative
polarity.

For SenticNet 5, in particular, we focus on polarity-
bearing states, e.g., INTACT, and result verbs that modify
such states, e.g., BREAK and FIX (Fig. 2). The clusters dis-
covered by means of deep learning are exploited to link such
primitives to their lexical substitutes (commonsense knowl-
edge) in the Concept Level. In turn, commonsense concepts
are linked to named entities (common knowledge1) in the
Entity Level. While this does not solve the symbol ground-
ing problem (as we only define INTACT by the emotions
associated with it), it helps to consistently reduce it, as sev-
eral adjectives and verbs are defined in function of only one
item (the INTACT primitive).

The power of SenticNet 5 resides exactly in this. We do
not need to infer polarity based on (direct or indirect) emo-
tion links in the semantic network of commonsense knowl-
edge anymore: affective reasoning is performed at primitive
level. Once we define INTACT as positive, we automati-
cally defined as positive all its lexical substitutes (direct links
from the Concept Level but also indirect links from the En-
tity Level), plus the polarity of the result verbs related to it
(BREAK as negative because it changes the state into its op-
posite, and FIX as positive as it restores the original state)
and their lexical substitutes, plus all the lexical substitutes
of its opposite (!INTACT, e.g., broken, crumbled, or
shredded) as negative. Besides allowing for generaliza-
tion of concepts, conceptual primitives are extremely pow-
erful for inferring the polarity of multiword expressions dy-
namically, as per algebraic multiplication (where negative
multiplied by positive, or vice versa, is negative). For ex-
ample, when coupling the positive result verb INCREASE
with a positive noun, the resulting polarity is positive (e.g.,
INCREASE PLEASURE). If the noun is negative, instead,
the resulting polarity is negative (e.g., INCREASE LOSS).

Figure 2: A sketch of SenticNet 5’s graph showing part of
the semantic network for the primitive INTACT.

1from IsaCore (Cambria et al. 2014)
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Similarly, when coupling the negative result verb
DECREASE with a positive noun, the resulting polar-
ity is negative (e.g., DECREASE GAIN). If the noun is
negative, instead, the resulting polarity is positive (e.g.,
DECREASE PAIN).

AffectiveSpace

In order to automatically infer the polarity of key states,
e.g., INTACT, and to perform a consistency check on the
clusters generated by means of deep learning, we use Affec-
tiveSpace (Cambria et al. 2015), a vector space of affective
commonsense knowledge built by means of random projec-
tions (Bingham and Mannila 2001). Random projections
are a powerful dimensionality reduction technique based on
the Johnson and Lindenstrauss’s Lemma (Balduzzi 2013),
which states that, with high probability, for all pairs of points
x, y ∈ X simultaneously:√

m

d
‖ x− y ‖2 (1− ε) ≤‖ Φx− Φy ‖2≤ (17)

≤
√

m

d
‖ x− y ‖2 (1 + ε), (18)

where X is a set of vectors in Euclidean space, d is the
original dimension of this Euclidean space, m is the dimen-
sion of the space we wish to reduce the data points to, ε is
a tolerance parameter measuring the maximum allowed dis-
tortion extent rate of the metric space, and Φ is a random
matrix. Structured random projections for making matrix
multiplication much faster was introduced in (Sarlos 2006).
When the number of features is much larger than the num-
ber of training samples (d � n), subsampled randomized
Hadamard transform (SRHT) is preferred. For d = 2p

(where p is any positive integer), a SRHT can be defined
as:

Φ =

√
d

m
RHD (19)

where • m is the number we want to subsample from d
features randomly;
• R is a random m × d matrix. The rows of R are m

uniform samples (without replacement) from the standard
basis of Rd;

• H∈ R
d×d is a normalized Walsh-Hadamard matrix,

which is defined recursively:

Hd =

[
Hd/2 Hd/2

Hd/2 −Hd/2

]
with H2 =

[
+1 +1
+1 −1

]
;

• D is a d× d diagonal matrix and the diagonal elements
are i.i.d. Rademacher random variables.

Our subsequent analysis only relies on the distances and
angles between pairs of vectors (i.e., the Euclidean geometry
information) and it is sufficient to set the projected space to
be logarithmic in the size of the data (Ailon and Chazelle
2010) and, hence, apply SRHT.

By exploiting the information sharing property of random
projections, concepts with the same semantic and affective
valence are likely to have similar features, i.e., concepts con-
veying the same meaning and emotions tend to fall near each
other in AffectiveSpace.

Similarity does not depend on concepts’ absolute posi-
tion in the vector space, but rather on the angle these make
with the origin. Thus, positive concepts such as happy,
celebrate, and birthday are found in one area of the
vector space, while negative concepts like depressed,
cry, and loss are found in a diametrically opposite zone.

We use this information to both infer the polarity of con-
ceptual primitives by majority voting, e.g., assign positive
polarity to INTACT based on the fact that most concepts in
its cluster are positive, and to ensure polarity consistency
by discarding the concepts that have opposite polarity with
respect to the majority, e.g., discard the negative lexical sub-
stitutes of INTACT (if any).

Experiments
In this section, we evaluate both the performance of the deep
learning framework and the performance of SenticNet 5 as a
knowledge base for sentiment analysis.

Evaluation of the Deep Learning Framework

Training Corpus In order to train the deep learning based
primitive generation framework, we used the 2-billion-word
ukWaC (Baroni et al. 2009) as our learning corpus. We
removed the sentences which have length greater than 80,
which resulted in a 7% reduction of the corpus (and sig-
nificantly sped up the training). We lower-cased text and
removed tokens with occurrence less than 90. Finally, we
were left with 173K words in the corpus.

Evaluation Corpus In order to evaluate the performance
of the proposed approach, we employed it to solve the prob-
lem of lexical substitution. As lexical substitution datasets,
we used the LST-07 dataset from the SemEval 2007 lexi-
cal substitution task (McCarthy and Navigli 2007) and the
15-thousand target word all-words LST-14 dataset from Se-
mEval 2014 (Kremer et al. 2014). The first one comes with
a 300-sentence dev set and a 1710-sentence test set split; the
second one comes with a 35% and 65% split, which we used
as the dev set and test set, respectively. The performance
is measured using generalized average precision (GAP) in
which we rank the lexical substitutes of a word based on the
cosine similarity score calculated among a substitution and
the context embedding. This ranking is compared to the gold
standard lexical substitution ranking provided in the dataset.
The result of this approach is shown in Table 3.

Baseline Methods

• Baseline 1 – Melamud et al. (Melamud et al. 2015) pro-
posed a model to find lexical substitution of a target based
on skipgram word embeddings and incorporating syntac-
tic relations in the skipgram model.

• Baseline 2 – This baseline has been implemented by train-
ing the skipgram model on the learning corpus and then
simply taking the average of the words present in the
context as context representation. The cosine similarity
among this context representation and the target word em-
beddings is calculated to find a matching for the lexical
substitution.
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Our approach Baseline 1 Baseline 2
Eat

Dine Consume Glutonny
Consume Taste Devour
Gulp Swallow Drink
Chew Bite Nibble
Ingest Savor Relish

Table 2: The top substitution of the target word eat in “When
idle, Dave enjoys eating cake with his sister”.

Results The performance of the proposed approach and
comparison with the state of the art and baselines are shown
in Table 3.

Models LST-07 LST-14
Our approach 58.55% 56.25%
Baseline 1 55.1% 53.6%
Baseline 2 52.35% 50.05%

Table 3: Comparison of state of the art and baseline to our
proposed approach on the benchmark datasets. Baseline 1 is
the current state of the art (Melamud et al. 2015).

Evaluation of SenticNet 5

We tested SenticNet 5 (available both as a standalone XML
repository2 and as an API3) against two well-known sen-
timent resources: the Blitzer Dataset (Blitzer, Dredze, and
Pereira 2007) which was later modified by (Poria et al.
2015) and the Movie Review Dataset developed (Pang and
Lee 2005). The Blitzer Dataset consists of product re-
views in seven different domains. For each domain there
are 1,000 positive and 1,000 negative reviews. We obtained
this dataset, containing 3,800 positive sentences and 3,410
negative, from the authors of (Poria et al. 2015). Instead, the
Movie Review Dataset has been restructured from document
to sentence level by Socher et al. (Socher et al. 2013c) and it
contains 4,800 positive sentences and 4,813 negative ones.

Performing Polarity Detection with SenticNet

While SenticNet 5 can be used as any other sentiment lex-
icon, e.g., concept matching or bag-of-concepts model, the
right way to use the knowledge base for the task of polarity
detection is in conjunction with sentic patterns (Poria et al.
2015), sentiment-specific linguistic patterns that infer polar-
ity by allowing affective information to flow from concept to
concept based on the dependency relation between clauses.
The sentiment sources of such affective information are ex-
tracted from SenticNet 5 by firstly generalizing multiword
expressions and words by means of conceptual primitives
and, secondly, by extracting their polarity.

2http://sentic.net/downloads
3http://sentic.net/api

SenticNet 5 vs. SenticNet 4

We compared the performance of SenticNet 5 with its pre-
decessor SenticNet 4 (Cambria et al. 2016) for the task of
sentence-level polarity detection, using sentic patterns. The
main drawback of SenticNet 4 is while analyzing sentiment
using sentic patterns many concepts are not found due to the
lack of a similarity measurement method. SenticNet 5, in-
stead, has the capability to infer sentiment polarities of new
concepts. Assuming the new concept to be a verb-noun pair
with words w1 and w2. Our algorithm is able to identify
the primitive cluster of word w1 and calculate its nearest
neighbors in this word-context joint hyperspace. The po-
larity can now be adapted from the closest word belonging
to the same cluster. The overall polarity of the multiword
concept is then inferred using multiplicative rules. It should
be noted that the same rule is also applied in the case of
single word concept as required by sentic patterns. When
tasked to find the sentiment of a new sentence containing
an unknown concept, SenticNet 5 can now infer the polar-
ity using the process mentioned. Our algorithm thus aids
in zero-shot concept-based sentiment analysis. This infer-
ence scheme is also applied as a bootstrapping procedure to
diversify the knowledge base itself.

Framework Accuracy
Sentic Patterns and SenticNet 4 91.3%
Sentic Patterns and SenticNet 5 94.6%

Table 4: Comparison on the Blitzer Dataset

The results of the classification on the Blitzer and Movie
Review Dataset with SenticNet 4 and SenticNet 5 are shown
in Table 4 and Table 5. We also compare the result obtained
using the proposed approach with SentiWordNet.

Framework Accuracy
Socher et al., 2012 80.0%
Socher et al., 2013 85.4%
Sentic Patterns and SentiWordNet 84.2%
Sentic Patterns and SenticNet 4 90.1%
Sentic Patterns and SenticNet 5 92.8%

Table 5: Comparison on the Movie Review Dataset

Conclusion
In this work, we used an ensemble of symbolic and sub-
symbolic AI to automatically discover conceptual primitives
for sentiment analysis. This generalization process allowed
us to largely extend the coverage of SenticNet and to build a
new knowledge representation for better encoding semantics
and sentiment. In the future, we plan to extend such a repre-
sentation to a new level, in attempt to further reduce the sym-
bol grounding problem in the context of sentiment analysis.
Since such level should be both language-independent and
symbol-independent, we plan to define primitives in math-
ematical terms, e.g., via arithmetic proportionality. For ex-
ample, a way to define the intactness of an item i could be
INTACT : i = !INTACT : i/(n+ 1), n ∈ Z

+.
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