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Abstract

SenticNet is a publicly available semantic and affective
resource for concept-level sentiment analysis. Rather
than using graph-mining and dimensionality-reduction
techniques, SenticNet 3 makes use of ‘energy flows’
to connect various parts of extended common and
common-sense knowledge representations to one an-
other. SenticNet 3 models nuanced semantics and sen-
tics (that is, the conceptual and affective information as-
sociated with multi-word natural language expressions),
representing information with a symbolic opacity of an
intermediate nature between that of neural networks and
typical symbolic systems.

Introduction
As society evolves at the same pace as the Web, online social
data is becoming increasingly important for both individuals
and businesses. The Web 2.0, however, has unleashed an era
of online participation that is causing user-generated content
(UGC) to grow exponentially and, hence, to become contin-
uously larger and more complex. In order to truly achieve
collective – rather than merely collected – intelligence (Gru-
ber 2007), a shift from lexical semantics to compositional
semantics is required.

In recent years, sentiment analysis research has gradually
been developing into a field itself that lies in between nat-
ural language processing (NLP) and natural language un-
derstanding. Unlike standard syntactical NLP tasks such
as summarization and auto-categorization, opinion mining
mainly deals with the inference of the semantics and sentics
(denotative and connotative information) associated with
natural language concepts, without strictly requiring a deep
understanding of the given text (Cambria and White 2014).

In order to infer the polarity of a sentence, in fact, an opin-
ion mining engine only needs to extract the features or as-
pects of the discussed service or product, e.g., size or weight
of a phone, and the sentiments associated with each of these,
e.g., positive or negative, so that the output of a sentence
such as “I love the phone’s touchscreen but its battery life is
too short” would be something like <touchscreen: +> and
<battery: –>.
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Because of the ambiguity and the complexity of natural
language, however, the correct inference of such semantics
and sentics is not trivial and requires an analysis of source
texts that is content-, concept-, and context-based. Content-
level analysis is needed for the collection of opinions over
the Web, while filtering out non-opinionated UGC (subjec-
tivity detection), and for accordingly balancing the trustwor-
thiness of such opinions with respect to their source.

Context-level analysis, in turn, ensures that all gathered
opinions are relevant for the specific user. In the era of so-
cial context (where intelligent systems have access to a great
deal of personal identities and social relationships), opinion
mining will be tailored to each user’s preferences and in-
tent. Irrelevant opinions will be accordingly filtered with re-
spect to their source (e.g., a relevant circle of friends or users
with similar interests) and intent (e.g., selection of camera
for trekking, rather than for night shooting).

Finally, concept-level analysis aims to infer the semantics
and sentics associated with natural language opinions and,
hence, to enable a comparative fine-grained feature-based
sentiment analysis. Rather than gathering isolated opinions
about a whole item (e.g., iPhone5), users are generally more
interested in comparing different products according to their
specific features (e.g., iPhone5’s versus Galaxy S4’s touch-
screen), or even sub-features (e.g., fragility of iPhone5’s ver-
sus Galaxy S4’s touchscreen).

In this context, SenticNet 3 exploits an energy-based
knowledge representation (EBKR) formalism (Olsher 2014)
to provide the semantics and sentics associated with 30,000
multi-word expressions and, hence, enables a deeper and
more multi-faceted analysis of natural language opinions. In
particular, non-trivial multi-word associations such as ‘low
price’ or ‘long queue’ are preferred over concepts such as
‘good restaurant’ or ‘awful service’.

Adjectives such as ‘good’ and ‘awful’ are unambiguous
from a polarity point of view, i.e., they convey a positive and
negative polarity respectively, no matter which noun they
are associated with. Adjectives such as ‘long’ and ‘high’,
instead, do not carry any specific polarity on their own,
but rather assume one depending on which noun they are
coupled with. Hence, SenticNet 3 contains unambiguous
adjectives as standalone entries plus non-trivial multi-word
expressions such as ‘small room’ or ‘cold bed’.



SenticNet 3 focuses on the use of ‘energy’ or informa-
tion flows to connect various parts of extended common and
common-sense knowledge representations to one another.
Each quantum of energy possesses a scalar magnitude, a
valence (binary positive/negative), and an edge history, de-
fined as a list of the edge labels that a particular quantum
of energy has traversed in the past. Unlike state-of-the-art
techniques, such a framework enables the representation of
information with a symbolic opacity between that of arti-
ficial neural networks and of typical symbolic systems. In
essence, pieces of common and common-sense knowledge
are broken down into ‘atoms’, which allow the fusing of
data coming from other knowledge bases without requiring
complex inter-source ontology alignment and the aggrega-
tion arising from multiple sources during reasoning.

The rest of this paper is organized as follows: the first
section is a brief overview of main approaches to opinion
mining; followed by a section describing types and sources
of knowledge exploited in this work; the next section ex-
plains how SenticNet 3 is built from such sources; then, a
section explaining how SenticNet 3 can be used for concept-
level sentiment analysis is presented; afterwhich a section
focused on evaluation is presented; finally, some concluding
remarks and future work recommendations are made.

Related Work
Due to many challenging research problems and a wide va-
riety of practical applications, opinion mining and sentiment
analysis have become very active research areas in the last
decade. Common opinion mining tasks include product fea-
ture retrieval (Garcı́a-Moya, Anaya-Sanchez, and Berlanga-
Llavori 2013), opinion holder detection (Gangemi, Presutti,
and Reforgiato 2014), opinion summarization (Di Fabbrizio,
Aker, and Gaizauskas 2013), domain adaptation (Xia et al.
2013), and cyber-issue detection (Lau, Xia, and Ye 2014).

Existing approaches to the task of polarity classification
can be grouped into four main categories: keyword spot-
ting, in which text is classified into categories based on the
presence of fairly unambiguous affect words (Elliott 1992;
Wiebe, Wilson, and Cardie 2005); lexical affinity, which
assigns arbitrary words a probabilistic affinity for a partic-
ular topic or emotion (Rao and Ravichandran 2009; We-
ichselbraun, Gindl, and Scharl 2013); statistical methods,
which calculate the valence of word co-occurrence frequen-
cies on the base of a large training corpus (Poria et al. 2013);
and concept-level approaches, which make use of semantic
networks to infer conceptual and affective information con-
veyed by natural language concepts (Cambria and Hussain
2012; Tsai, Tsai, and Hsu 2013; Olsher 2014).

Unlike other sentiment analysis resources such as
WordNet-Affect (WNA) (Strapparava and Valitutti 2004),
SenticNet exploits an ensemble of common and common-
sense knowledge to go beyond word-level opinion mining
and, hence, to associate semantics and sentics to a set of nat-
ural language concepts. SenticNet 3, in particular, uses a
novel EBKR formalism and, besides common and common-
sense knowledge, also exploits affective knowledge modeled
by a biologically-inspired emotion categorization model.

Knowledge Sources
In standard human-to-human communication, people usu-
ally refer to existing facts and circumstances and build
new useful, funny, or interesting information on the top of
those. This common knowledge includes information usu-
ally found in news, articles, debates, lectures, etc. (factual
knowledge), but also principles and definitions that can be
found in collective intelligence projects such as Wikipedia
(vocabulary knowledge).

Moreover, when people communicate with each other,
they rely on similar background knowledge, e.g., the way
objects relate to each other in the world, people’s goals in
their daily lives, and the emotional content of events or situ-
ations. This taken-for-granted information is what is termed
common-sense – obvious things people normally know and
usually leave unstated.

The difference between common and common-sense
knowledge can be expressed as the difference between
knowing the name of something and truly understanding
something. For example, you can know the name of all the
different kinds or brands of ‘pipe’, but you understand noth-
ing about a pipe until you get to know how to grab it, pack
it, light it, and smoke it. In other words, a ‘pipe’ is not a pipe
unless it can be used.

Common Knowledge Sources

Attempts to build a common knowledge base are count-
less and include both resources crafted by human experts or
community efforts, such as DBPedia (Bizer et al. 2009), a
collection of 2.6 million entities extracted from Wikipedia,
and Freebase (Bollacker et al. 2008), a social database of
1,450 concepts, and automatically-built knowledge bases,
such as YAGO (Suchanek, Kasneci, and Weikum 2007),
a semantic knowledge base of 149,162 instances derived
from Wikipedia Infoboxes and WordNet, NELL (Carlson et
al. 2010), with 242,000 beliefs mined from the Web, and
Probase (Wu et al. 2012), Microsoft’s probabilistic taxon-
omy counting about 12 million concepts learned iteratively
from 1.68 billion web pages in Bing web repository.

Common-Sense Knowledge Sources

One of the biggest projects aiming to build a comprehen-
sive common-sense knowledge base is Cyc (Lenat and Guha
1989). Cyc, however, requires the involvement of ex-
perts working on a specific programming language, which
makes knowledge engineering labor-intensive and time-
consuming. A more recent and scalable project is Open
Mind Common Sense (OMCS), which is collecting pieces
of knowledge from volunteers on the Internet by enabling
them to enter common-sense into the system with no spe-
cial training or knowledge of computer science. OMCS ex-
ploits these pieces of common-sense knowledge to automat-
ically build ConceptNet (Speer and Havasi 2012), a seman-
tic network of 173,398 nodes. Other projects that fall under
this umbrella include WordNet, with its 25,000 synsets, and
derivative resources such as WNA.



Building SenticNet 3
Unlike previous versions (which focused only on common-
sense knowledge), SenticNet 3 contains both common and
common-sense knowledge, in order to boost sentiment anal-
ysis tasks such as feature spotting and polarity detection,
respectively. In particular, an ensemble of all the above-
mentioned resources was created, with the exception of
Freebase and NELL (as the knowledge they contain is rather
noisy and mostly deals with geolocation data) and YAGO
(which is mostly derived from DBPedia and WordNet, al-
ready embedded in SenticNet 3).

Knowledge Integration
The aggregation of common and common-sense knowledge
bases is designed as a 2-stage process in which different
pieces of knowledge are first translated into RDF triples and
then inserted into a graph through the EBKR formalism.
For example, a piece of knowledge such as “Pablo Picasso
is an artist” is automatically translated into the RDF triple
<Pablo Picasso-isA-artist> and, hence, into the EBKR en-
try [Pablo Picasso –PARTICIP-CATEGORY–> artist]. The
purpose of such an integration process is two-fold: firstly, it
provides a shared representation for common and common-
sense knowledge to be efficiently stored and, hence, used
for reasoning; secondly, it performs ‘conceptual decompo-
sition’ of opaque relation types. The EBKR formalism en-
ables the representation of pieces of knowledge in a com-
mon framework, which allows the fusing of data from dif-
ferent sources without requiring ontology alignment and to
combine data arising from multiple knowledge bases dur-
ing reasoning (Kuo and Hsu 2012). Conceptual decompo-
sition allows the unfolding of relation types that are usually
opaque in natural-language-based resources, in order to aid
common-sense reasoning.

The paradigm of cognition-driven reasoning is ideology:
abstract ideological schemas are the prototype of efficiency
in information processing, supplying a fairly general but
densely elaborated set of constructs in terms of which in-
formation can be effectively organized, stored, and retrieved
(Sniderman, Brody, and Tetlock 1991).

For example, the ConceptNet relation type CausesDesire
does not really mean much to the machine unless we unpack
such a ‘suitcase word’ into a more semantic-preserving frag-
ment that specifies how subject and object are affected by the
predicate (Figure 1). This way, rather than simply having
an opaque tag on a semantic network edge, a substructure
defining how such a relationship might change the goal of a
person highly enhances reasoning and decision-making pro-
cesses. Such substructures are termed ‘concept fields’ and
represent delineated subregions of the semantic network that
have a certain semantic coherence sufficient (and often nec-
essary) to define them as ‘meaningfully’ connected fields.

After low confidence score trimming and duplicate re-
moval, the resulting semantic network (built out of about
25 million RDF statements) contains 2,693,200 nodes. Of
these, 30,000 affect-driven concepts (that is, those concepts
that are most highly linked to emotion nodes) have been se-
lected for the construction of SenticNet 3.

Figure 1: Semantic fragment of the EBKR formalism show-
ing how the ConceptNet relation CausesDesire is translated
into a more meaningful structure.

Traversing the Knowledge Base
The way semantics and sentics are defined in SenticNet 3 is
inspired by neuroscience and cognitive psychology theories
on associative memory. According to Westen, for example,
associative memory involves the unconscious activation of
networks of association – thoughts, feelings, wishes, fears,
and perceptions that are connected, so that activation of one
node in the network leads to activation of the others (Westen
2002). Memory is not a ‘thing’ that is stored somewhere in
a mental warehouse and can be pulled out and brought to
the fore. Rather, it is a potential for reactivation of a set of
concepts that together constitute a particular meaning.

In this context, EBKR represents complex concepts by
setting up pathways upon which information (conceptual-
ized as ‘energy’) may flow between various semantic frag-
ments. Rather than using symbolic representations, the
key idea is that complex representations can be built up
from simpler pieces by connecting them together via energy
flows. Each element reached by a certain quantum of energy
flow participates in and becomes part of a wider concept
representation. Through this mechanism, conceptual con-
nections between simple elements deeply affect the model-
ing of larger systems. Such a representation is optimal for
modeling domains characterized by nuanced, interconnected
semantics and sentics (including most socially-oriented AI
modeling domains).

Each quantum of energy possesses a scalar magnitude, a
valence (binary positive/negative), and an edge history, de-
fined as a list of the edge labels that a particular quantum
of energy has traversed in the past. These three elements,
taken together, describe the semantics and sentics indicated
by that quantum of energy. Such conceptual and affective
information is extracted, for each concept of the semantic
network, by analyzing how energy flows serve the function
of quickly spreading an associative relevancy measure over
declarative memory (Anderson and Pirolli 1984).



Concepts have long-term affective information attached
to them in memory and such information exerts differen-
tial, generally significant, effects upon cognition in differ-
ent contexts (Lodge and Taber 2005). Thus, the extraction
of semantics and sentics is achieved through multiple steps
of spreading activation (Cambria, Olsher, and Kwok 2012)
with respect to the nodes representing the activation levels of
the Hourglass of Emotions (Cambria and Hussain 2012), a
brain-inspired model for the representation and the analysis
of human emotions.

The main advantage of the Hourglass of Emotions over
other emotion categorization models is that it allows emo-
tions to be deconstructed into independent but concomitant
affective dimensions. Such a modular approach to emotion
categorization allows different factors (or energy flows) to
be concomitantly taken into account for the generation of
an affective state and, hence, work with emotions both in a
categorical way and in a dimensional format.

Besides exploiting the semantic connections built by
means of common and common-sense knowledge integra-
tion, such a process heavily exploits also the links estab-
lished through the integration of WNA, which helps to en-
hance the affective connections between standard nodes and
the seed nodes representing the activation levels of the Hour-
glass model, e.g., ‘joy’, ‘anger’, or ‘surprise’.

Encoding Semantics and Sentics

In order to represent SenticNet 3 in a machine-accessible
and machine-processable way, results are encoded in RDF
using a XML syntax. In particular, concepts are identified
using the SenticNet API1 and, for each of them, semantics
and sentics (e.g., category-tags and mood-tags) are provided
in RDF/XML format.

Given the concept ‘birthday party’, for example, Sentic-
Net 3 provides ‘event’ as high-level domain of pertinence
(which can be useful for tasks such as gisting or document
auto-categorization) and a set of semantically related con-
cepts, e.g., ‘cake’, ‘surprise friend’ or ‘gift’ (which can
be exploited as extra/contextual information for improving
search results). The resource also provides a sentic vector
specifying Pleasantness, Attention, Sensitivity, and Aptitude
associated with the concept (for tasks such as emotion recog-
nition), a polarity value (for tasks such as polarity detection),
a primary and secondary mood (for tasks such as HCI), and
a set of affectively related concepts, e.g., ‘celebration’ or
‘special occasion’ (for tasks such as opinion classification).

The encoding of semantics and sentics in RDF/XML for-
mat is mainly driven by the need of exportability and inter-
operability, but also to allow conceptual and affective infor-
mation to be stored in a triplestore, a purpose-built database
for the storage and retrieval of RDF metadata, which can be
used to conduct a wide range of inferences based on RDFS
and OWL type relations between data.

1http://sentic.net/api

Working with SenticNet 3
SenticNet 3 can be either downloaded as a standalone re-
source2 or accessed online either through an API or as a
Python web service3. Thanks to its Semantic Web aware
format, it is very easy to interface the resource with any real-
world application that needs to extract semantics and sentics
from natural language. This conceptual and affective infor-
mation is supplied both at category-level (through domain
and sentic labels) and dimensional-level (through polarity
values and sentic vectors). Labels, in particular, are useful in
case we deal with real-time adaptive applications (in which,
for example, the style of an interface or the expression of an
avatar has to quickly change according to user’s input).

Polarity values and sentic vectors, in turn, are useful for
tasks such as information retrieval and polarity detection (in
which it is needed to process batches of documents and,
hence, perform calculations, such as addition, subtraction,
and average, on both conceptual and affective information).
Averaging results obtained at category-level can be done us-
ing a continuous evaluation-activation space, e.g., Whissell
space, but the best strategy is usually to consider the opin-
ionated document as composed of small bags of concepts
(SBoCs) and feed these into SenticNet 3 to perform statis-
tical analysis of the resulting sentic vectors. SenticNet 3,
however, only provides semantics and sentics at concept-
level.

Hence, to build a comprehensive cognition-driven
opinion-mining engine, it is necessary to couple the resource
with a pre-processing module, a semantic parser, and an
opinion target detector. After such modules deconstruct nat-
ural language text into concepts and extract opinion targets,
the concepts associated with each detected target are given
as input to SenticNet 3 to look up semantics and sentics and,
hence, calculate polarity4.

Pre-Processing

The pre-processing module exploits linguistic dictionaries
to interpret all the affective valence indicators usually con-
tained in opinionated text, e.g., special punctuation, com-
plete upper-case words, cross-linguistic onomatopoeias, ex-
clamation words, degree adverbs, and emoticons.

Moreover, the module detects negation and spreads it in
a way that it can be accordingly associated to concepts dur-
ing the parsing phase. Handling negation is an important
concern in sentiment analysis, as it can reverse the meaning
of a statement. Such a task, however, is not trivial as not
all appearances of explicit negation terms reverse the polar-
ity of the enclosing sentence and negation can often be ex-
pressed in rather subtle ways, e.g., sarcasm and irony, which
are quite difficult to detect. Lastly, the module converts text
to lower-case and, after lemmatizing it, splits the opinion
into single clauses (SBoCs) according to grammatical con-
junctions and punctuation.

2http://sentic.net/downloads
3http://pypi.python.org/pypi/senticnet
4http://sentic.net/demo



Semantic Parsing
Semantic parsing is performed through a graph-based ap-
proach to common-sense concept extraction, which breaks
sentences into chunks first and then extracts concepts by se-
lecting the best match from a parse graph that maps all the
multi-word expressions contained in SenticNet 3. Each verb
and its associated noun phrase are considered in turn, and
one or more concepts is extracted from these. As an exam-
ple, the clause “I went for a walk in the park”, would contain
the concepts go walk and go park.

The Stanford Chunker (Manning 2011) is used to chunk
the input text. A general assumption during clause separa-
tion is that, if a piece of text contains a preposition or sub-
ordinating conjunction, the words preceding these function
words are interpreted not as events but as objects. Next,
clauses are normalized in two stages. First, each verb
chunk is normalized using the Lancaster stemming algo-
rithm (Paice 1990). Second, each potential noun chunk
associated with individual verb chunks is paired with the
stemmed verb in order to detect multi-word expressions of
the form ‘verb plus object’.

The POS-based bigram algorithm extracts concepts such
as market, some fruits, fruits, and vegetables. In order to
capture event concepts, matches between the object concepts
and the normalized verb chunks are searched. This is done
by exploiting a parse graph that maps all the multi-word ex-
pressions contained in SenticNet 3. Such an unweighted di-
rected graph helps to quickly detect multi-word concepts,
without performing an exhaustive search throughout all the
possible word combinations that can form a common-sense
concept. Single-word concepts, e.g., house, that already ap-
pear in the clause as a multi-word concept, e.g., beautiful
house, in fact, are pleonastic and are discarded.

Opinion Target Detection
Opinion targets exhibit semantic coherence in that they tend
to generate lexical items and phrases with related semantics.
Most words related to the same target tend to share some se-
mantic characteristics. Our common-sense-based approach
is similar to the process undertaken by humans when find-
ing similar items - we look at what the meanings of the items
have in common.

Thus, under our model, opinion targets are not discov-
ered merely based on document co-occurrence, but rather by
considering the definitive semantic character of constituent
concepts. In SenticNet 3, concepts inter-define one another,
with directed edges indicating semantic dependencies be-
tween concepts. In the present algorithm, the features for
any particular concept C are defined as the set of concepts
reachable via outbound edges from C. Put differently, for
each input concept we retrieve those other concepts that, col-
lectively, generate the core semantics of the input concept.

Our algorithm uses clustering to generate opinion tar-
gets from semantic features. Based on experiments with
various clustering algorithms, e.g., k-means (Hartigan and
Wong 1979) and expectation-maximization (EM) cluster-
ing (Dempster, Laird, and Rubin 1977), we determined that
group average agglomerative clustering (GAAC) provides
the highest accuracy.

Figure 2: A sample dendrogram resulting from hierarchical
clustering.

GAAC partitions data into trees (Berkhin 2006) contain-
ing child and sibling clusters. It generates dendrograms
specifying nested groupings of data at various levels (Jain
and Dubes 1988). During clustering, documents are rep-
resented as vectors of common-sense concepts. For each
concept, the corresponding features are extracted from Sen-
ticnet 3. The proximity matrix is constructed with concepts
as rows and features as columns. If a feature is an outbound
link of a concept, the corresponding entry in the matrix is 1,
while in other situations it is 0. Cosine distance is used as
the distance metric.

Agglomerative algorithms are bottom-up in nature.
GAAC consists of the following steps:

1. Compute proximity matrix. Each data item is an initial
cluster.

2. From the proximity matrix, form pair of clusters by merg-
ing. Update proximity matrix to reflect merges.

3. Repeat until all clusters are merged.
A sample dendrogram is shown in Figure 2. The den-

dogram is pruned at a height depending on the number of
desired clusters. The group average between the clusters is
given by the average similarity distance between the groups.
Distances between two clusters and similarity measures are
given by the equations below:

Xsum =
∑

dm∈ωivωi

∑
dn∈ωiυωjdn 6=dm

−→
dn.
−→
dm (1)

sim (ωi, ωj) =
1

(Ni +Nj) (Ni +Nj − 1)
Xsum (2)

where
−→
d is the vector of document of length d. Vector

entries are boolean, 1 if the feature is present, 0 otherwise.
Ni, Nj is the number of features in ωi and ωj respectively,
which denote clusters.

The main drawback of the hierarchical clustering algo-
rithm is the running complexity (Berkhin 2006), which av-
erages θ(N2log N).



“horse” “stationery” “food” “party”
horse paper apple dance
eye paint fish protest

farm plate bread music
card cake party

metal door
sound

Table 1: Example of feature-based clustering

We choose average link clustering because our clustering
is connectivity-based. The concept proximity matrix con-
sists of features from SenticNet 3 and ‘good’ connections
occur when two concepts share multiple features. After clus-
tering, the number of clusters is determined and the dendro-
gram is pruned accordingly. The output of this process is the
set of opinion targets present in the document. Table 1 pro-
vides an example of the results of feature-based clustering.

Use Case Evaluation
As a use case evaluation of the system, we select the prob-
lem of crowd validation of the UK national health service
(NHS), that is, the exploitation of the wisdom of patients to
adequately validate the official hospital ratings made avail-
able by UK health-care providers and NHS Choices5.

To validate such data, we exploit patient stories extracted
from PatientOpinion6, a social enterprise providing an on-
line feedback service for users of the UK NHS. The prob-
lem is that this social information is often stored in natural
language text and, hence, intrinsically unstructured, which
makes comparison with the structured information supplied
by health-care providers very difficult.

To bridge the gap between such data (which are differ-
ent at structure-level yet similar at concept-level), we ex-
ploit SenticNet 3 to marshal PatientOpinion’s social infor-
mation in a machine-accessible and machine-processable
format and, hence, compare it with the official hospital rat-
ings provided by NHS Choices and each NHS trust.

In particular, we use SenticNet 3 inferred polarity values
to assess the official NHS ranks (which we extracted using
the NHS Choices API7) and the ratings of relevant health-
care providers (which we crawled from each NHS trust web-
site individually). This kind of data usually consists of rat-
ings that associate a polarity value to specific features of
health-care providers such as communication, food, parking,
service, staff, and timeliness. The polarity can be either a
number in a fixed range or simply a flag (positive/negative).

Since each patient opinion can be regarding more than
one topic and the polarity values associated with each topic
are often independent from each other, in order to efficiently
perform the mapping, we need to extract (from each opin-
ion) a set of topics and then (from each topic detected) the
polarity associated with it.

5http://nhs.uk
6http://patientopinion.org.uk
7http://data.gov.uk/data-requests/

nhs-choices-api

Thus, after deconstructing each opinion into a set of
SBoCs, we analyze these through SenticNet 3 in order to
tag each SBoC with one of the relevant topics (if any) and
calculate a polarity value. We ran this process on a set of
2000 topic- and polarity-tagged stories extracted from Pa-
tientOpinion database and computed recall and precision
rates as evaluation metrics. On average, each post contained
around 140 words, from which about 12 affective valence
indicators and 60 concepts were extracted.

As for the SBoC categorization, results showed that Sen-
ticNet 3 can detect topics in patient stories with satisfactory
accuracy. In particular, the classification of stories about
‘food’ and ‘communication’ was performed with a precision
of 80.2% and 73.4% and recall rates of 69.8% and 61.4%,
for a total F-measure of 74.6% and 66.8%, respectively As
for the polarity detection, in turn, positivity and negativ-
ity of patient opinions were identified with particularly high
precision (91.4% and 86.9%, respectively) and good recall
rates (81.2% and 74.3%), for a total F-measure of 85.9%
and 80.1%, respectively. More detailed comparative statis-
tics are listed in Table 2, where SenticNet 3 is compared with
its former versions, namely SenticNet and SenticNet 2.

Category SenticNet SenticNet 2 SenticNet 3
clinical
service

59.12% 69.52% 78.06%

communi-
cation

66.81% 76.35% 80.12%

food 67.95% 83.61% 85.94%
parking 63.02% 75.09% 79.42%

staff 58.37% 67.90% 76.19%
timeliness 57.98% 66.00% 75.98%

Table 2: F-measures relative to patient opinions’ polarity
detection using the different versions of SenticNet.

Conclusion and Future Efforts
Today UGCs are perfectly suitable for human consump-
tion, but they remain hardly accessible by machines. Cur-
rently available information retrieval tools still face many
limitations. To bridge the conceptual and affective gap be-
tween word-level natural language data and the concept-
level opinions and sentiments conveyed by them, we devel-
oped SenticNet 3, a publicly available resource for concept-
level sentiment analysis that associates semantics and sen-
tics to 30,000 common and common-sense concepts.

We showed how SenticNet 3 can easily be embedded
in real-world applications, specifically in the field of so-
cial data mining, in order to effectively combine and com-
pare structured and unstructured information. We are con-
tinually developing the resource such that it can be con-
tinuously enhanced with more concepts from the always-
growing Open Mind corpus and other publicly available
common and common-sense knowledge bases. We are also
developing novel techniques and tools to allow SenticNet 3
to be more easily merged with external domain-dependent
knowledge bases, in order to improve the extraction of se-
mantics and sentics from many different types of media.
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