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Abstract—Concept-level sentiment analysis improves on stan-
dard word-level opinion mining by leveraging the power of
multiword expressions, linguistic objects formed by two or more
words that behave like ‘semantic atoms’ by displaying formal or
functional idiosyncratic properties with respect to free word com-
binations. The extraction of meaningful multiword expressions
from text, however, is not an easy task, as it goes beyond simple
n-gram modeling. In the context of sentiment analysis, such mean-
ingful concepts are represented by those multiword expressions
with high connotative, rather than denotative, information, i.e.,
combination of words that convey a certain degree of subjectivity
(positive or negative polarity) rather than objectivity (neutral
polarity). In this work, we propose a morphology-aware concept
parser for the efficient extraction and generalization of affective
multiword expressions from English text. The same methodology
can potentially be applied to other knowledge bases, as well as
different languages and multiple modalities.

Index Terms—Semantic parsing; Concept extraction; Mul-
tiword expressions; Morphology; Sentiment analysis; Natural
language processing

I. INTRODUCTION

Multiword expressions include an extremely varied set of
items (from idioms to collocations, from formulae to sayings)
which have been the privileged subject matter of fields such
as phraseology, lexicology, lexicography, and computational
linguistics. Far from being a marginal phenomenon, multiword
expressions are ubiquitous and pervasive: some estimate that
they are as numerous as words in some languages, which
makes them as central an issue as words for the understanding
of human language. However, their relation with words, and
morphology, is by far less explored, not to say neglected,
especially in terms of demarcation, competition, and cross-
linguistic variation [1].

Multiword expressions are a key problem for the devel-
opment of large-scale, linguistically sound natural language
processing (NLP) technology. The various kinds of multiword
expressions should be analyzed in distinct ways, including
listing ‘words with spaces’, hierarchically organized lexicons,
restricted combinatoric rules, lexical selection, ‘idiomatic
constructions’ and simple statistical affinity. An adequate
comprehensive analysis of multiword expressions must employ
both symbolic and subsymbolic techniques [2], [3]. Although
deep learning has enabled context modeling in natural language
text, we are still far from a semantic deconstruction of text
that could enable the tackling of significant AI issues such
as symbol grounding, commonsense reasoning and natural
language understanding.

In this work, we propose a graph-based technique for
effectively and quickly identifying sentiment-bearing concepts
in open English text and generalize these into primitives for
advanced affective reasoning tasks. In particular, the technique
draws upon SenticNet [4], a commonsense knowledge base for
concept-level sentiment analysis built by means of neurosym-
bolic AI, and, hence, the parser is termed Sentic Parser. The
same methodology, however, can potentially be applied to other
knowledge bases, as well as different languages and multiple
modalities. The paper is organized as follows: Section II
introduces related work; Section III describes in details the
algorithms for concept extraction; Section IV explains how
concepts are generalized into primitives; Section V evaluates
the proposed approach; finally, Section VI offers concluding
remarks and discusses avenues for future work.

II. RELATED WORK

The deconstruction of natural language text into multiple-
word concepts is a key step for many NLP tasks [5]. A concept
like cloud_computing, for example, is a semantic atom
that should never be broken down into single words, or else the
word cloud may be misinterpreted as weather-related. Same
goes for colloquial expressions like go_bananas, which has
nothing to do with fruits. Semantic parsing can be performed
using a combination of syntax and semantics, via syntax alone
(making use of phrase structure grammars), or statistically,
using classifiers based on training algorithms. Dependency
parsing offers high semantic sensitivity, the ability to extract
knowledge from grammatically-incorrect text, and can use
world knowledge to choose the most likely parses, but requires
access to construction corpora.

The Open Mind Common Sense (OMCS) project [6] used
syntactical parsing to compare natural language sentences
against regular expression patterns for collecting specific
pieces of commonsense knowledge. OMCS employed a purely
syntactical approach encompassing stopwords, punctuation
removal, word stemming to identify commonsense concepts.
Later works employed weighting methods to extract contexts
for concept extraction. Yu et al. [7] proposed a method for
extracting concepts specialized, standardized structured text
based on an entropy weight method computing the contribution
of each subset of input text to the evaluation of concepts’
weights. Zhao et al. [8] proposed a method based on tf-idf
weighting for extracting concepts from documents retrieved
from the Web for augmenting domain-specific ontology graphs.



Fig. 1. A parse tree for a sample English sentence.

Mehanna et al. [9] proposed a rule-based concept extraction
method using ConceptNet and incorporate it into semantic
conceptualization for sentiment analysis. Semantic parsing
based on part-of-speech (POS) tagging involves annotating
syntactic structures with language-specific parts of speech.
Related works include tag sequence probability [10] and lexical
probabilities [11], but statistical parsing has been the most
widely adopted technique for collecting information from
text [12]–[14], together with active learning, which aims to
select effective features [15], [16].

Recently, concept extraction efforts have focused on dif-
ferent research domains. For example, Ge et al. [17] studied
source and target concept extraction for explainable metaphor
identification. They proposed a dynamic reward mechanism to
achieve the concept extraction without using direct annotated
data. Fan et al. [18] used attentive deep neural networks to
fuse both character and word embeddings and, hence, achieve
clinical and biomedical concept extraction. Tohti et al. [19]
extracted concept words for building a bilingual ontology,
based on various statistical features, semantic and syntactic
features and word segmentation techniques. Rana et al. [20]
proposed a text summarization-motivated concept extraction
method. The method uses K-means to discover the key concepts
of a document. Shvets and Wanner [21] employed a pointer-
generator network, LSTM and distant supervision to extract
concepts from Wikipedia and leveraged a copy mechanism to
address the issue of out-of-vocabulary words. Finally, Fang et
al. [22] proposed a guided Attention concept extraction network
that is supervised by additional features, e.g., title, topic, and
clue words.

III. CONCEPT EXTRACTION

Sentic Parser is a hybrid semantic parser that leverages an
ensemble of constituency and dependency parsing and a mix
of stemming and lemmatization. The aim of the parser is to
deconstruct text into sentences, sentences into clauses, and
clauses into concepts, i.e., words or multiword expressions.
The algorithm is inspired by our previous work on graph-
based concept parsing [23]. The key novelties introduced by
Sentic Parser are that it leverages morphology for syntactic
normalization and it uses primitives for semantic normalization.

A. From Text to Verb and Noun Chunks

Sentic Parser firstly applies sentence boundary disambigua-
tion to deconstruct text into sentences. After that, sentences
are broken down into clauses by considering each verb and its
associated noun phrases one by one.

For a sentence like “She has entrusted me with making
the rest of the team get along with the new hair dresser”,
the algorithm first individuates the verb words and multiword
expressions entrusted, making, and get_along_with.
A general assumption during clause separation is that, if a piece
of text contains a preposition or subordinating conjunction,
the words preceding these function words are interpreted not
as events but as objects. The next step of the algorithm is to
separate clauses into verb and noun chunks, as suggested by the
parse tree in Fig. 1. This is done by using SenticNet concepts as
a reference, that is, by leveraging the n-grams that make up Sen-
ticNet’s multiword expressions to correctly extract phrasal verbs
and other ‘semantic atoms’ such as cloud_computing,
go_bananas, or pain_killer. While this would be a
monumental task for NLP in general, it is rather feasible for
sentiment analysis as affect words are just a small subset of
the total number of words that make up a language.

Fig. 2. A sample parse graph for multiword expressions.



Data: NounPhrase
Result: Valid object concepts
Split the NounPhrase into bigrams ;
Initialize concepts to Null ;
for each NounPhrase do

while For every bigram in the NounPhrase do
POS Tag the Bigram ;
if adj noun then

add to Concepts: noun, adj+noun
else if noun noun then

add to Concepts: noun+noun
else if stopword noun then

add to Concepts: noun
else if adj stopword then

continue
else if stopword adj then

continue
else

Add to Concepts : entire bigram
end
repeat until no more bigrams left ;

end
end

Algorithm 1: POS-based bigram algorithm

B. Obtaining the Full List of Concepts

Next step is to normalize clauses using a lemmatization or
stemming algorithm. Sentic Parser uses a hybrid approach that
stems words by making sure that the resulting output is in
SenticNet. The difference between a standard stemmer and
Sentic Parser could be compared to the difference between
k-means and k-medoids: the former focuses on distances, the
latter focuses on instances. Thus, a standard stemmer would
blindly apply rules such as removing canonical suffixes like
-y, -ed, -ish to normalize words like angry, refined, and
accomplish to angr, refin, and accompl, respectively.
Sentic Parser, instead, does not finalize the stemming process
unless the resulting word is an English word present in
SenticNet, e.g., risky to risk, blessed to bless, or
foolish to fool. Additionally, Sentic Parser is not triggered
if the input word is already present in SenticNet to make sure
that words like slimy, scared, and flourish are not
wrongly normalized as slim, scar, and flour, respectively.
This mechanism also allows Sentic Parser to distinguish
between words that, despite sharing the same stem, have
different meaning and polarity, e.g., stunning vs stunned,
blandish vs bland, bullish vs bully, or bearable
vs bearish.

Next, each potential noun chunk associated with individual
verb chunks is paired with the stemmed verb in order to
detect multiword expressions of the form ‘verb plus object’.
Objects alone, however, can also represent a concept. To detect
such expressions, a POS-based n-gram algorithm checks noun
phrases for stopwords and adjectives. In particular, noun phrases
are first split into n-grams and then processed through POS
patterns, as shown in Algorithm 1 for bigrams.

In the case of bigrams1, POS pairs are processed as follows:
1) ADJECTIVE NOUN : An adj+noun combination and a

noun as a stand-alone concept are added to the objects
list.

2) ADJECTIVE STOPWORD : The entire bigram is dis-
carded.

3) NOUN ADJECTIVE : As trailing adjectives do not tend
to carry sufficient information, the adjective is discarded
and only the noun is added as a valid concept.

4) NOUN NOUN : When two nouns adjacently occur in a
sentence, they are considered to be part of a single con-
cept as a multiword expression, e.g., egg_sandwich,
ice_cream, and chocolate_biscuit.

5) NOUN STOPWORD : The stopword is discarded and
only the noun is considered valid.

6) STOPWORD ADJECTIVE: The entire bigram is dis-
carded.

7) STOPWORD NOUN : In bigrams matching this pattern,
the stopword is discarded and the noun alone qualifies
as a valid concept.

Next, in order to capture event concepts, matches between
the object concepts and the normalized verb chunks are
searched. This is done by exploiting a parse graph that
maps all the multiword expressions contained in SenticNet,
e.g., get_together, get_on_with, get_over_with,
get_to_bottom_of, etc. (Fig. 2). Such an unweighted
directed graph helps to quickly detect multiword concepts,
without performing an exhaustive search throughout all the
possible word combinations that can form a concept.

Single-word concepts, e.g., hit, that already appear in
the clause as a multiword concept, e.g., hit_economy,
hit_wall, hit_roof, hit_button, or hit_parade,
are pleonastic and, hence, are discarded. In this way,
Algorithm 2 is able to extract event concepts such
as slow_down_inflation, speed_up_erosion, and
end_dispute, but also idiomatic expressions such as
hit_road (as in ‘hit the road’), cut_mustard (as in ‘cut
the mustard’), weather_storm (as in ‘weather the storm’),
or kick_bucket (as in ‘kick the bucket’).

Data: Natural language sentence
Result: List of concepts
Find the number of verbs in the sentence ;
for every clause do

extract VerbPhrases and NounPhrases ;
lemmatize VERB ;
for every NounPhrase with the associated verb do

find forms of objects that exist in SenticNet ;
link all objects to lemmatized verb to get events ;

end
repeat until no more clauses are left ;

end
Algorithm 2: Event concept extraction algorithm

1A similar procedure is used for trigrams and higher-order n-grams.



Fig. 3. A sample parse graph for word inflections.

The same graph-based approach is applied to remove inflec-
tions, such as -ing, -ful, and -able, and neutral prefixes, such
as en-, re-, and co- (Fig. 3), so that words like ‘entrust’, ‘en-
trusts’, ‘entrusted’, ‘entrusting’, ‘entrustment’, ‘entrustments’,
‘trustable’, ‘trustability’, ‘trusts’, ‘trusted’, ‘trustful’, ‘trustfully’,
‘trustfulness’, ‘trustily’, ‘trustiness’, ‘trusting’, ‘trustingly’,
‘trustingness’, ‘trustworthy’, ‘trustworthily’, ‘trustworthiness’,
etc. are all normalized to trust. The same mechanism applies
to other non-canonical suffixes such as -like, -hood, -dom, and
-ship so that words like ‘saintlike’, ‘sainthood’, ‘saintdom’, and
‘saintship’ are all normalized as saint.

The algorithm can also handle negative prefixes such as mis-,
dis-, and un- so that words like ‘distrust’ and ‘mistrust’ can
be normalized as NOT trust. Such negative prefix handling
happens concomitantly with inflection removal so that also
words like ‘distrusts’, ‘distrusted’, ‘distrustable’, ‘distrustful’,
‘distrustfully’, ‘distrustfulness’, ‘distrusting’, ‘distrustingly’,
‘mistrusts’, ‘mistrusted’, ‘mistrustable’, ‘mistrustful’, ‘mistrust-
fully’, ‘mistrustfulness’, ‘mistrusting’, ‘mistrustingly’, ‘trust-
less’, ‘untrustworthy’, ‘untrusty’, ‘untrusting’, and more, are
all normalized as NOT trust.

Thanks to such a mechanism, which leverages both in-
flectional and derivational morphology, Sentic Parser is also
able to decode wrong English expressions such as ‘stucked’,
‘accessable’, or ‘inglamorous’, which can be rather common
in social media text. The same rule of checking whether
a concept is present in SenticNet still applies here so that
concepts like defraud, distress, and disclose are not
wrongly normalized as NOT fraud, NOT stress, and NOT
close, respectively. Finally, Sentic Parser also performs mi-
crotext normalization [24] so that words like ‘gooooooood’ and
‘horrrible’ are normalized as ‘good’ and ‘horrible’, respectively.

IV. GENERALIZATION INTO PRIMITIVES

A recent big shift in NLP research has been the upgrade
from the bag-of-words (BOW) model to the continuous-bag-
of-words (CBOW) model, which allowed NLP systems to take
into account context in the same way one can tell what is
the role of a pixel in an image based on its neighbors [25].
This same shift, however, is what had slowly turned NLP
systems into black-box systems [26]. Since they are better than
CBOW at preserving meaning, multiword expressions are a
possible solution to reverse this trend. Nevertheless, multiword
expressions are hard to discover and can cause the size of a
lexicon to increase exponentially [27].

Instead of assigning polarity to millions of multiword
expressions, concept-level sentiment analysis allows polar-
ity to be inferred on the fly by combining verb primi-
tives (e.g., SUPPORT and its semantic opposite OBSTRUCT)
and noun primitives (e.g., FRIEND and its semantic op-
posite ENEMY), so that expressions like help_buddy,
assist_pal, or stand_up_for_homeboy are all gen-
eralized as SUPPORT(FRIEND) and, thus, categorized as
positive. Besides reducing lexicon size and processing time,
this approach also ensures higher accuracy as compared to
many statistical approaches that simply classify text based on
word occurrence frequencies.

Fig. 4. An example of syntactic normalization.

Fig. 5. An example of semantic normalization.



Fig. 6. An example of sentic algebra.

For example, a BOW model would classify expressions like
bring_enemy_to_standstill, slow_down_rival
or stall_adversary as negative because of the statistically
negative words that compose them. In sentic computing,
instead, such expressions are all generalized as the primitives
OBSTRUCT(ENEMY) and then reasoning is performed on
them. In particular, Sentic Parser firstly applies syntactic
normalization (Fig. 4), e.g., it removes stopwords, it normalizes
verb inflections to their infinitive forms, it replaces plurals
with singulars, etc. Secondly, Sentic Parser applies semantic
normalization (Fig. 5), i.e., it generalizes both verbs and nouns
to their corresponding primitives so that sentic algebra (Fig. 6)
can be applied on them.

In this way, concept-level sentiment analysis reduces the
symbol grounding problem and, hence, gets one step closer to
natural language understanding. We assign a label to each
subset by selecting the most typical of the terms. In the
positive subset {add, soar, increase, escalate,
mount_up, ...}, for example, the term with the highest
occurrence frequency is increase. Hence, the subset is
named after it, i.e., INCREASE, and later defined manually
using logic, i.e., INCREASE(x):= x + 1. Likewise, the
corresponding negative subset is termed DECREASE and de-
fined as DECREASE(x):= x - 1. Primitives like INCREASE
and DECREASE are Level-0 primitives (or superprimitives)
because they are ‘grounded’ using logic. Primitives defined in
terms of these, e.g., GROW:= INCREASE(SIZE), are Level-1
primitives. Primitives defined in terms of Level-1 primitives,
e.g., LENGTHEN:= GROW(LENGTH), are Level-2 primitives
and so on (Fig. 7).

A. Sentic Paths

In the era of deep learning, semantics is likely represented
as embeddings and the semantic similarity is measured in
vector space [28]–[32]. However, symbolic- or graph-based
similarity detection takes the advantage of explainability.
Several measures were proposed for WordNet, such as Tver-
sky’s measure [33], Resnik’s Measure [34], Wu & Palmer’s
Measure [35], and the shortest path [36]. To the best of our
knowledge, there is no similar work for affective knowledge
bases such as SenticNet.

To this end, we introduce sentic paths, a cognitive-inspired
algorithm that takes into account the topology of affective data
in a multidimensional vector space of commonsense knowledge.
Sentic paths are a kernel method conceived to find smooth
paths between objects in space through a number of waypoints
(Nc). The main feature of the method is that the obtained path
aims to move through high probability regions of the space,
searching for a geodetic whose underlying topology is ruled
by the samples’ probability. This method aspires to mimic the
cognitive intuition for which thinking is the process of moving
from one concept to another through regions of the space where
there is a high probability of finding other concepts [37].

In particular, we employ the plain feature space (linear kernel,
primal problem). Rather than a distance, sentic paths calculate
a discrete path between a primitive concept p0 and its semantic
opposite pNc+1 throughout the vector space manifolds. While
the shortest path (through the pure Euclidean distance) between
two antithetic primitives risks to include many irrelevant
concepts, a path that follows the topological structure of the
vector space from a positive primitive (e.g., p0=ACCEPT) to
its semantic antithesis (e.g., pNc+1=REJECT) is more likely
to contain concepts that are both semantically and affectively
relevant. Because positive and negative concepts are found in
diametrically opposite areas of the vector space [38], sentic
paths always traverse it from one end to the other (Fig. 8).

This ensures the discovery of concepts that are both seman-
tically and affectively related to both the positive primitive
p0 (e.g., welcome, agree, and take_in) and the negative
one pNc+1 (e.g., refuse, turn_down, and deny). To adapt
the algorithm to the context of sentiment analysis, we employ
a metric based on the Hourglass model [39], a biologically-
inspired and psychologically-motivated emotion categorization
model based on four independent but concomitant affective
dimensions, which can potentially describe the full range of
emotional experiences that are rooted in any of us. The core
steps of the algorithm can be summarized as it follows:

1) Sentic path initialization: given the starting and the
ending primitives p0 and pNc+1, the Dijkstra algorithm
is run over a penalized graph obtained by computing the
penalized distance matrix among all the concepts ci in
C as follows:

d2p(ci, cj) =

{
d2(ci, cj), ci ∈ nnk(cj)
td2(ci, cj), otherwise

where nnk(cj) is the nearest neighbors set and t is a
penalization factor. This approach allows to capture the
manifold and avoid shortcuts.

2) Waypoint concept positioning: the Dijkstra algorithm
is run on the penalized distance matrix and some
intermediate concepts are returned. This path is then
reparameterized to obtained equally distanced points.

3) Cost function optimization: the path is smoothed through
a cost function optimized via the EM algorithm. The
waypoint concept configuration Pinit from the previous
step is used as waypoint concept initialization and as the
input matrix C (Pinit = C).



Fig. 7. Primitives hierarchy.

The cost function, hence, is:

min
P,u

Nc∑
i=1

Nc∑
j=1

‖ci−pj‖2δ(ui, j)+s
Nc∑
i=0

‖pi+1−pi‖2 (1)

where δ(ui, j) is a Kronecker delta to rule the waypoint
membership and s is a regularization coefficient. Hence, the
method is an out-of-sample smooth extension of Dijkstra
shortest path, where the underlying graph is ruled by a penalized
Euclidean metric and whose smoothness is ruled by s.

Fig. 8. Sentic path between ACCEPT and REJECT.

V. EVALUATION

Ten benchmark datasets for sentiment analysis were consid-
ered for evaluating Sentic Parser, available as an application
programming interface within the Sentic API Suite2. In
particular, the proposed set of algorithms was compared against
SpaCy Parser, a tool built upon SpaCy dependency parser3

and SpaCy lemmatizer4 for deconstructing natural language
text into words and multiword expressions. Both parsers were
coupled with ten popular sentiment lexica for the task of binary
polarity classification. The lexica are WordNet-Affect [40],
Micro WNOp [41], SentiStrength [42], Opinion Finder [43],
General Inquirer [44], SentiWords [45], NOVAD [46], SO-
CAL [47], HSSWE [48] and SenticNet [4]. We tested the
combination of parsers and lexica on 10 well-known sentiment
analysis datasets, namely: CR [49], MR [50], Amazon [51],
IMDb [52], Sanders [53], SST [54], STS [55], SE13 [56],
SE15 [57], and SE16 [58]. Results are listed in Table I.

Sentic Parser showed an average accuracy improvement of
8.55% over polarity detection performed without parsing. This
is due to the fact that many lexica only contain affect words
in their standard form, e.g., infinitive for verbs and singular
for nouns, while Sentic Parser is able to replace all out-of-
vocabulary inflections with their corresponding in-vocabulary
root words.

2https://sentic.net/api
3https://spacy.io/api/dependencyparser
4https://spacy.io/api/lemmatizer

https://sentic.net/api
https://spacy.io/api/dependencyparser
https://spacy.io/api/lemmatizer


Lexicon Parser CR MR Amazon IMDb Sanders SST STS SE13 SE15 SE16 Average
No Parser 03.91% 04.23% 08.46% 17.84% 07.63% 03.92% 15.52% 09.26% 07.46% 05.13% 08.34%

WordNet-Affect SpaCy Parser 04.25% 04.81% 12.35% 22.30% 11.92% 04.53% 19.00% 10.54% 11.82% 06.22% 10.78%
Sentic Parser 04.61% 05.05% 18.87% 28.99% 17.81% 04.81% 24.23% 15.92% 16.35% 10.54% 14.72%
No Parser 10.86% 10.42% 35.61% 40.86% 14.03% 10.55% 17.92% 15.30% 16.93% 10.04% 18.26%

Micro WNOp SpaCy Parser 15.24% 13.60% 39.07% 43.23% 19.87% 12.98% 22.00% 19.74% 22.67% 13.92% 22.24%
Sentic Parser 20.39% 18.73% 44.48% 49.17% 22.95% 17.64% 28.13% 24.89% 26.58% 18.41% 27.14%
No Parser 35.40% 31.83% 50.13% 51.24% 38.77% 33.25% 48.37% 34.09% 35.21% 27.68% 38.60%

SentiStrength SpaCy Parser 39.22% 35.46% 53.42% 54.36% 41.60% 36.21% 52.65% 36.18% 38.44% 30.00% 41.76%
Sentic Parser 45.69% 41.72% 59.09% 60.18% 47.87% 41.57% 58.49% 42.32% 45.60% 35.46% 47.80%
No Parser 51.98% 50.11% 50.07% 47.82% 42.36% 51.00% 51.23% 42.67% 43.89% 36.19% 46.74%

Opinion Finder SpaCy Parser 56.34% 53.06% 53.11% 52.66% 45.17% 55.32% 54.80% 44.95% 47.66% 39.85% 50.30%
Sentic Parser 62.05% 59.98% 59.48% 58.75% 51.22% 61.86% 60.72% 50.28% 53.57% 44.21% 56.22%
No Parser 45.98% 44.05% 48.81% 50.44% 39.27% 45.86% 44.13% 39.30% 41.97% 32.45% 43.23%

General Inquirer SpaCy Parser 50.72% 47.18% 53.26% 53.28% 42.66% 50.02% 48.26% 41.70% 45.05% 34.91% 46.71%
Sentic Parser 56.56% 53.76% 59.63% 59.43% 46.81% 54.39% 54.59% 47.82% 51.12% 40.88% 52.50%
No Parser 53.82% 48.01% 47.93% 47.14% 42.80% 51.00% 50.92% 47.83% 47.30% 44.79% 48.16%

SentiWords SpaCy Parser 56.09% 52.37% 52.54% 52.03% 47.21% 54.63% 54.60% 52.71% 52.84% 48.03% 52.31%
Sentic Parser 62.71% 58.65% 58.11% 57.29% 53.59% 60.57% 60.44% 58.82% 57.46% 54.38% 58.21%
No Parser 56.09% 47.00% 48.90% 49.52% 45.92% 50.76% 53.26% 53.39% 49.12% 49.99% 50.40%

NOVAD SpaCy Parser 58.12% 50.88% 51.53% 50.64% 46.20% 53.13% 55.98% 55.78% 51.61% 52.76% 52.67%
Sentic Parser 64.88% 56.91% 57.06% 56.81% 51.06% 58.88% 61.55% 61.10% 57.87% 58.16% 58.43%
No Parser 57.33% 58.17% 66.73% 69.72% 46.30% 58.16% 55.78% 34.31% 30.63% 35.75% 51.29%

SO-CAL SpaCy Parser 59.92% 59.66% 69.11% 72.91% 49.22% 61.24% 57.44% 35.86% 31.55% 36.56% 53.35%
Sentic Parser 65.58% 64.58% 75.86% 78.67% 52.78% 67.33% 63.51% 41.15% 37.63% 41.02% 58.82%
No Parser 63.08% 54.87% 59.44% 57.93% 64.66% 56.77% 68.99% 60.32% 57.09% 59.04% 60.22%

HSSWE SpaCy Parser 65.54% 55.32% 61.97% 59.55% 67.81% 59.94% 72.23% 62.41% 60.61% 60.38% 62.58%
Sentic Parser 71.33% 60.61% 67.08% 65.27% 73.94% 63.15% 78.27% 68.67% 64.83% 66.62% 67.98%
No Parser 73.52% 68.29% 73.01% 72.54% 72.98% 70.03% 80.92% 74.42% 73.90% 75.22% 73.49%

SenticNet SpaCy Parser 77.11% 71.15% 74.98% 76.88% 74.32% 73.95% 84.04% 77.18% 75.13% 79.10% 76.39%
Sentic Parser 83.60% 77.04% 81.53% 82.91% 80.54% 78.71% 90.08% 83.69% 81.67% 84.39% 82.42%

TABLE I
COMPARISON OF SEMANTIC PARSERS IN COMBINATION WITH TEN POPULAR LEXICA ON TEN BENCHMARK SENTIMENT DATASETS.

Sentic Parser also displayed an average performance im-
provement of 5.52% over SpaCy Parser, as this does not tackle
problems such as negation handling, microtext normalization,
and compound word processing. Moreover, Sentic Parser
can handle nested affixes, e.g., normalize expressions like
‘threateningly’ to ‘threat’ and ‘superdupermegagood’ to ‘good’,
double negations, e.g., replace words like ‘undiscouraged’ with
‘courage’, and prefixes like co-, pre-, fore-, and super- which
may alter the meaning but not the polarity of root words so
that concepts like ‘coordinated’, ‘coordinating’, ‘coordinatedly’,
‘coordinatingly’, ‘coordination’, ‘coordinations’, ‘preordinate’,
‘preordinated’, ‘preordinating’, ‘foreordinated’, ‘foreordinating’,
‘superordinated’, ‘superordinating’, etc. are all normalized as
ordinate.

Finally, Sentic Parser can be applied to different languages
and multiple modalities: we employed the same methodology
to BabelSenticNet [59] and PhonSenticNet [60] (instead
of standard SenticNet) and obtained comparable results for
alphabetic languages. More experiments are to be carried out
for ideographic languages as future work.

VI. CONCLUSION

In this paper, we proposed Sentic Parser, a knowledge-
specific concept parser based on SenticNet, which leverages
both inflectional and derivational morphology for the efficient
extraction and generalization of affective multiword expressions
from English text. In particular, Sentic Parser is a hybrid
semantic parser that uses an ensemble of constituency and
dependency parsing and a mix of stemming and lemmatization.

The key novelties introduced by this parser with respect to
our previous work are that it leverages morphology for syntactic
normalization and it uses primitives for semantic normalization.
We showed that Sentic Parser is superior to standard concept
parsers because it focuses on the extraction of root words
from text and, hence, it normalizes complex natural language
constructs to a sort of primitive-based protolanguage. This
is done by leveraging a graph-based approach which enables
nested affix handling, microtext normalization, and compound
word processing. Preliminary experiments on other alphabetic
languages showed that the proposed methodology could be
language-agnostic.
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