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ABSTRACT
The availability of new datasets and deep learning techniques
have led to a surge of effort directed towards the creation of
new models that can exploit the large amount of data. How-
ever, little attention has been given to the development of
models that are not only accurate, but also suitable for user-
specific use or geared towards resource-constrained devices.
Fine-tuning deep models on edge devices is impractical and,
often, user customization stands on the sub-optimal feature-
extractor/classifier paradigm. Here, we propose a method
to fully utilize the intermediate outputs of the popular large
pre-trained models in natural language processing when used
as frozen feature extractors, and further close the gap be-
tween their fine-tuning and more computationally efficient so-
lutions. We reach this goal exploiting the concept of software-
hardware co-design and propose a methodical procedure, in-
spired by Neural Architecture Search, to select the most desir-
able model taking into consideration application constraints.

Index Terms— Evaluation Methodologies, Opinion Min-
ing / Sentiment Analysis, Language Models, Edge Computing

1. INTRODUCTION

The increase in computational capacity, and the availability
of large amounts of data, have led to a proliferation of deep
learning models capable of exploiting these resources. Con-
sequently, a lot of research has focused on developing novel
deep learning models that aim to improve generalization per-
formance in fields such as natural language processing (NLP)
and sentiment analysis [1]. While accurate, these models
stand on heavy computations, non-convex training proce-
dures, and require huge memories. These side effects limit
the development of user specific models, and the deployment
on embedded devices. On the other hand, these are two major
limitations if one thinks that smart devices continuously sam-
ple users’ data and could produce better services by including
user-specific inference functions. On these devices it is rea-
sonable to train more shallow classifiers which, however,
means losing the most important capability of end-to-end
training for NLP.
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General purpose fixed representation combined with clas-
sifiers are largely sub-optimal compared to fine tuned deep
models, due to the fact that the intermediate representations
are also adjusted during the optimization process. To reduce
this gap we design a strategy to fully take advantage of the
powerful feature extraction capabilities of large pre-trained
models that can be used for inference, but not training due to
the prohibitive cost of the latter. The method aims to give the
classifier access to multiple layers of the deep neural network.
The rationale is as follows: fine tuning performs a transforma-
tion f of the original representation of the layers. Here, the
same task is left to the classifier that in the ideal case will
find the correct transformation for the different feature sets.
Note that we do not seek for the optimal transformation f
that would require hidden layers co-optimization. We rely
on a sub-optimal representation that accesses information of
multiple layers simultaneously.

Different layers of deep networks contain different se-
mantic information [2]. The key point in the proposed
approach is retrieving the right set of connections, which
impacts the computational cost and the generalization ca-
pabilities. To solve this, we propose an architecture search
inspired by Neural Architecture Search (NAS) [3] methods.
The search is driven by the concept of software-hardware
co-design [4] at application level, that is new in sentiment
analysis. This task is of particular interest for multiple rea-
sons. First, sentiment analysis state-of-the-art solutions are
known to rely on large pre-trained models, which are fine-
tuned to maximize performance [5], but strategies on how to
fully utilize their feature extraction capabilities without fine-
tuning are understudied. Moreover, sentiment is user-specific
to a great extent and thus being able to deploy customized
solutions is an important but overlooked aspect.

To the best of our knowledge, this is the first work that
introduces the concept of software-hardware co-design for
sentiment analysis. As a unique contribution, we present a
new cost function that yields the selection of the final model
taking into consideration not only the generalization perfor-
mances but also the constraints of the application, i.e. la-
tency and hardware resources of the embedded system. We
perform a design space exploration using the feature extrac-
tion/classification paradigm, and focus on the classification
stage.



During the design stage, designers can use the proposed
design space exploration strategy to select the optimal combi-
nation of algorithms and hardware for the specific application
among a set of candidates. Later, the selected training strategy
can be deployed on the hardware and allow training on novel
data directly on the device. The contributions of the paper can
be summarized as follows: 1) A methodology to fully utilize
the feature extraction capabilities of large pre-trained NLP
models, at little cost following deployment; 2) A novel design
strategy that allows to include hardware constraints directly
in the learning phase, which, once the final model is chosen,
supports on-device training; 3) A framework that trades-off
application constraints satisfaction and generalization perfor-
mance; the framework is compared against baseline solutions
and proves more effective in balancing computational cost in
two popular datasets for sentiment analysis in conversation.

2. RELATED WORK

The deployment of training phase of inexpensive, resource-
constrained devices is an open issue, where random based
neural network can be regarded as a lower bound in terms
of computational cost [6]. Solutions deployed on reconfig-
urable platforms such as FPGAs [7, 8], may prove fast, yet
expensive. Along the proposed architectures, these works
introduced efficient strategies for hidden weights genera-
tion that reduced memory requirements dramatically. By
contrast, implementations on micro-controllers or micro-
computers have drawn limited attention, in spite of the fact
that these devices best fit IoT applications and remarkably
shrink the time-to-market of commercial products [9]. Re-
cent approaches [10] combined ensemble mechanisms with
random based networks. Biologically-inspired optimiza-
tion stimulated self-adaptive evolutionary single layer net-
works [11], but proved computationally demanding.Limited
work has explored the trade-off between computational cost
and generalization performance for sentiment analysis. [12]
demonstrated that hardware-friendly classifiers can achieve
competitive performance on edge devices, [13] applied ELM
to features extracted from speech data for emotion recogni-
tion, [14] used an ensemble of GPU and ELM classifiers for
multimodal sentiment analysis.

3. APPROACH

Our framework allows training directly on embedded devices.
We propose a NAS-like strategy to draw the most benefit from
a frozen pre-trained language model by devising an algorithm
that can search through its intermediate representations the
ones that are most suitable for the task. To guide this search,
as well as the selection of a suitable classifier, we introduce
a cost function whose solution yields the most suitable model
and set of connections taking into account performance, train-
ing time and training memory requirements.

3.1. Searching for the optimal connections

Typically, a hidden state of the last layer of language models
is used for downstream tasks. However, because our feature
extractor is not fine-tuned, it is sensible to use the prior infor-
mation within the intermediate layers as potential features in-
stead. This remains sub-optimal compared to a fine-tuning of
the whole feature extractor, as that would allow for represen-
tation co-optimization. It does, however, allow for the classi-
fier placed on top of the feature extractor to perform a trans-
formation of multiple representations, simultaneously, which
is expected to contain additional information that would not
be present in, for instance, the last hidden state alone.

To select a combination of the most suitable features, we
adopt a genetic algorithm for feature selection whereby a ran-
dom set of features is selected as the candidate in the initial-
ization step. Afterwards, a series of clones of the candidate
are created and to each clone a mutation is applied, according
to a pool of candidate operations and available feature sets
(feature extractor intermediate outputs). In particular, to each
of the clones we apply one of the following operations: 1)
ADD, which concatenates a features vector selected at ran-
dom to the current feature set; 2) SUBSTITUTE, which re-
places a vector in the current set; 3) DELETE, which deletes
a vector from the current set. Then, each resulting mutation is
evaluated according to a performance measure. The best per-
forming mutation is selected as the winner and retained for
the next iteration. New candidate mutations are then created
from it, starting a new cycle.

3.2. A hardware-aware cost function

Within the limited resources environment, we need an ad-
equate measure of the performance of different represen-
tations, as well as different possible models. To address
these concerns and propose a practical method to select a
suitable model and intermediate representations from the fea-
ture extractor, we introduce a minimization objective over
a pool of candidate solutions that yields a solution aware
of the constraints of the environment that the final model
is to be deployed in. Given a set of models, we want to
select the model i∗ that minimizes the performance error
cost cpi = 1 − pi, pi ∈ [0, 1], where pi can be any metric
deemed to best represent the discrepancy between the pre-
dictions and the real labels. This however does not take into
account hardware resources that are necessary to implement
the models, which may be a limiting factor in real applica-
tions. Moreover, the solution of this problem is subject to
hard constraints dictated by the maximum memory cost, M ,
the maximum training time cost to be tolerated, S, and the
minimum performance to be achieved, denoted by the max-
imum cost in performance, P . This results in the following
optimization problem, or cost function:



i∗ = argminiλpcpi + λmcmi + λscsi (1)
0 < cmi ≤ M, 0 < csi ≤ S, 0 ≤ cpi ≤ P (2)

where cmi, csi are the memory and training time costs nor-
malized normalized in ∈ [0, 1]. λp, λm, λs are weights.

Because the application of the genetic algorithm for the
selection of connections between the feature extractor and the
classifier does not depend on the derivability of the function,
we can use any cost function and set of constraints. In fact,
the proposed cost function is quite general and admits a large
set of options to estimate cmi and csi. Additionally, the se-
lection of the relative weights λp, λm, λs of each component
is application specific. They could be, for instance, adjusted
based on user feedback. As a result, we cannot make assump-
tions on the optimization procedure. However, we can use
this cost function to select the optimal solution only among
the set of candidates models available. Since the training of
the models to evaluate their performance is orders of magni-
tude more computationally costly than evaluating the value of
the cost function, the limiting factor tends to be the practical
estimation of the components of the minimization problem.

3.3. Pipeline

In the previous sections we introduced a cost function that fa-
cilitates the choice of a model and set of connections suitable
for the constrained target environment. Now, we present the
pipeline that can be deployed in this environment. In theory,
finding the optimal pipeline given hardware constraints is an
open problem approached via NAS, which attempts to opti-
mize the entire end-to-end pipeline at once, but may be too
costly to solve. We then restrict the hypothesis space by fix-
ing a-priori role and structure of our models, as seen in Fig. 1.

The building blocks identify the Features Extraction
step, in which we have the feature extractor from which we
select the most appropriate connections through the algorithm
in Section 3.1, followed by Dimensionality Reduction, and
the Classification Stage. Accuracy and the computational
cost are determined by all the modules. Thus, one should
design each module to trade-off these two quantities. The
absolute optimal procedure should always consider all these
steps. However, some design choices can be made a-priori,
simplifying the search space, i.e. reducing the number of
candidate solutions.

In particular, as a feature extractor we employ Mobile-
BERT [15], a lightweight language model inspired to BERT-
large. We do not fine-tune this feature extractor, as it would
result in a prohibitive model selection cost. We further reduce
the dimensionality of the features through Principal Compo-
nent Analysis (PCA), for which we determine the number
of dimensions via the Kneedle algorithm [16]. PCA, once
trained, reduces the subsequent computations at the expense
of a single matrix multiplication.
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Fig. 1. High-level processing pipeline.

Moreover, since we employ multiple representations from
different layers, redundancy in the data that can be effectively
reduced via PCA. Finally, the classification stage is the only
trainable one in our framework. We consider a search space
limited to single layer feed forward neural networks (SLFNs),
by virtue of the excellent trade-off between generalization
performances and computational cost that they present [6].
To train these, we consider the following paradigms: 1) Lin-
ear, equivalent to fine tuning only the last layer of the fea-
ture extractor; 2) Hidden, in which an activation is placed
on a hidden layer; 3/4) Lasso/Ridge, denoting random based
solutions. In particular, we employ ELM [17]. These solu-
tions differ considerably in memory and time consumption.
Accordingly, they are expected to offer an optimal solution
based on the requirements of the application scenario.

4. EXPERIMENTAL RESULTS

We perform the experiments on the two datasets, CMU-
MOSEI [18] and MELD [19]. CMU-MOSEI contains around
22000 utterances, while MELD contains around 13000. We
study two cases based on the dataset size: all the available
training samples (full dataset), and 1000 samples (small
dataset). The second case is of interest as it represents a more
realistic scenario, for user-tailored applications on resource-
constrained devices. The baseline in our system is Mobile-
Bert [15], hereinafter MobBert, fine-tuned on the dataset.
For the first set of experiments we only use the output of the
last layer as typically done, whereas later we will show the
benefit of a feature selection strategy considering the inter-
mediate layers. In line with previous work we use Weighted
Accuracy as the metric for CMU-MOSEI [20] and Weighted
F1 score for MELD [21]. We empirically measure time and
memory requirements of the training phase of the models
on an Intel(R) Xeon(R) W-2235 CPU @ 3.80GHz, using
wall-clock time and peak memory usage. The system will
allocate an oversized quantity of memory if necessary, which
will ensure that on a embedded system the memory required
will be lower or equal than the one measured on such device.
Similarly, the measured latency will be a lower bound.



However, the relative placement of different algorithms
will help in selecting the correct device. In addition, per-
forming the measures inside the candidate embedded systems
would bring in additional steps to adapt the code for every
single device, leading to increased time to market and costs.

4.1. Performance and computational trade-off

Our experiments do not aim to prove that the proposed so-
lution yields state-of-the-art generalization performance. It is
well-known that deep learning frameworks are more accurate.
Instead, we show that our strategy can effectively incorpo-
rate hardware constraints. We investigate which models are
selected as the importance given to the performance metric,
memory, and training time requirements vary, by performing
a parametric study over the values of the normalized λp, λm

and λs. For each configuration we compute the average over
the 100 trials, then for each value of (λp, λm, λs) we show the
type of the best performing model, for the two cases of differ-
ent dataset size for CMU-MOSEI, in Fig. 2. On the axes we
have the weights given to λp, λm, and λs. Each point in the
resulting 3D scatter plot denotes the type of model minimiz-
ing the cost function for the given parameters.

Fig. 2. Plot of the class of models minimizing the cost func-
tion on CMU-MOSEI. Full dataset (left), small dataset (right).

We find that, regardless of dataset size, heavy transformer
based models such as MobBert only win the trade-off when
extreme importance is given to the performance and little to
none to memory and training time. When the dataset is large,
solutions based on Lasso/Ridge may be memory intensive as
they may involve matrix inversion. However they are gen-
erally still faster than backpropagation as seen from the fig-
ure, observing that, when high importance is given to time,
these solutions are preferred. In most cases, however, a neu-
ral network with a hidden layer proves to be the most ef-
fective. When the dataset size is smaller, the Lasso/Ridge
based models are chosen more frequently, since their mem-
ory and time requirements grow superlinearly with respect to
data size. Thus, these models can be very effective for user-
tailored applications on embedded devices, where they can
be quickly fine-tuned without exceeding the device’s capabil-
ities. Similar trends were observed for the MELD dataset.

CMU-MOSEI MELD
WA #Feats F1 #Feats

Ridge - last layer 0.7762 127 0.5808 119
MobBERT 0.8398 N.A. 0.6530 N.A.
Ridge - genetic 0.8074 290 0.6192 265

Table 1. Comparison of the different methods.

4.2. Feature selection via genetic algorithm

In order to investigate whether the gap between models were
the pre-trained feature extractor is frozen and those in which
it is fine-tuned can be further closed, we employ a genetic
algorithm for feature selection that leverages the intermedi-
ate outputs of our feature extractor, as detailed in Section 3.1.
We do not repeat the full analysis including time and mem-
ory requirements, which can be easily incorporated by setting
λp ̸= 0 and λs ̸= 0. We employ the Ridge solution as the
model choice. We compare the performance on the same data
split of this strategy with two baselines, the Ridge solution
and MobBert. We perform 3 trials, each with a different ini-
tialization of the feature set of the genetic algorithm. For sim-
plicity, we limit the number of intermediate outputs that can
be concatenated to a maximum of 5, the number of mutations
is set to 5, and the number of iterations is set to 200.

Results are reported in Table 1. Ridge - last layer de-
notes the Ridge model utilizing the output of the last layer of
the transformer model, MobBERT the fine-tuned transformer
and Ridge - genetic the Ridge model whose input features
are selected via the genetic algorithm. We find that adding
the feature selection step during the initial model selection
leads to a noticeable improvement in performance, over 3%
on CMU-MOSEI and nearly 4% for MELD with respect to
the typical method of using the output of the last layer of
the feature extractor. The number of input features also in-
creases but this leads to a relatively low increase in computa-
tional requirements as the main computational load is due to
the model’s internal architecture, which remains untouched.

5. CONCLUSION

In this work we have shown how to make use of the fea-
ture extraction capabilities of large pre-trained language mod-
els for NLP to deploy solutions targeted for resource con-
strained devices, paving the way for user-specific models. We
did so by presenting a new approach to model selection that
is better suited for real world applications. Shifting the fo-
cus from the predominant mindset of developing increasingly
complex models aimed at improving performance, our ex-
periments demonstrated that a framework including standard
classifiers such as SLFNs can outperform state-of-the-art so-
lutions when considering realistic constraints, and pave the
way for the development of user-specific inference functions.
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