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Sentence embeddings are essential for NLP tasks such as semantic search, re-ranking, and
textual similarity. Although multilingual benchmarks like MMTEB broaden coverage, Southeast
Asia (SEA) datasets are scarce and often machine-translated, missing native linguistic properties.
With nearly 700 million speakers, the SEA region lacks a region-specific embedding benchmark.
We introduce SEA-BED, the first large-scale SEA embedding benchmark with 169 datasets
across 9 tasks and 10 languages, where 71% are formulated by humans, not machine generation
or translation. We address three research questions: (1) which SEA languages and tasks are
challenging, (2) whether SEA languages show unique performance gaps globally, and (3) how
human vs. machine translations affect evaluation. We evaluate 17 embedding models across six
studies, analyzing task and language challenges, cross-benchmark comparisons, and translation
trade-offs. Results show sharp ranking shifts, inconsistent model performance among SEA
languages, and the importance of human-curated datasets for low-resource languages like
Burmese. 1
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1. Introduction

Sentence embedding plays a crucial role in Natural Language Processing (NLP) by transforming
complex linguistic structures into fixed-size vector representations that capture semantic meaning.
These embeddings are fundamental for various downstream tasks, including semantic textual
similarity, retrieval, and re-ranking. To evaluate the robustness of embeddings, numerous studies
employ benchmark suites covering these tasks (Muennighoff et al. 2023; Enevoldsen et al.
2025). However, most existing benchmarks, such as SentEval (Conneau and Kiela 2018) and
MTEB (Muennighoff et al. 2023), mainly focus on high-resource languages like English, German,
Chinese, and French, leading to the underrepresentation of low-resource languages.

Recently, several works have proposed multilingual sentence embedding models and bench-
marks. For example, Wang et al. (2024a) built a model based on Mistral-7B (Jiang et al. 2023)
supporting 93 languages and Jina-embedding-v3 (Sturua et al. 2024a) covering 89 languages
spoken worldwide. To broaden benchmarking efforts, Enevoldsen et al. (2025) proposed MMTEB,
an extension of MTEB that includes evaluation across 1,090 languages. Despite these advances
and coverage, Southeast Asian (SEA) languages remain underrepresented. Existing SEA resources
in MMTEB–XNLI (Conneau et al. 2018), Tatoeba (community 2021), and SIB-200 (Adelani
et al. 2024)–are machine-translated datasets, typically translated from English sentences to SEA
languages. This lack of native-authored data limits the fluency and linguistic authenticity captured
in current benchmarks. As a result, sentence embedding models may struggle to generalize
effectively for SEA languages, highlighting a critical gap in current multilingual sentence
embedding research.

Even though the combined population of the SEA region is close to 700 million 2, and is the
3rd largest population group in the world, no SEA sentence embedding benchmarks have been
established so far. Prior efforts, i.e., IndoNLG (Aji et al. 2022), SEACrowd (Lovenia et al. 2024),
and SEA-VL (Cahyawijaya et al. 2025), collect more than 500 datasets and 100 million samples
for SEA. Still, these resources were primarily designed for training and evaluating language
generation models (i.e., decoder-based models) and are unsuitable for sentence embedding tasks.
Moreover, there are many works studied on SEA languages via large language models (LLMs),
i.e., SEA-LION (Ng et al. 2025) and SEA-LLMs (Zhang et al. 2024). These works underscore the
importance of specifically designed benchmarks to identify the challenges and gaps in collecting
and processing SEA language data. Building upon these insights, our work addresses the following
research questions: (RQ1) Within SEA languages, which specific tasks, scripts, or linguistic
features remain problematic for current models, and why do these remain unresolved? (RQ2)
How do current multilingual embedding models perform in SEA languages compared to other
global languages, and do we see unique performance gaps in SEA? (RQ3) What trade-offs arise
between human-annotated versus machine-generated data?

To answer our research questions, we propose SEA-BED, a SEA sentence emBEDding
benchmark that collects datasets created by native speakers rather than relying primarily on
translation. Our benchmark contains more than 169 datasets, 9 tasks, and 10 languages. Crucially,
148 datasets (∼87% of our benchmark) never appear in any sentence embedding benchmarks,
and 120 datasets (∼71% of our benchmark) are created by humans rather than machine translation
or generation. This makes our benchmark representative of the SEA region more so than any other
benchmark by evaluating sentence embedding models on human-crafted datasets, resulting in more
reliable and accurate results than machine translation or generation datasets. Moreover, we propose
11 new datasets for Thai and Burmese, which allow us to evaluate the semantic textual similarity,
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relation understanding, and transfer learning performances. We summarize the differences between
our benchmark and previous benchmarks in Table 1.

To evaluate the efficiency of sentence embeddings, we tested 17 embedding models in six
distinct studies (Section 5) for both encoder- and decoder-based architectures that support SEA and
other languages: Sections 5.1 and 5.2 address RQ1 by breaking down model performance across
tasks and languages within SEA. Section 5.3 answers RQ2, comparing SEA-focused performance
to the broader MMTEB setting. Section 5.4 focuses on RQ3’s design decision analysis, contrasting
human-annotated data with machine-translated data in Thai and Burmese. Section 5.5 and 5.6 dive
deeper into RQ1 with studies to understand the challenge of our benchmark using a tokenizer-level
analysis and a SEA language similarity study.

The experimental results from our studies show that the performance of existing multilingual
sentence embedding significantly changes compared to MMTEB (Enevoldsen et al. 2025). For
example, the ranking of the model that used to perform best over 1,090 languages dropped from
second rank to eighth rank when tested on our benchmark, as shown in Figure 2. We propose
that this change in ranking is due to our benchmark including more high-quality SEA datasets
than MMTEB, which makes our benchmark more challenging, and crucially more holistically
representative for the SEA region at large. Moreover, we found performance and language
consistency problems, where no models perform best in all cases for SEA languages.

Summary of the contributions of our paper:r We propose SEA-BED, a massive collection of high-quality SEA datasets. Our benchmark
consists of more than 169 datasets, 9 tasks, and 10 languages: Indonesian, Thai, Vietnamese,
Burmese, Filipino, Tamil, Khmer, Malay, Lao, and Tetum.r We propose 11 new datasets for Thai and Burmese, allowing us to evaluate more tasks
compared to previous benchmarks. For reproducibility, we will release the evaluation tool
and datasets in the published version of our paper.r We conduct a comprehensive empirical study on SEA languages by evaluating 17 embedding
models across 6 distinct studies. Our experiments reveal that performance rankings for
multilingual embeddings shift significantly when tested on SEA data, and no single model
excels across all tasks and languages.

Benchmark # Languages # SEA Languages # Datasets # Task # New datasets # SEA datasets # Human-Crafted datasets
(only SEA languages)

MTEB-French (Ciancone et al. 2024a) 1 N/A 18 8 3 N/A N/A
C-Pack (Xiao et al. 2024a) 1 N/A 35 6 35 N/A N/A
SEB (Enevoldsen et al. 2024) 4 N/A 24 4 24 N/A N/A
MMTEB (Enevoldsen et al. 2025) 1,090 9 270 10 5 21 (7.78 %) 20 (95.24 %)
SEA-BED (ours) 10 10 169 9 11 169 (100.00 %) 120 (71.01 %)

Table 1: The statistics of our benchmark compared to existing sentence embedding benchmarks.

2. Related Work

2.1 Embedding Models

Currently, researchers typically use pre-trained language models and contrastive learning to train
text embedding models (Li and Li 2023; Wang et al. 2024a; Lee et al. 2024). Feng et al. (2022)
proposed a language-agnostic multilingual sentence embedding on 109 languages called LaBSE.
The experimental results from LaBSE demonstrate robust performance across cross-lingual and
multilingual retrieval benchmarks. Wang et al. (2024b) proposed pre-training and fine-tuning
methods where the pre-trained models are designed for specific sentence embedding tasks. In
particular, the models are trained using unsupervised contrastive learning and then further fine-
tuned with supervised contrastive learning to improve the robustness. Chen et al. (2024) proposed
BGE-M3, an effective sentence embedding model that leverages a combination of sparse and
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dense models in the training step. The experimental results of previous works demonstrated state-
of-the-art performance in various languages, including SEA languages, such as Thai, Indonesian,
and Filipino.

Recent advancements in LLMs have led to the development of multilingual text models.
For example, Wang et al. (2024a) demonstrated that an LLM such as GPT-4 can synthetically
generate pre-training and fine-tuning data for sentence embedding models. Moreover, Wang et al.
(2024a) proposed e5-instruction, an LLM-based sentence embedding that pools the last layer of
Mistral-7B (Jiang et al. 2023) to formulate the sentence representation of text. The instruction
will affect the representation of texts in downstream tasks, e.g., the prompts of classification and
relation tasks will give different representations despite identical text input. Muennighoff et al.
(2024a) proposed a technique to combine the text representation and instruction following. In
particular, the representation is learned through contrastive learning, while the instruction learning
is incorporated during the training step using a Supervised Fine-Tuning (SFT) technique.

2.2 Text Embedding Benchmarks

Existing text embedding benchmarks primarily focus on high-resource languages. Notable
examples include SentEval (Conneau and Kiela 2018), which provides a preliminary benchmark
for text embedding understanding of STS and transfer learning. USEB (Wang, Reimers, and
Gurevych 2021) is an unsupervised embedding benchmark focusing on pair-text classification,
such as re-ranking, paraphrase detection, and information retrieval. BEIR (Thakur et al. 2021)
is a Heterogeneous Benchmark focusing only on information retrieval datasets on 18 datasets.
MTEB (Muennighoff et al. 2023) is a large-scale version of BEIR that not only focuses on
retrieval tasks but also on diverse tasks, i.e., bitext mining, classification, and semantic textual
similarity. However, these benchmarks primarily focus on English, while many works extend
MTEB from English to Chinese (Xiao et al. 2024b), German (Wehrli, Arnrich, and Irrgang 2023),
and French (Ciancone et al. 2024b).

Recently, there has been an attempt to create a multilingual version of MTEB called
MMTEB (Enevoldsen et al. 2025). This recent multilingual benchmark evaluates 10 tasks and
1,090 datasets, but notably, only 21 datasets are SEA language datasets. The experiment results
from MMTEB found that many multilingual embedding models that perform well in English
might fail on this benchmark because they lack consistency in cross-lingual settings. However, we
found that the SEA texts in MMTEB benchmarks are not written naturally due to the fact that the
datasets are created through machine translation of English to SEA texts. Thus, the results from
MMTEB might not be representative of performance in SEA languages, given the reliance on
machine-translated datasets.

2.3 SEA Benchmarks

There have been many efforts to formulate SEA benchmarks. NusaCrowd (Cahyawijaya et al.
2023) proposed a large-scale Indonesian benchmark focusing on natural language understanding
and generation, especially for decoder models. SEACrowd (Lovenia et al. 2024) is a data collection
project that gathers SEA benchmarks in its own repository. The experiment from SEACrowd is
focused only on large language models, especially Llama (Dubey et al. 2024) and T5 (Raffel et al.
2020) families. SEA-VQA (Urailertprasert et al. 2024) proposed a vision question-answering
dataset where the image is SEA cultural collected from the UNESCO website, and the question and
answer are written only in English. However, these benchmarks do not measure the embedding
effectiveness in SEA texts. In particular, previous works studied large language models and
generative outputs, while embeddings have not been experimented with in SEA languages.
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Furthermore, there have also been many efforts to create SEA models that can perform
well on SEA benchmarks. SEA-LION (Ng et al. 2025) and SeaLLMs (Zhang et al. 2024)
proposed a Southeast Asian model using existing large language models (Dubey et al. 2024;
Rivière et al. 2024) as their base models. The performance of those models on generative SEA
benchmarks (Susanto et al. 2025) demonstrated the effectiveness of both models in terms of culture
and knowledge of SEA texts. Nonetheless, the robustness of those models from the embedding
perspective has yet to be explored.

3. SEA-BED
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Figure 1: An overview of SEA-BED, featuring 169 datasets, 9 tasks, and 10 languages.

3.1 Overview

As shown in Figure 1, our benchmark consists of 169 open-source datasets written in 10 languages:
Indonesian, Thai, Vietnamese, Burmese, Filipino, Tamil, Khmer, Malay, Lao, and Tetum. The
goals of SEA-BED are:r Evaluate the cross-lingual and multilingual capability of existing sentence embedding

models for both open-source and proprietary models.r Evaluate the robustness and consistency of sentence embedding models. The robust models
should perform similarly regardless of tasks or input languages.r Holistic results for SEA by analyzing more on SEA studies, including results on machine
translation datasets, human-crafted datasets, tokenizers regarding SEA tokens, and language
similarity.r Open-data, open-result, and open-science. We will release the codes and datasets publicly
for reproducibility.

In contrast to the previous sentence embedding benchmarks, as shown in Table 1, we consolidate
the SEA datasets into our benchmark, resulting in an evaluation suite that better represents SEA
knowledge than previous works. Note that the complete datasets and download links are provided
in Appendix 1.2.
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3.2 Task Selection and Evaluation

To evaluate SEA embedding in all aspects, we select diverse tasks based on real-world applications
of embeddings. However, because SEA resources are limited, we select 9 tasks for which the
resources are available and open-source, such as bitext mining, pair classification, classifica-
tion, clustering, semantic textual similarity, retrieval, reranking, multi-label classification, and
instruction retrieval.

We categorize the selected tasks into 4 aspects reflecting the desired properties that we want
to evaluate:r Cross-lingual Evaluation (CLE). In this task type, we evaluate the cross-lingual knowledge

of embedding models where the inputs can be written in different languages in the same
dataset.r Transfer Learning (TL). For this task type, we evaluate the robustness of embeddings in
downstream tasks by following SentEval (Conneau and Kiela 2018) and use a classifier with
the embedding model where the classifier learns to classify the class of text (i.e., sentiment
analysis, review classification, etc.) according to the target task.r Semantic Understanding (SU). In this task type, we evaluate the robustness of producing
similarity of text-pairs. A good model should generate a similar or dissimilar text-pair when
the input is relevant or irrelevant, respectively.r Information Retrieval (IR). For the final task type, we evaluate the pair-wise similarity
generation. In particular, we observe the retrieval performance when the query and
documents can be significantly different in length, unlike the SU category, in which the
input lengths are always similar.

Along with the above-defined task types, we add a tag in the selected tasks below to easily
understand what desired property we want to evaluate for each task.
[CLE, IR] Bitext Mining. Given two sentence sets from different languages, the goal is to find
the best match for each sentence in the first set, typically its translation. The model embeds each
sentence, and matches are determined using cosine similarity. We used the F1 score to evaluate
model performance.
[SU] Pair Classification. This task involves a pair of input sentences, with their relationship
indicated by a binary label. The relationship is predicted based on embedding similarity, using
average precision as the primary metric.
[TL] Classification. The train and test sets are embedded using the provided model. A logistic
regression classifier is applied on top of the embeddings, and the model’s performance is evaluated
on the test set using the F1 score.
[TL, SU] Clustering. Given a collection of sentences or paragraphs, the task is to organize them
into meaningful clusters. The embedded texts are clustered using a mini-batch k-means algorithm,
with the number of clusters (k) set to the number of unique labels. Clustering performance is
evaluated using the V-measure metric.
[CLE, SU] Semantic Textual Similarity (STS). The STS task measures sentence similarity using
continuous labels, with higher values indicating greater similarity. The model embeds a pair of
sentences, and similarity is computed with various distance metrics, where the sentences can be in
the same or different languages. Spearman’s correlation based on cosine similarity is the primary
metric, evaluated against ground truth using Pearson and Spearman correlations, following the
Sentence-BERT setting (Reimers and Gurevych 2019).
[IR] Retrieval. The task involves retrieving relevant documents from a corpus based on test
queries. Each dataset includes a corpus, queries, and their relevant document mappings. Queries
and documents are embedded using a model, and similarity scores are calculated with cosine
similarity. The documents are ranked for each query, and evaluation metrics such as nDCG@k,
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MRR@k, MAP@k, precision@k, and recall@k are computed, with nDCG@10 as the main
metric.
[IR] Reranking. The input consists of a query and a set of both relevant and irrelevant reference
texts. The objective is to rank these references based on their relevance to the query. The model
generates embeddings for the reference texts, which are then compared to the query embedding
using cosine similarity. Rankings are produced for each query and evaluated by averaging the
results across all queries. Mean Average Precision (MAP) is used as the primary metric.
[TL] Multi-label Classification. This task entails predicting several labels for each input, where
instances may belong to multiple classes. The model embeds the input data, and a multi-label
classifier is applied on top of these embeddings. The F1 score is used as the main evaluation
metric.
[IR] Instruction Retrieval. For instruction retrieval, the task expands upon traditional information
retrieval by incorporating detailed instructions into queries. In contrast to standard retrieval,
which typically uses short keyword queries, instruction retrieval pairs each query with a detailed
instruction outlining the criteria for determining document relevance. Therefore, the task involves
using each query’s specific instruction, rather than a generic one, to retrieve relevant documents
from the corpus. We follow Weller et al. (2024) using standard retrieval metrics with the
instructions alongside the queries. nDCG@5 is used as the primary metric.

3.3 Ensuring Data Quality

Data quality assurance is achieved through systematic review processes by native speakers of
SEA languages, all of whom are also proficient in English, who verified and validated the data for
grammatical correctness, native written style, appropriate language usage (no code-switching), and
correctness of the gold standard annotations. Only datasets that passed all criteria were included
in our benchmark.

3.4 New Datasets

We also propose new datasets for Thai and Burmese on STS, NLI, and multi-label classifica-
tion tasks. While Thai has multi-label classification datasets for evaluating embedding model
robustness, no such datasets are available for Burmese. Importantly, there are also no available
datasets for Thai and Burmese textual similarity and relation classification. As demonstrated in
previous works (Gao, Yao, and Chen 2021; Chuang et al. 2022), these tasks also directly affect the
performance of other tasks, such as retrieval and re-ranking. To address this problem, we propose
4 new datasets with 3,147 samples for Thai and 7 new datasets with 13,177 samples for Burmese.

As shown in Table 2, we used English sets of STS datasets (STSBenchmark (Cer et al. 2017),
STS-2017 (Cer et al. 2017), STS-2022 (Chen et al. 2022), STS-2024 (Ousidhoum et al. 2024b),
BIOSSES (Soğancıoğlu, "Ozt"urk, and "Ozg"ur 2017)), and NLI (XNLI (Conneau et al. 2018))
as the original texts. In addition, we translated a Thai multi-label classification dataset called
Prachathai67k (cstorm125 2019) to Burmese. We use this setting because Thai and Burmese have
similar cultures, politics, and histories; using Thai datasets as the starting dataset for Burmese
translation is thus more suitable than using English datasets. Then, we asked Thai and Burmese
native speakers (see Appendix 1.5 for annotator demographics) to translate the selected datasets
in which the annotators were given the following instructions: translate the selected datasets
to make them a human-like or everyday conversation in your native languages and change the
subject of a sentence to be gender-neutral since both the Thai and Burmese languages have
words or morphemes that can express the gender of the speaker. Therefore, the quality of our new
human-crafted dataset is higher than that of using machine translations or LLMs to generate data,
as such methods have been observed to be less native-like or unrepresentative of natural language
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use (Lovenia et al. 2024; Singh et al. 2025). Note that we also evaluate the quality and differences
between human-crafted and machine-translated datasets in Section 5.4.

Dataset mya tha

Biosses 100 100
STS17 250 250
STS22 197 197
STS24 2,600 2,600
STSBenchmark 2,880 -
XNLI 5,000 -
Prachathai67k 2,150 -

Total number of samples 13,177 3,147

Table 2: Statistics of the new evaluation datasets included in SEA-BED.

3.5 Benchmark Efficiency

Caching Embeddings. To improve the run-time efficiency, we use embedding caching to store
embedded texts in memory and cache files; when seen texts are input to the same model, we
will use the cached embedding instead of computing the new one to decrease the run-time of our
benchmark.
Downsampling. Enevoldsen et al. (2025) proposed a downsampling technique for the English
benchmark, decreasing the number of samples by 98%. However, as shown in Table 3, we applied
the same technique to our benchmark (bitext mining datasets) and found that the performance of
each model increased in all cases. This is because all challenging samples may have been removed
from the dataset, leading to improved performance for most models. Moreover, the ranking of
each model changed, in contrast to the findings of Enevoldsen et al. (2025), where the rankings
remained largely unchanged. Therefore, we did not apply the downsampling technique to our
benchmark.

Model 100% Dataset 30% Dataset Rank after downsampling

multilingual-e5-large-instruct (560M) 87.86 93.03 0
Qwen3-Embedding-8B (8B) 84.78 90.31 ↓1
bge-multilingual-gemma2 (9B) 82.02 90.71 ↑3
multilingual-e5-large (560M) 84.51 88.19 ↓1
bge-m3 (568M) 86.18 91.89 ↑1
GritLM-7B (7B) 63.63 69.68 0
e5-mistral-7b-instruct (7B) 65.30 73.42 0
Qwen3-Embedding-0.6B (595M) 56.53 62.95 0
multilingual-mpnet-base (278M) 68.12 73.97 0
LaBSE (471M) 86.84 90.51 ↓2
multilingual-MiniLM-L12 (118M) 53.23 59.06 0
Gemma-SEA-LION-v3-9B-IT (9B) 15.31 3.21 ↓1
Sailor2-8B-Chat (8B) 4.31 6.01 ↑1

Table 3: We evaluate 13 models on bitext mining using 100% and 30% dataset sizes. We also
indicate the rank change of the model before and after downsampling to show the performance
discrepancy.
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3.6 Benchmark Discussion

Data Coverage. As shown in Table 1, our benchmark contains 169 datasets across 9 tasks for 10
SEA languages. As a point of comparison, we note that while MMTEB contains 270 datasets,
only 21 are written in SEA languages, partly because there were few SEA researchers involved
in its creation. In contrast, SEA-BED contains 169 datasets, where 148 datasets (∼87% of our
benchmark) do not feature in MMTEB, making our benchmark more representative of SEA than
MMTEB. In addition, 120 datasets in our benchmark were directly created by native speakers in
the respective native languages rather than relying on machine translation or multilingual datasets.
Moreover, we present 11 new datasets (STS, NLI, and multi-label classification tasks) for Thai
and Burmese, enabling our benchmark to be evaluated for those languages and tasks.
Domain Coverage. We found that datasets in MMTEB only cover main domains (i.e., News,
non-fiction, and encyclopedia) on SEA languages, while domains that are close to real-world use
cases (i.e., social, legal, and medical) are not included in the benchmark. To address this problem,
SEA-BED aims to represent more SEA and real-world use cases by covering 17 domains across
169 datasets, as shown in Table 4a. In addition, our benchmark also covers 4 new domains that
never appeared in MMTEB (i.e., academic, blogs, medical, and subtitles). The full details of each
domain can be found in Appendix 1.3
Task Coverage. As shown in Table 4b, MMTEB provides only limited task coverage for SEA
languages, focusing on core tasks like cross-lingual pairing and topic clustering. In contrast,
our benchmark proposes 9 new tasks, e.g., dialect pairing, written-forms pairing, language
identification, toxic language detection, instruction QA, sentiment, topic classification, article
reranking, and long document retrieval. This allows us to evaluate a broader range of tasks
compared to previous benchmarks. Examples of each task can be found in Appendix 1.4.

Domain ind tha vie mya fil tam khm zsm lao tet

Academic +
Blog + + + + +
Constructed ✓ + + + + +
Encyclopedia ✓ ✓ ✓ ✓ ✓ ✓ ✓ + ✓

Fiction + ✓ ✓ + ✓ ✓ + + +
Government + ✓ ✓ + + ✓ + + + +
Legal + + + + ✓ + + +
Medical + +
News ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Non-fiction ✓ ✓ ✓ ✓ ✓ ✓ ✓ + ✓

Religious ✓ ✓ ✓ ✓ ✓ + + + +
Reviews ✓ ✓ ✓ + + +
Social + + + + ✓ ✓

Spoken ✓ ✓ ✓ + ✓ ✓ ✓ ✓ ✓ +
Subtitles +
Web ✓ + + + ✓ + +
Written ✓ ✓ ✓ ✓ ✓ ✓ ✓ + ✓ +

(a) Domain Coverage

Task ind tha vie mya fil tam khm zsm lao tet

Bitext Mining
Cross-lingual pairing ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ +
Dialect pairing + + + + + + + +
Written-forms pairing + + + +
Classification
Language Identification + + + + + + + + +
Sentiment ✓ ✓ ✓ + ✓ ✓ +
Topic Classification ✓ ✓ ✓ + ✓ ✓ ✓ ✓ ✓

Toxic Language Detection + + + +
Clustering
Topic Clustering ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Instruction Retrieval
Instruction QA + + +
Multi-label Classification
Sentiment + +
Topic Classification + + + +
Toxic Language Detection +
Pair Classification
Textual Entailment ✓ ✓ ✓ + + + + + +
Reranking
Article Reranking + +
Retrieval
Article Retrieval ✓ ✓ + +
Long Document Retrieval +
Question Answering + + ✓ + +
STS
Multilingual STS ✓ + + + + + + + +
Cross-lingual STS + + ✓

(b) Task Coverage

Table 4: Coverage of SEA-BED benchmark compared to MMTEB. For the above, + indicates
newly added, while ✓is covered in MMTEB for SEA languages.
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4. Experimental Settings

4.1 Models

To evaluate sentence embedding on SEA texts, we experiment on 13 open-source models across
encoder and decoder models as follows:r multilingual-e5-large (Wang et al. 2024b). A multilingual-e5-large model that is trained on

over 100 languages using a combination of contrastive pre-training on diverse multilingual
text pairs and supervised fine-tuning on high-quality labeled datasets using mined hard
negatives and knowledge distillation techniques.r multilingual-e5-large-instruct (Wang et al. 2024b). The multilingual-e5-large-instruct
model is similar to multilingual-e5-large, with additional fine-tuning on instructional data.r e5-mistral-7b-instruct (Wang et al. 2024a). The e5-mistral-7b-instruct model is a text
embedding model based on Mistral-7B (Jiang et al. 2023), fine-tuned with contrastive
learning on synthetic instruction data across 93 languages. Using a two-step prompting
strategy, the model learns from diverse embedding tasks and achieves strong multilingual
performance with under 1,000 training steps.r multilingual-mpnet-base-v2 (Reimers and Gurevych 2020). The multilingual-mpnet-base-
v2 model is trained on parallel data for over 50 languages via multilingual knowledge
distillation using paraphrase-mpnet-base-v2 (Reimers and Gurevych 2019) as a teacher
model, xlm-roberta-base (Conneau et al. 2019) as a student model, and MSE loss to align
their embeddings.r LaBSE (Feng et al. 2022). The LaBSE model is trained on over 109 languages using a
dual-encoder transformer architecture based on BERT (Devlin et al. 2018), leveraging a
translation ranking loss function to produce sentence embeddings that align semantically
similar sentences across languages into a shared vector spacer multilingual-MiniLM-L12-v2 (Reimers and Gurevych 2020). The multilingual-MiniLM-
L12-v2 model is trained using a similar multilingual knowledge distillation approach to
multilingual-mpnet-base-v2, with paraphrase-MiniLM-L12-v2 (Reimers and Gurevych
2019) as a teacher model, Multilingual-MiniLM-L12-H384 (Wang et al. 2020) as a student
model, and MSE loss to align their embeddings.r bge-m3 (Chen et al. 2024). The BGE-M3 model is trained on over 100 languages using
a combination of contrastive pre-training on diverse multilingual corpora and supervised
fine-tuning with high-quality labeled and synthetic datasets, leveraging hard negative mining
and a self-knowledge distillation framework that integrates dense, sparse, and multi-vector
retrieval signals.r bge-multilingual-gemma2 (Chen et al. 2024). The bge-multilingual-gemma2 model is
built on Gemma-2-9b (Team 2024) and trained on diverse multilingual data across tasks
such as retrieval, classification, and clustering using embedding techniques.r GritLM-7B (Muennighoff et al. 2024b). The GritLM-7B model is built on the Mistral-
7B (Jiang et al. 2023) architecture and trained using Generative Representational Instruction
Tuning (GRIT), a unified framework combining contrastive learning for embeddings and
next-token prediction for generation, with task-specific instructions and a joint loss to enable
strong performance across both tasks.r Qwen3-Embedding-0.6B and Qwen3-Embedding-8B (Zhang et al. 2025). The Qwen3-
Embedding-0.6B and Qwen3-Embedding-8B models were trained on multiple languages
using a multi-stage training pipeline that combines large-scale weakly supervised pre-
training on synthetic multilingual data with supervised fine-tuning and model merging
techniques to enhance robustness and generalization.
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r Sailor2-8B-Chat (Dou et al. 2025). The Sailor2-8B-Chat model, based on an expanded
Qwen2.5-7B (Yang et al. 2024), was trained on 13 SEA languages using two-stage continual
pre-training with balanced and high-quality data, followed by two-stage instruction tuning
and preference tuning with length-regularized DPO (Park et al. 2024).r Gemma-SEA-LION-v3-9B-IT (Singapore 2024). The Gemma-SEA-LION-v3-9B-IT
model is fine-tuned from the Gemma2 9B (Rivière et al. 2024) base model on English and
multiple SEA languages (such as Indonesian, Thai, and Vietnamese), using a combination
of full parameter fine-tuning, on-policy alignment, and model merging techniques.

Moreover, we also evaluate the performance of proprietary models as follows:r text-embedding-3-small. We evaluate the text-embedding-3-small 3 model, which provides
a highly efficient embedding model suitable for various downstream applications.r embed-multilingual-v3.0. We evaluate the embed-multilingual-v3.0 4 model, designed for
multilingual representation learning across over 100 languages.r voyage-3. We evaluate the voyage-3 5 model, which provides efficient, high-quality
embeddings optimized for retrieval across diverse domains.r jina-embeddings-v3. We evaluate the jina-embeddings-v3 (Sturua et al. 2024b) model,
which is designed for efficient semantic similarity and search applications, supporting
various multilingual scenarios.

All proprietary models were accessed and evaluated using their latest publicly available
versions during experimentation (April 4th, 2025).

4.2 Evaluation Setup

We utilize the evaluation metrics of each task as mentioned in Section 3.2. We use the averaging
strategy similar to previous works (Muennighoff et al. 2023; Enevoldsen et al. 2025), averaging
all the tasks equally with the standard deviation (SD) score. We acknowledge that the metrics for
each task are different (e.g., F1 for classification and nDCG@10 for retrieval). Thus, we provide
the analysis for both individual and average results instead of focusing only on the average score.
All experiments were run on eight H100 (80 GB).

5. Experimental Results

In this section, we present a series of studies using our SEA sentence embedding benchmark.
We evaluate embedding models across tasks and languages in Section 5.1 and Section 5.2,
respectively. Section 5.3 compares the changes in rankings and embedding models’ performances
when evaluated on SEA-BED versus when evaluated on other multilingual sentence embedding
benchmarks. Section 5.4 studies the correctness and effectiveness of machine translation and
human translation datasets. We also study the correlation between the tokenizer and model
performance in Section 5.5. Moreover, we analyze language similarities in SEA, as detailed in
Section 5.6.

5.1 Main Results

We begin with an overall task-based performance analysis (RQ1), asking which tasks remain
particularly challenging for state-of-the-art models across SEA languages. We evaluate each

3 https://openai.com/index/new-embedding-models-and-api-updates
4 https://cohere.com/blog/introducing-embed-v3
5 https://blog.voyageai.com/2024/09/18/voyage-3/
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model on the seven tasks in SEA-BED and compare average scores. In particular, we evaluate
13 open-source models and 4 proprietary models on 169 datasets, where each task’s evaluation
metrics, task details, and desired properties are discussed in Section 3.2.
Results. As shown in Table 5, the experiment results demonstrate that multilingual-e5-large-
instruct performs the best on our benchmark, achieving 75.24 points on the average score. The
performance of the second-best model (Qwen3-Embedding-8B) is lower than that of multilingual-
e5-large-instruct by only 0.06 points on average, with a 70 times difference in the model parameters
(560M vs. 8B parameters). Moreover, we found that, although Gemma-SEA-LION-v3 and Sailor2
were trained for SEA languages specifically, the models did not perform well on our sentence
embedding benchmark. However, this is perhaps unsurprising since these models were never
trained for sentence embedding purposes. For the proprietary models, in contrast to the English
sentence embedding benchmark (Muennighoff et al. 2023) findings that proprietary models
outperformed open-source models, we found that all proprietary models perform lower than
multilingual-e5-large-instruct and Qwen3-Embedding-8B. This indicates that all proprietary
models might be trained primarily in English and not optimized for SEA languages.

Model Dim. Btxt Clf Clust In. Rtrvl M. Clf Pr. Clf Rtrvl Rrnk STS Avg.

SEA-BED
Number of datasets (→) (26) (73) (10) (4) (11) (13) (20) (1) (11) (169)

Open-source

multilingual-e5-large-instruct (560M) 1024 87.86 77.70 58.09 69.10 87.84 66.58 77.16 77.24 75.59 75.24±9.06

Qwen3-Embedding-8B (8B) 4096 84.78 78.60 52.93 70.81 90.57 63.10 81.99 78.51 75.31 75.18±10.84

bge-multilingual-gemma2 (9B) 3584 82.02 78.13 49.14 71.52 90.89 73.87 80.55 69.04 72.53 74.19±10.85

multilingual-e5-large (560M) 1024 84.51 78.24 47.83 66.06 88.94 65.79 78.25 79.00 69.61 73.14±11.66

bge-m3 (568M) 4096 86.18 75.98 42.23 58.51 89.89 68.73 73.56 75.98 73.27 71.59±13.48

GritLM-7B (7B) 4096 63.63 77.47 46.29 67.60 88.76 63.86 65.97 73.37 64.69 67.96±10.92

e5-mistral-7b-instruct (7B) 4096 65.30 76.65 49.48 54.46 88.32 63.81 72.93 75.33 63.50 67.75±11.24

Qwen3-Embedding-0.6B (595M) 1024 56.53 74.47 43.94 65.80 88.19 60.36 76.24 75.03 65.74 67.37±11.58

multilingual-mpnet-base (278M) 768 68.12 73.79 41.12 52.44 87.28 70.79 58.28 64.01 70.15 65.11±12.55

LaBSE (471M) 768 86.84 75.19 41.39 39.73 86.65 62.32 53.72 61.23 68.32 63.93±16.31

multilingual-MiniLM-L12 (118M) 768 53.23 70.50 31.50 48.66 84.88 65.70 52.47 62.27 64.59 59.31±14.25

Gemma-SEA-LION-v3-9B-IT (9B) 3584 15.31 75.87 39.94 11.02 89.94 57.77 22.03 65.49 38.85 46.25±26.18

Sailor2-8B-Chat (8B) 3584 4.31 76.43 38.51 3.29 90.21 56.71 10.09 47.05 37.25 40.43±29.25

Proprietary models

embed-multilingual-v3.0 1024 88.32 78.52 48.99 65.59 89.98 66.11 78.17 77.77 73.11 74.06±11.89

jina-embeddings-v3 1024 81.86 77.40 50.90 69.11 88.97 63.61 76.28 72.49 73.17 72.64±10.30

voyage-3 1024 55.62 75.72 45.15 61.77 88.70 60.23 62.91 74.62 61.97 65.19±12.01

text-embedding-3-small 1536 43.12 72.88 39.34 52.87 88.19 60.16 65.18 71.25 52.31 60.59±14.65

Table 5: SEA-BED: Evaluation results across different tasks.

Discussion. We found that task performance consistency is the main challenge for current sentence
embedding models. In particular, a robust model should perform well on all tasks. As shown
in Table 5, we found that there is no dominant model that achieves the highest score on all
tasks. Notably, model performance varies considerably depending on the task. For example, the
proprietary model embed-multilingual-v3.0 excels in Bitext Mining (Btxt) and Classification (Clf)
tasks, achieving the top scores among all evaluated models in these categories. In contrast, open-
source models such as bge-multilingual-gemma2 achieve the highest score on Instruction Retrieval
(In. Rtrvl), Multilingual Classification (M. Clf), and Pair Classification (Pr. Clf) tasks, while
multilingual-e5-large-instruct performs well on Clustering (Clust) and STS tasks. Additionally,
Qwen3-Embedding-8B shows strong performance on the Retrieval (Rtrvl) task. Moreover, the
second-best performer models (highlighted as underscore) are various and diverse in model size,
ranging from 278 million parameters to 9 billion parameters. This emphasizes that the task
consistency problem in our benchmark is still challenging for embedding models. In conclusion,
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when using multilingual sentence embedding in SEA languages, we need to select the model
based on the task at hand, and there is no all-rounder model for every solution.

5.2 Language Breakdown

This study presents a language-wise analysis for RQ1 to pinpoint which SEA languages and
scripts see the largest performance drops. We use the same metric and datasets; however, the
number of datasets will be higher than in the previous study because one dataset can contain more
than one language. Therefore, in total, there are 294 datasets for this study.
Results. As shown in Table 6, we observe performance variation across languages that, when
compared to the task-level results in Table 5, suggests that strong overall performance does
not necessarily imply consistent multilingual coverage. For example, while multilingual-e5-
large-instruct achieves the highest average score overall (78.93), its performance varies across
languages, ranging from 69.40 points in Tetum to 84.60 points in Malay. Similarly, we also observe
inconsistent performance in Qwen3-Embedding-8B, which ranks as the second-best model overall,
demonstrates strong performance in high-resource SEA languages such as Thai (81.49 points)
and Vietnamese (78.99 points), but underperforms in lower-resource SEA languages like Tetum
(67.44 points). Moreover, we also found that some models do not fully support SEA languages,
e.g., GritLM-7B does not support Burmese, Khmer, and Lao, while bge-multilingual-gemma2
does not support Lao. Although those models were found to perform well in this experimental
study, the fact that they do not support some SEA languages results in those models being less
appropriate for real-world applications for SEA languages.

Model ind tha vie mya fil tam khm zsm lao tet Avg.

SEA-BED
Number of datasets (→) (70) (55) (40) (33) (28) (18) (18) (14) (14) (4) (294)

Open-source

multilingual-e5-large-instruct (560M) 79.50 81.11 78.00 78.37 79.19 77.09 78.13 84.60 83.94 69.40 78.93±3.98

Qwen3-Embedding-8B (8B) 79.73 81.49 78.99 74.91 78.05 75.95 75.46 82.39 78.20 67.44 77.26±4.02

bge-multilingual-gemma2 (9B) 79.93 80.58 78.76 70.01 79.61 80.96 74.39 83.38 65.82 65.05 75.85±6.31

multilingual-e5-large (560M) 78.59 79.89 78.93 70.28 77.98 77.83 72.11 80.10 79.91 63.55 75.92±5.22

bge-m3 (568M) 78.09 77.59 75.91 73.12 75.78 77.51 76.23 82.54 82.26 65.53 76.46±4.55

GritLM-7B (7B) 80.47 72.84 77.37 45.05 77.49 60.42 52.58 78.41 30.07 69.67 64.44±16.13

e5-mistral-7b-instruct (7B) 79.23 74.77 75.37 48.85 78.10 66.73 56.49 78.82 27.99 66.73 65.32±15.74

Qwen3-Embedding-0.6B (595M) 75.60 75.85 75.13 49.08 63.11 61.12 44.10 69.51 29.78 63.38 60.67±14.55

multilingual-mpnet-base (278M) 74.60 73.91 72.66 61.19 52.02 63.31 64.44 75.48 65.63 50.78 65.40±8.53

LaBSE (471M) 73.98 70.20 72.60 73.63 76.99 76.59 74.06 82.87 79.84 69.11 74.99±3.99

multilingual-MiniLM-L12 (118M) 71.48 70.42 69.90 54.48 47.28 27.88 39.92 69.58 45.34 47.69 54.40±14.53

Gemma-SEA-LION-v3-9B-IT (9B) 49.86 41.67 51.90 30.80 54.14 29.20 39.53 49.24 22.01 25.06 39.34±11.27

Sailor2-8B-Chat (8B) 49.54 35.98 42.94 30.14 46.16 28.57 28.57 30.75 18.31 25.76 33.67±9.33

Proprietary models

embed-multilingual-v3.0 79.72 80.99 78.93 76.13 78.99 78.87 77.01 82.42 83.34 66.76 78.32±4.39

jina-embeddings-v3 77.35 78.64 76.10 75.10 74.25 76.14 74.73 77.91 77.91 65.11 75.32±3.68

voyage-3 75.56 69.78 73.68 48.19 71.43 67.28 35.02 69.13 24.27 61.48 59.58±16.83

text-embedding-3-small 78.34 55.24 70.06 32.79 68.08 35.38 30.15 69.78 23.97 65.09 52.89±19.18

Table 6: SEA-BED: Evaluation results across each language.

Discussion. Experimental results demonstrate the language consistency problem, where open-
source models perform inconsistently on each language. Although multilingual-e5-large-instruct
might perform best in the overall performance, we found that no model can perform best for
all languages. multilingual-e5-large-instruc performs well on Burmese, Khmer, Malay, and
Lao, while Qwen3-Embedding-8B performs well on Thai and Vietnamese, bge-multilingual-
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gemma2 performs well on Filipino and Tamil, and GritLM-7B performs well on Indonesian
and Tetum. This emphasizes the “Language Consistency” problem, where all languages perform
inconsistently, unsteadily, and inconclusively. In contrast, we found that embed-multilingual-v3.0
consistency outperforms all proprietary models in all languages. Although the overall performance
of proprietary models is lower than open-source models, when it comes to real-world applications
that support multiple SEA languages, using proprietary models might be more reliable than
open-source models.

5.3 Performance Changes Analysis

Here, we address RQ2, examining how SEA-focused performance contrasts with the broader
multilingual benchmark (MMTEB). To study the robustness of embeddings in world and SEA
languages, we compare the ranking changes between our benchmark and the recent multilingual
sentence embedding benchmark, MMTEB. We use the task average metric (Table 5), similar to
MMTEB.

MMTEB

SEA-BED

Figure 2: Ranking difference between MMTEB and SEA-BED.

As shown in Figure 2, based on the experiment from MMTEB, Qwen3-Embedding-8B
performed the best on world results, which includes 1,090 languages6. However, when we focus
only on SEA languages using SEA-BED, the ranking of Qwen3-Embedding-8B dropped from
the first rank to the second rank. In addition, Qwen3-Embedding-0.6B dropped from second rank
to eighth rank. This is because some of the linguistic and dialect knowledge will be different
compared to other groups of languages, when we evaluate them only for the SEA languages.
Moreover, the proportion of training data is also a factor since the portion of SEA training data
in Qwen3-Embedding might be smaller compared to other languages. On the other hand, the
rankings of multilingual-e5-large-instruct, bge-multilingual-gemma2, and multilingual-e5-large
increased significantly. This emphasizes that the challenge, gaps, and model capabilities measured
in MMTEB and our benchmark differ, especially in the supported languages of embedding models
that do not fully support SEA languages. Even though some models are used to perform well
on MMTEB, they are not guaranteed to achieve the same performance for SEA languages. We

6 We obtained the model rankings on June 11th, 2025.
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therefore appeal to the NLP community to develop embedding models to support more SEA
languages.

5.4 Machine-Crafted vs. Human-Crafted Datasets

This subsection addresses RQ3 by testing whether human-crafted data yields results different
from machine-generated data. We split the experiment into machine generation and translation
studies.
Machine Translation vs. Human-crafted Datasets To observe the differences between machine
translation and human datasets, we conduct a study using our newly proposed datasets for Thai
and Burmese STS tasks. In the process of creating SEA-BED, we have asked all of our annotators
to translate from English to Thai and Burmese without relying on machine translations, hence
enabling us to study the differences between MT and human-created datasets. For MT datasets,
we use the same example originally written in English and translate it into Burmese and Thai
using Google NMT (accessed February 15th 2025).

Interestingly, as shown in Table 7, the difference in performance on Thai datasets is small for
both MT and human-annotated sets. We can observe that the performance difference is lower than
2 Spearman’s correlation points for all cases. This corroborates findings from previous English-
Thai machine translation works, which found that the current Google NMT for English-Thai
is good enough for use in real-world scenarios (Lowphansirikul et al. 2022; Chiaranaipanich
et al. 2024). However, satisfactory performance may be limited by the domain. That is, machine
translation is observed to yield robust results since our data is within the general domain. In
contrast, translating texts written in the medical or legal domain might yield different results, as
demonstrated in previous Thai machine translation works (Pengpun et al. 2024a; Chiaranaipanich
et al. 2024).

In contrast to Thai, the performance gap between Burmese human and machine translation
datasets is larger than that of Thai in most cases. We found that the Google NMT results for
Burmese sometimes show code-switching between Thai and Burmese characters. As an example,
Figure 3 shows that the Google NMT output is Burmese that has Thai mixed in. This emphasizes
that, in underrepresented languages, using humans to create evaluation datasets is still better than
relying on machine translations. Using machine translations might be appropriate for high-resource
languages in SEA (i.e., Thai) since it can produce comparable results to the human-crafted dataset,
but when the languages are underrepresented (i.e., Burmese), using humans is still empirically
better than machine translations.

Model Original (eng) Machine (mya) Human (mya) Machine (tha) Human (tha)

multilingual-e5-large-instruct (560M) 82.87 74.82 75.06 79.66 79.80
Qwen3-Embedding-8B (595M) 81.17 74.02 75.81 80.75 80.74
bge-multilingual-gemma2 (9B) 84.64 75.51 72.87 80.25 78.97
multilingual-e5-large (560M) 80.00 71.49 71.55 76.44 76.50
bge-m3 (568M) 80.86 74.57 71.96 77.75 76.07
GritLM-7B (7B) 82.65 65.60 66.03 74.64 74.81
e5-mistral-7b-instruct (7B) 81.86 62.36 64.63 74.57 74.57
Qwen3-Embedding-0.6B (8B) 80.11 67.10 69.23 77.88 77.79
multilingual-mpnet-base (278M) 80.54 72.34 71.16 72.61 72.60
LaBSE (471M) 73.50 69.06 70.04 69.29 68.83
multilingual-MiniLM-L12 (118M) 78.89 69.27 67.26 72.25 72.23
Gemma-SEA-LION-v3-9B-IT (9B) 60.42 46.50 49.29 55.97 56.01
Sailor2-8B-Chat (8B) 57.94 48.79 52.89 55.85 54.36

Table 7: Model performance on Machine Translation vs. Human Datasets on our STS datasets
(Table 2).
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เจรญิပရာဒစ်လမ်းမှတစ်ဆင့် သမ�တ�ုံးခနး်မသိ�  ဝင်ေရာက်သည်။

Periodic Table ၏ ဘယ်ဘက်�ိှ ဓာတြုဒပ်စင်များသည် အိင်ုယွနไ်น�ှင်း
စွမ်းအင်ထက် များစွာနမ့်ိကျသည်။

(Pass Charoen Pradit Road, enter the Office of the President's
Auditorium.)

(The chemical elements to the left of the periodic table have a much
lower ionization energy.)

Figure 3: Code-switching between Thai and Burmese words (translated by Google NMT).

Machine Generation vs. Human Datasets Nowadays, many research papers propose a dataset
and benchmark that rely on machine learning, due to the scalability of automation. However, we
argue that the quality of such purely machine-generated data is unstable and should not be the
majority dataset in the benchmark, since it will affect the performance and results of studies. To
confirm this, we conduct a study by comparing human-crafted and non-human-crafted datasets
using the top five models from our previous studies. In particular, we perform the same task and
language but select only datasets that are formulated by humans or machines. We demonstrate the
performance of embedding models on human and non-human data in Tables 8 and 9, respectively.

Model ind tha vie mya fil tam khm zsm lao tet Avg.

multilingual-e5-large-instruct (560M) 82.06 84.00 79.54 78.27 80.33 76.89 79.63 88.68 87.07 41.06 77.33±12.50

Qwen3-Embedding-8B (8B) 82.98 83.61 80.67 75.35 78.78 75.66 75.86 86.87 80.70 36.00 75.65±13.70

bge-multilingual-gemma2 (9B) 83.28 82.90 80.29 70.43 80.67 80.99 74.03 85.18 66.50 30.91 73.52±15.32

multilingual-e5-large (560M) 81.90 82.54 80.67 70.56 79.42 78.03 72.63 82.92 82.81 32.24 74.37±14.63

bge-m3 (568M) 81.28 80.45 77.48 73.70 76.87 77.70 76.56 89.21 85.03 36.91 75.52±13.57

Table 8: The top five models evaluation results across each language on human-crafted datasets
only.

Model ind tha vie mya fil tam khm zsm lao tet Avg.

multilingual-e5-large-instruct (560M) 72.04 64.14 66.92 79.47 68.54 80.45 71.38 69.31 67.23 97.73 73.72±9.43

Qwen3-Embedding-8B (8B) 69.95 68.99 66.91 70.19 71.24 80.86 73.66 65.62 64.85 98.89 73.12±9.63

bge-multilingual-gemma2 (9B) 71.17 66.97 67.80 65.55 69.77 80.40 76.00 76.63 62.19 99.18 73.57±10.04

multilingual-e5-large (560M) 68.58 64.35 66.43 67.30 64.61 74.34 69.77 69.52 64.45 94.86 70.42±8.66

bge-m3 (568M) 69.14 60.77 64.57 66.90 65.62 74.39 74.74 61.77 67.47 94.15 69.95±9.18

Table 9: The top five models evaluation results across each language on machine-generated
datasets only.

As can be seen, we observe two major changes in terms of performance: (i) average
performance changes and (ii) model ranking changes. For the first problem, we observe that
the overall performance of machine-generated datasets is always lower than that of human-crafted
datasets, except for bge-multilingual-gemma2. This is also consistent with our previous study in
machine translation datasets, as illustrated in Table 7, which shows that using machines to generate
data will decrease the model’s performance. For the second problem, the most problematic in
the evaluation research work, the results are inconclusive because the model rankings change. A
robust benchmark should produce the most correct results that align with human results, where
using only machine-generated datasets might not address this desired property. The results from
Tetum in Table 9 are also inconclusive since the performance of Tetum increased from 30.91 to
99.18 points using bge-multilingual-gemma2. This is because the dataset of machine-generated in
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Tetum is an easy task, the language detection task using the MADLAD-400 dataset, where all
models achieve more than 90 points. We assume that this is because the machine-generated data
might be leaked to those models, or the data might be in-domain data for Tetum (those models
have seen this test data or similar data before).

5.5 Tokenizer Analysis

This section revisits RQ1, exploring whether limited SEA-vocabulary coverage in multilingual
tokenizers correlates with poor downstream results. We highlight scripts like Lao or Khmer, which
are often underrepresented in tokenizers. Previous works (Ali et al. 2024; Arnett and Bergen 2025;
Liang et al. 2023) demonstrated that vocabularies in a tokenizer affect the model performance
in downstream tasks. In particular, when the multilingual tokenizer represents more vocabulary
in some languages, the performance on those languages has also been observed to improve. In
this study, we want to investigate whether the vocabulary in the tokenizer affects SEA-BED’s
overall performance or not. To answer this question, we count the SEA tokens in each sentence
embedding model and compare their performance from Table 6.

As shown in Table 10, the language with the most tokens represented in a tokenizer is Filipino,
with an average of 2.94 percent of vocabulary tokens in 13 models. However, compared to the
language performance (Table 6), Filipino performance is lower than Indonesian. Surprisingly,
there are no tokens for Tetum at all in the 13 models. We observe that performance on Tetum
is also the worst compared to other SEA languages. Moreover, the performance is mixed for
languages that do not use Latin characters, i.e., Thai, Burmese, Lao, and Tamil.

Model ind tha vie mya fil tam khm zsm lao tet

multilingual-e5-large-instruct (560M) 1.20 1.61 0.73 0.91 3.59 0.98 0.66 0.20 0.56 0.00
Qwen3-Embedding-8B (8B) 0.39 1.70 0.84 0.02 1.13 0.02 0.03 0.11 0.02 0.00
bge-multilingual-gemma2 (9B) 0.59 0.50 0.55 0.45 3.04 0.13 0.03 0.11 0.02 0.00
multilingual-e5-large (560M) 1.20 1.61 0.73 0.91 3.59 0.98 0.66 0.20 0.56 0.00
bge-m3 (568M) 1.20 1.61 0.73 0.91 3.59 0.98 0.66 0.20 0.56 0.00
GritLM-7B (7B) 0.27 0.19 0.55 0.45 3.04 0.13 0.03 0.11 0.02 0.00
multilingual-mpnet-base (278M) 1.20 1.61 0.73 0.91 3.59 0.98 0.66 0.20 0.56 0.00
LaBSE (471M) 1.12 0.45 0.81 0.45 4.65 1.28 0.54 0.19 0.29 0.00
e5-mistral-7b-instruct (7B) 0.27 0.19 0.55 0.45 3.04 0.13 0.03 0.11 0.02 0.00
Qwen3-Embedding-0.6B (595M) 0.39 1.70 0.84 0.02 1.13 0.02 0.03 0.11 0.02 0.00
multilingual-MiniLM-L12 (118M) 1.20 1.61 0.73 0.91 3.59 0.98 0.66 0.20 0.56 0.00
Gemma-SEA-LION-v3-9B-IT (9B) 0.59 0.50 0.55 0.45 3.04 0.13 0.03 0.11 0.02 0.00
Sailor2-8B-Chat (8B) 0.39 1.70 0.84 0.02 1.13 0.02 0.03 0.11 0.02 0.00

Average 0.77 1.15 0.71 0.53 2.94 0.52 0.31 0.15 0.25 0.00

Table 10: The percentage number of vocabulary tokens for each model in each language.

Performance Analysis. Additionally, we analyze the correlation between the percentage of
vocabulary token coverage and performance scores for the two top-performing and two lowest-
performing embedding models, as shown in Figure 4. The results indicate that the vocabulary size
of each model does not have a direct effect on model performance in the sentence embedding
benchmark for SEA languages. Although some models have a larger number of tokens in their
tokenizers covering SEA vocabularies, their performance in the benchmark is not significantly
higher than that of models with lower vocabulary coverage. This indicates that simply increasing
vocabulary size does not necessarily lead to better performance in sentence embedding tasks for
SEA languages.
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Figure 4: (Top) Correlation between the percentage of vocabulary token coverage and performance
score for the two top-performing models, multilingual-e5-large-instruct and Qwen3-Embedding-
8B. (Bottom) Correlation between the percentage of vocabulary token coverage and performance
score for the two lowest-performing models, Qwen3-Embedding-0.6B and multilingual-MiniLM-
L12. Both values are normalized to a [0, 1] scale for comparability across languages and models.

Discussion. In contrast to previous works, we summarize that the number of tokens present in the
tokenizer might not strongly correlate with the performance in a language. There are many SEA
languages with diverse scripts, and solely having a larger vocabulary for each language might not
necessarily yield significant improvement. As shown in the language performances of GritLM-7B
and bge-multilingual-gemma2 (Table 6), omitting SEA languages from the training data results
in poor performance in those languages. To achieve a promising result, we can add more SEA
training datasets in the training step to improve downstream task performance rather than adding
more tokens in the tokenizer.

5.6 Language Similarity

To further understand the similarity between language and performance (RQ1), we analyze the
performance of bi-text retrieval datasets in SEA languages. In particular, we study the language
similarity of robust and non-robust models, e.g., top-performing and worst-performing embedding
models, to see what the desired property is to improve our benchmark. We utilize the dialect
pairing subset task in this experiment, where we use a batch size of 128 for the negative pair
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evaluation. In addition, we use cosine similarity as the main metric, where higher values indicate
greater embedding similarity between language pairs.

As shown in Figure 5, the top-performing model, multilingual-e5-large-instruct, shows
consistently high similarity for positive samples, especially Indonesian-Malay (0.9682 points),
Indonesian-Filipino (0.9305 points), and Thai-Vietnamese (0.9168 points), indicating strong
cross-lingual embeddings. However, multilingual-e5-large-instruct unexpectedly maintains high
similarity for negative samples (0.75–0.81 points), indicating limited distinction between unrelated
sentence pairs and highlighting a gap for improvement. In contrast, multilingual-MiniLM-L12-v2
struggles with related positive pairs, showing lower similarity for Indonesian-Filipino (0.4601
points) and notably weak similarity with Burmese (around 0.12–0.59 points). Interestingly, this
model achieves low similarity for negative pairs, mostly under 0.08 points, clearly distinguishing
unrelated samples. Although it falls short in overall embedding quality, multilingual-MiniLM-L12-
v2’s distinct negative sample separation provides valuable insights into desirable characteristics
for embedding models. These findings suggest that a balanced approach, achieving both strong
cross-lingual similarity for positive examples and clear differentiation for negative examples, is
essential to improve future embedding benchmarks.

6. Conclusion

In this work, we present the Southeast Asian Massive Sentence Embedding Benchmark (SEA-
BED). We experimented on 17 multilingual embedding models and 6 studies to reveal the
challenges of our benchmark compared to previous sentence embedding benchmarks. The
experiment of our studies reveals the challenge in SEA embeddings as follows: Performance
across different tasks (Section 5.1): A robust model should perform well regardless of task,
whereas current models favor only some tasks. Performance across each language (Sections 5.2
and 5.5): We found that some models do not fully support SEA languages, and the performance
on each language is inconsistent. Robustness in SEA and non-SEA languages (Section 5.3): A
model should perform well regardless of languages or benchmarks, but current embedding models
cannot achieve high scores for both the world and SEA embedding benchmarks. Section 5.4
shows the possibilities and gaps of using machine translations and generations to formulate
datasets in SEA languages. We also studied the correlation between vocabulary and downstream
task performances to reveal the improvement manner for future work in Section 5.5. Lastly, we
conducted a study to understand the language similarities in SEA for future embedding works to
understand how the nuances present in the linguistic properties of SEA language datasets affect
model performance on SEA-BED in Section 5.6.
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Figure 5: We perform cross-lingual similarity using the bitext mining task (dialect pairing subset).
(Top) Cross-lingual similarity metrics of the top-performing and worst-performing embedding
models on the positive parallel samples. (Bottom) Cross-lingual correlation metrics of the top-
performing and worst-performing embedding models on the negative parallel samples.
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1. Appendix

1.1 Model Links

The full model links are shown in Table A.11.

Model Hugging Face Link

multilingual-e5-large-instruct https://huggingface.co/intfloat/multilingual-e5-large-instruct

Qwen3-Embedding-8B https://huggingface.co/Qwen/Qwen3-Embedding-8B

bge-multilingual-gemma2 https://huggingface.co/BAAI/bge-multilingual-gemma2

multilingual-e5-large https://huggingface.co/intfloat/multilingual-e5-large

bge-m3 https://huggingface.co/BAAI/bge-m3

GritLM-7B https://huggingface.co/GritLM/GritLM-7B

e5-mistral-7b-instruct https://huggingface.co/intfloat/e5-mistral-7b-instruct

Qwen3-Embedding-0.6B https://huggingface.co/Qwen/Qwen3-Embedding-0.6B

multilingual-mpnet-base https://huggingface.co/sentence-transformers/paraphrase-multilingual-mpnet-base-v2

LaBSE https://huggingface.co/sentence-transformers/LaBSE

multilingual-MiniLM-L12 https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2

Gemma-SEA-LION-v3-9B-IT https://huggingface.co/aisingapore/Gemma-SEA-LION-v3-9B-IT

Sailor2-8B-Chat https://huggingface.co/sail/Sailor2-8B-Chat

Table A.11: Models and Hugging Face links used for the evaluation.

1.2 Data Links

The complete dataset information, such as citations, languages, domains, annotation creators, and
licenses, are shown in Tables A.12 and A.13.

1.3 Domains

For domains in SEA-BED benchmark, we include the following:r Academic: Formal writing and research publications commonly found in scholarly journals,
theses, and dissertations.r Blog: Informal, conversational writings about a variety of topics published on websites or
personal blogs.r Constructed: Artificially created text or speech, often in experiments to target particular
abilities.r Encyclopedic: Structured, reference-based texts offering thorough and factual information
on various topics.r Fiction: Narrative writing that involves creative content, such as novels, short stories, and
other storytelling forms.r Government: Documents, reports, and publications officially issued by government
agencies.r Legal: Documents and texts concerning laws, legal processes, contracts, and legal theories.r Medical: Scientific and clinical publications focused on healthcare, treatments, patient care,
and medical studies.
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r News: News articles and reports that address current events, political developments,
economic trends, and other timely topics.r Non-fiction: Texts grounded in real events and factual information, including biographies,
essays, and documentaries.r Religious: Writings concerning religious teachings, doctrines, sacred texts, and discussions
on spirituality.r Reviews: Analytical assessments of books, films, music, products, or services.r Social: Messages and conversations shared on social media, online forums, and other digital
platforms.r Spoken: Spoken content such as speeches, dialogues, interviews, and recorded discussions.r Subtitles: Written transcriptions or translations of spoken content from films, videos, or
multimedia presentations.r Web: Web-based content spanning diverse topics, often featuring hyperlinks and multimedia
elements.r Written: A broad category encompassing all forms of text-based communication, both
print and digital.

1.4 Examples

Figures A.6 to A.14 provide examples for each task covered in SEA-BED benchmark.

Task First set sentence Second set sentence

Cross-lingual pairing Paris is the most beautiful city in the world Paris adalah kota tercantik di dunia.

Dialect pairing Andrea Maisi đã mở tỉ số cho Ý ở phút thứ tư với một quả try. ແອນເດຣຍ ມາຊີ� ໄດ້ເປ�ດການທຳຄະແນນໃນນາທີທີ�ສີ�ໃຫ້ແກ່ອິຕາລີ.

Written-forms pairing

โรซาลีเล่าวา่ "คณุต้องรูถึ้งอันตรายต่าง ๆ และดวูา่คณุพอจะทําอะไรได้
บา้ง ที�ปรกึษาของฉัน ตอนที�เราด ูการปะทขุนาดเล็กของภเูขาไฟเอตนา มี
เศษวตัถขุนาดเล็กตกลงมา เขาจะบอกเราใหเ้ขา้ไปเก็บตัวอยา่ง คณุต้อง
ไดร้บัการฝ�กอยา่งด ีอยา่วิ�ง ใหอ้ยูกั่บที� และมองขึ�นดา้นบน ถ้ามวีตัถุ
ขนาดใหญต่กลงมาใส ่ก็จะไดห้ลบออกดา้นขา้ง" สาํหรบัผูที้�ต้องการชม
ภเูขาไฟคกุรุน่ โรซาลี แนะนาํใหไ้ป วานูอาต ูมภีเูขาไฟชื�อ ยาซูร ์ซึ�งมกีาร
ปะทขุนาดเล็ก คล้ายกับดอกไมไ้ฟ มคีวามสวยงาม และเป�นภเูขาไฟที�ไป
ง่าย เธอบอกวา่ สามารถขบัรถขึ�นไปเกือบถึงปากปล่อง จากนั�นก็มบีนัได
คอนกรตี ที�สามารถเดินขึ�นไปได้ และยงัมมีา้นั�งใหน้ั �งเล่นดว้ย นอกจาก
ภเูขาไฟบนโลก เธอยงัพบภเูขาไฟที�คกุรุน่ 71 ลกู บนดวงจนัทรไ์อโอของ
ดาวพฤหสัฯ ดว้ย

โรซาลี โลเปส นักภเูขาไฟวทิยาของนาซาโปรดปรานการป�นภเูขาไฟที�ยงั
คกุรุน่อยู ่เพื�อไปชมการปะทขุนาดเล็ก โดยเธอได้เยอืนภเูขาไฟที�คกุรุน่ใน
ทกุทวปีทั�วโลกมาแล้ว 63 ลกู

Figure A.6: Bitext mining examples.

Task Text Label

Language Identification
sadiissss kae pasti neng tegal yakin inyong Jawa Ngapak

kowe gurung ngerti betapa bahagianya dichat arek e seh wkwkwk Jawa Timur

Sentiment
Namiss ko yung pusa ko nung bata pa ako, lagi ko sya katabi matulog and malambing. Positive

Sa tiktok ang pugad nila. Dapat ma ban na ang tiktok app Negative

Topic Classification

மீண்டும் ெசல்வராகவன் படத்த�ல் நடிப்பீர்களா? tamil-cinema

இத்தைகேயாைர பாதுகாக்கேவ இத்தைகய ஸ்கூட்டர் வடிவைமக்கப்
பட்டுள்ளது.

business

Toxic Language Detection
Yang blm pada move on mending bsk piknik aja mumpung long weekend hehehe Non hate speech

Karna dia ga punya program hanya modal bacot doang Hate speech

Figure A.7: Classification examples.
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Task Text Cluster

Topic Clustering

ဤရာသီ၏ ေရာဂါြဖစ်ပွားမ� ကနဦးလနူာများသည် ဇူလိင်ုလ အေ�ှာင်းပုိင်းတင်ွ ေပ�လာ�က
သည်။

health

အပင်များသည် အစာချက်ြခင်းကုိ ေနမှတဆင့်ြပ�လပ်ုသည်။ အရိပ်လဲေပးပါသည်။ science/technology

ဤစာရွက်စာတမ်းများကုိ ဂုဏ်ြပ�ရန ်�ိင်ုငံြခား အစုိးရများ၏ စိတ်ထက်သနမ်�မှာ ေြပာင်းလဲ
�ိင်ုပါသည်။

politics

ဝါ�ှင်တန၏် အတ�လနန်ာသရက်�ှာကုိ ၅-၃ ြဖင့် အ�ိင်ုရေသာ ပဲွတင်ွ ၂ ဂုိးသွင်း�ပီး ၂ ဂုိး
ဖနတီ်းေပးခ့ဲသည်။

sports

Figure A.8: Clustering examples.

Task Query Instruction Relevant Document

Instruction Question Answering

Stellar คืออะไร Stellar: เครอืขา่ยโอนเงินไรพ้รมแดน
เทคโนโลยกีารโอนเงินระหวา่งธนาคารในตอนนี�
ถือวา่ลํ�าหนา้มาก ๆ นะครบั ทกุวนันี�เราสามารถ
โอนเงินจากบญัชขีองเราไปยงับญัชขีอง
ธนาคารอื�น ๆ ได้อยา่งสะดวก รวดเรว็ และไมม่ี
ค่าธรรมเนียมใด ๆ ซึ�งไมใ่ชท่กุประเทศบนโลกนี�
จะมสีิ�งอํานวยความสะดวกเหมอืนกับ
ประเทศไทยนะครบั ในประเทศอื�น ๆ การโอนเงิน
ระหวา่งบญัชยีงัมค่ีาธรรมเนียม จะถกูจะแพงก็
แล้วแต่ประเทศไป และยงัใชเ้วลาประมาณนงึอีก
ด้วยครบั ...

Stellar คือ เครอืขา่ยการโอนเงินแบบกระจาย
ศูนย ์ (decentralized) ที�มเีป�าหมายจะเป�นชอ่ง
ทางการจา่ยเงินที�เรว็ ปลอดภัย ไรพ้รมแดน
และมค่ีาธรรมเนียมที�ตํ�า ด้วยการใชง้าน
เทคโนโลยบีล็อกเชนทําให ้Stellar สามารถเชื�อม
ต่อทั�งบุคคลธรรมดากับองค์กร (เชน่ ธนาคาร)
และทําใหผู้ใ้ชง้านเหล่านี�สามารถสง่ผา่น
สนิทรพัยไ์ป-มาไดอ้ยา่งรวดเรว็ Stellar มเีป�า
หมายที�จะ disrupt ระบบการจา่ยเงินที�ใชกั้นอยู่
ทกุวนันี� ลองคิดถึงการโอนเงินขา้มประเทศดู
ทกุวนันี�การโอนเงินขา้มประเทศมค่ีาธรรมเนยีม
การโอนที�แพง ...

Figure A.9: Instruction Retrieval examples.

Task Text Label

Sentiment

saran ku dan pengalaman ku , mending beli mobil niaga L300 atau canter . irit
dan bandel .

[fuel (positive), machine (positive),
others (neutral), part (neutral),
price (neutral), service (neutral)]

Sudah dari dulu Toyota selalu kasih produk super mahal dengan fitur pas pasan [fuel (neutral), machine (neutral),
others (neutral), part (negative),
price (negative), service (neutral)]

Topic Classification
เกี�ยวกับซมินะคะ พอดซีื�อซมิมาใหมไ่มส่ามารถเป�ดใชง้านได้ [ "report", "phone_issues" ]

เบอรโ์ทร โดน ระงับใชบ้รกิาร ต้องทําอยา่งไงค่ะ [ "enquire", "suspend" ]

Toxic Language Detection

Prabowo Sudah Kalah Menyebut Bantuan Jokowi Hanya Pencitraan Adalah
Ratapan Pilu'

[Hate speech, Hate speech
Individual, Hate speech Week]

Wah bangke emang nih truk' [Hate speech, Abusive, Hate speech
Individual, Hate speech Week]

Figure A.10: Multi-label Classification examples.

Task Sentence 1 Sentence 2 Label

Textual Entailment

Làm sao anh biết ? Tất cả đây là thông tin của họ lần
nữa .

Thông tin này thuộc về họ .
Contradiction

Conceptually kem skimming có hai kích thước cơ bản -
sản phẩm và địa lý .

Sản phẩm và địa lý là những gì làm cho kem skimming
làm việc .

Entailment

Vui vẻ dành cho người lớn và trẻ em . Vui vì chỉ có trẻ con . Neutral

Figure A.11: Pair Classification examples.

1.5 Annotator Demographics

In this work, our collaborators helped us translate the data from English to Thai and Burmese for
STS and NLI tasks. These people are Thai and Burmese undergrad and graduate students studying
in Thailand, aged from 20 to 25 years old, who can speak English and their native language (Thai
or Burmese). We use three Thai annotators and one Burmese annotator to create new datasets, as
mentioned in Section 3.4. We also removed some examples that contain special characters that
cannot be shown in Google Sheets.
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Task Query Positive Negative

Article Reranking

kapankah Radin Inten II dilahirkan? Radin Inten II (Lampung, 1834 - Lampung, 5
Oktober 1858) adalah seorang pahlawan
nasional Indonesia.\nNamanya diabadikan
sebagai sebuah Bandara Radin Inten II dan
perguruan tinggi IAIN Raden Intan di
Lampung.

Akhirnya, Waleson menemukan cara lain. Ia
berhasil memperalat Radin Ngerapat. Maka
pengkhianatan pun terjadi. Radin Ngerapat
mengundang Radin Inten II untuk
mengadakan pertemuan. Dikatakannya
bahwa ia ingin membicarakan bantuan yang
diberikannya kepada Radin Inten II. Tanpa
curiga, Radin Inten II memenuhi undangan
itu. Pertemuan diadakan malam tanggal 5
Oktober 1856 di suatu tempat dekat
Kunyanya. Radin Inten II ditemani oleh satu
orang pengikutnya. Radin Ngerapat disertai
pula oleh beberapa orang. Akan tetapi, di
tempat yang cukup tersembunyi, beberapa
orang serdadu Belanda sudah disiapkan untuk
bertindak bila diperlukan. Radin Ngerapat
mempersilahkan Radin Inten II dan
pengiringnya memakan makanan yang
sengaja dibawanya terlebih dahulu.

Figure A.12: Reranking examples.

Task Query Relevant Document

Article Retrieval
Hà Nội: Đưa vào hoạt động trạm biến áp
110kV Bắc Thành Công

Việc đầu tư dự án 'Xây dựng mới Trạm 110kV Bắc Thành Công và
nhánh rẽ' sẽ góp phần giảm được tổn hao công suất và điện năng của
lưới điện trong khu vực, nâng cao chất lượng điện năng.

Long Document Retrieval

มะแวง้ต้นมปีระโยชนอ์ยา่งไรในเชงิสรรพคณุ? มะแวง้ต้น ประโยชนด์ีๆ สรรพคณุเดน่ๆ และขอ้มูลงานวจิยั\nหน้าแรก > บทความ
ทั�งหมด > มะแวง้ต้น\nชื�อสมุนไพร มะแวง้ต้น\nชื�ออื�นๆ/ชื�อท้องถิ�น มะแควง้ขม,
มะแควง้ดาํ, มะแควง้ (ภาคเหนอื) ,หมากแขง้ , หมากแขง้ขม (ภาคอีสาน) , มะแวง้
(ภาคกลาง) , แวง้กาม (สงขลา,สรุาษฎรธ์านี,ภาคใต้) , สะกั�งแค (กะเหรี�ยง-
แมฮ่่องสอน) , หมากแซง้คง (ไทยใหญ ่– แมฮ่่องสอน , ฉาน) , เทียนเฉีย ,ชื�อเทียน
เฉีย (จนีกลาง)\nชื�อวทิยาศาสตร ์Solanum indicum L. (มหีนาม) Solanum
sanitwongsei (ไรห้นาม)\nชื�อพอ้งทางวทิยาศาสตร ์Solanum violaceum (มี
หนาม)\nชื�อสามญั Sparrow’s Brinjal , Indian nightshade\nถิ�นกําเนิดมะแวง้
ต้น\nมกีารคาดการณ์กันวา่ถิ�นกําเนดิดั�งเดมิของมะแวง้ต้นนั�นอยูใ่นเขตรอ้นของ
ทวปีเอเชยีซึ�งอาจอยูใ่นประเทศ แถบเอเชยีใต้ เชน่ อินเดีย บงัคลาเทศ เนปาล ฯลฯ
รวมถึงประเทศแถบเอเชยีตะวนัออกเฉียงใต้ เชน่ ไทย, พมา่ , ลาว ,กัมพูชา ฯลฯ ...

Question Answering

Dimana Jamie Richard Vardy lahir? Jamie Richard Vardy (lahir dengan nama Gill; 11 January 1987) adalah
pemain sepak bola Inggris yang bermain di klub Premiere League
Leicester City dan tim nasional Inggris. Ia bermain sebagai striker,
namun juga bisa bermain di sayap.

Figure A.13: Retrieval examples.

Task Sentence 1 Sentence 2 Score

Multilingual STS

လတူစ်ေယာက်သည် ေဘ့စ်ေဘာအသင်းတင်ွ �ိှေနသည်။ လတူစ်ဦးသည် အသင်းတစ်သင်းတင်ွ ဘတ်စကတ်ေဘာ
ကစားေနသည်။ 2.4

Istilah benda hitam pertama kali diperkenalkan oleh
Gustav Kirchhoff tahun 1860.

Istilah "benda hitam" pertama kali diperkenalkan oleh
Gustav Robert Kirchhoff pada tahun 1862.

5

ชายคนหนึ�งในรถสเีขยีวกําลังทําความสะอาดถนนในเมอืง ชายและหญิงสามคนขา้มถนนในเมอืงที�พลกุพล่าน 1.7

Cross-lingual STS

This triggered a revolution in the earth sciences. இக் ேகாட்பாடு புவ� அற�வ�யல் துைறகளில்
புரட்ச�கரமான மாற்றங்கைள ஏற்படுத்த�ற்று.

4

The up-regulation of miR-146a was also detected in
cervical cancer tissues.

miR-146a ၏အသုံးအ�ှ�နး်သည်သားအိမ်ေခါင်းကင်ဆာ
တင်ွထိနး်ချ�ပ်�ိင်ုသည်ကုိေတ��ိှရသည်။ 4

A person is on a baseball team. มคีนเล่นบาสเก็ตบอลในทีม 2.4

Figure A.14: STS examples.

1.6 Example of Our Evaluation Tool

Similar to the previous sentence embedding benchmarks (Muennighoff et al. 2023; Enevoldsen
et al. 2025), the evaluation tool of SEA-BED can be simply run using Python as shown in
Figure A.15. We will release all the evaluation tools, codes, results, and datasets in the final
version of our paper.
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Figure A.15: Example usage of the SEA-BED evaluation framework for Semantic Textual
Similarity (STS) and Pair Classification tasks.
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Type Name Languages Domains Sample creation Annotations creators License

BitextMining ALT (Riza et al. 2019) [’ind’, ’tha’, ...] [’News’, ’Written’] found expert-annotated CC BY 4.0
BibleNLP (Akerman et al. 2023) [’ind’, ’tha’, ’vie’, ...] [’Religious’, ’Written’] found expert-annotated CC BY 4.0
Flores (Goyal et al. 2022) [’ind’, ’tha’, ’vie’, ...] [’Non-fiction’, ’Encyclopaedic’, ’Written’] found human-annotated
Embassy (Phatthiyaphaibun 2020) [’tha’, ’lao’] [’Government’, ’News’] found human-annotated CC0-1.0
IN22Conv (Gala et al. 2023) [’tam’] [’Social’, ’Spoken’, ’Fiction’, ...] found expert-annotated CC BY 4.0
IN22Gen (Gala et al. 2023) [’tam’] [’Web’, ’Legal’, ’Government’, ...] found expert-annotated CC BY 4.0
IndoGeneral (Guntara, Aji, and Prasojo 2020) [’ind’] [’General’, ’Writen’] found derived CC BY-SA 4.0
IndoIdentic (Gala et al. 2023) [’ind’] [’News’, ’Spoken’, ’Web’, ...] found derived
IndoNLG (Cahyawijaya et al. 2021) [’ind’] [’religion’] found derived
IndoNews (Guntara, Aji, and Prasojo 2020) [’ind’] [’News’, ’Written’] found derived CC BY-SA 4.0
IndoReligious (Guntara, Aji, and Prasojo 2020) [’ind’] [’Religion’, ’Writen’] found derived CC BY-SA 4.0
Liputan6 (Koto, Lau, and Baldwin 2020) [’ind’] [’News’, ’Written’] found human-annotated CC BY-SA 4.0
MADLAD400 (Kudugunta et al. 2023) [’tet’] [’Web’] found derived ODC-BY
NTREX (Federmann, Kocmi, and Xin 2022) [’ind’, ’tha’, ’vie’, ...] [’News’, ’Written’] found expert-annotated CC BY-SA 4.0
NusaxMiners (Winata et al. 2023) [’ind’] [’Reviews’, ’Written’] found human-annotated CC BY-SA 4.0
QED (Lamm et al. 2020) [’ind’, ’tha’, ’vie’, ...] [’Education’, ’Social’, ’Spoken’, ...] found human-annotated CC BY-SA
SCBMTEnTh2020 (Lowphansirikul et al. 2022) [’tha’] [’conversation’, ’Web’, ’Government’, ...] found human-annotated CC BY-SA 4.0
SoftwareDocumentation (Buschbeck and Exel 2020) [’ind’, ’tha’, ’vie’, ...] [’Web’, ’Product’] found expert-annotated CC BY-NC 4.0
TALPCo (Nomoto et al. 2018, 2019) [’ind’, ’tha’, ’vie’, ...] [’Conversation’, ’spoken’] found human-annotated CC BY-4.0
Tatoeba (Tiedemann 2020) [’ind’, ’tha’, ’vie’, ...] [’Written’] found human-annotated CC BY-2.0
TED2020 (Reimers and Gurevych 2020) [’ind’, ’tha’, ’vie’, ...] [’Education’, ’Social’, ’Spoken’, ...] found human-annotated CC BY–NC–ND 4.0
ThaiGov [’tha’] [’Government’, ’News’] found human-annotated PDDL
USEmbassy (Phatthiyaphaibun et al. 2023) [’tha’] [’News’] found derived CC0-1.0
VSoLSCSum (Nguyen et al. 2016) [’vie’] [’Social’, ’Written’] found human-annotated CC BY-4.0
XLSum (Hasan et al. 2021) [’ind’, ’tha’, ’vie’, ...] [’News’, ’Written’] found human-annotated CC BY-NC-SA 4.0

Classification ABUSIVE (Ibrohim and Budi 2018) [’ind’] [’Social’, ’Written’] found human-annotated CC BY-SA 4.0
AbusiveNewsComment (Kiasati Desrul and Romadhony 2019) [’ind’] [’Social’, ’Web’, ’News’, ...] found human-annotated CC BY-SA 4.0
BookmebusReviews [’khm’] [’Reviews’, ’Written’] found human-annotated
Clickbait (William and Sari 2020) [’ind’] [’News’, ’Written’] found expert-annotated
CodeMixed (Tho et al. 2021) [’ind’] [’Social’, ’Web’] found manual curation CC BY 3.0
CyberbullyingLGBT [’tha’] [’Social’, ’Written’] found derived
Depression (H"am"al"ainen et al. 2021) [’tha’] [’Social’, ’Web’, ’News’, ...] found human-annotated CC BY-NC-ND 4.0
EMoTES3K (Catapang and Visperas 2023) [’fil’] [’Morality’, ’Written’] found human-annotated Apache license 2.0
Emoji [’tha’] [’Social’, ’Written’] found human-annotated GPL-3.0
EmoT (Mei Silviana Saputri and Adriani 2018) [’ind’] [’Social’, ’Written’] found human-annotated MIT
EmotionOpinion (Riccosan et al. 2022) [’ind’] [’Social’, ’Written’] found human-annotated CC BY-SA 4.0
EmotCMT (Yulianti et al. 2021) [’ind’] [’Social’, ’Written’] found derived MIT
Fakenews (Cruz, Tan, and Cheng 2020) [’fil’] [’News’, ’Written’] found human-annotated
GeneralAmy (Phatthiyaphaibun et al. 2023) [’tha’] [’Social’, ’Written’] found human-annotated CC BY 3.0
GeneratedReviewsENTH (Lowphansirikul et al. 2022) [’tha’] [’conversation’, ’Web’, ’Written’, ...] found human-annotated CC BY-SA 4.0
GKLMIPSentiment (Jiang et al. 2021b) [’mya’] [’Social’, ’Web’, ”Written] found derived
GooglePlayReview [’ind’] [’Reviews’, ’Written’] found human-annotated CC BY 4.0
HateSpeech (Alfina et al. 2017) [’ind’] [’Social’, ’Written’] found human-annotated
HateSpeech [’fil’] [’Social’, ’Written’] found human-annotated Apache license 2.0
HoaxNews (Pratiwi, Asmara, and Rahutomo 2017) [’ind’] [’News’, ’Written’] found human-annotated CC BY 4.0
HSDNofaaulia (Aulia and Budi 2019) [’fil’] [’Social’, ’Written’] found human-annotated
IMDB (Maas et al. 2011) [’ind’] [’Reviews’, ’Written’] found human-annotated
Indonglish (Astuti, Sari, and Suprapto 2023) [’ind’] [’Social’, ’Written’] found expert-annotated
JaDiIde (Hidayatullah, Cahyaningtyas, and Pamungkas 2020) [’ind’] [’Social’, ’Written’] found derived
Karonese (Sitepu et al. 2024) [’ind’] [’Social’, ’Web’] found derived
KhineMyanmarNews (Khine, Nwet, and Soe 2017) [’mya’] [’News’, ’Written’] found derived GPL-3.0
Krathu500 [’tha’] [’Social’, ’Web’, ’News’, ...] found human-annotated
LazadaReview [’fil’] [’Reviews’, ’Written’] found derived
LEMSentiment (Koto et al. 2020) [’ind’] [’Social’, ’Review’, ’Written’] found human-annotated CC BY-SA 4.0
LimeSoda (Payoungkhamdee et al. 2021) [’tha’] [’Healthcare’, ’Written’] found human-annotated CC BY 4.0
MADLAD400 (Kudugunta et al. 2023) [’tet’] [’Web’] found derived ODC-BY
MassiveIntent (FitzGerald et al. 2022) [’ind’, ’tha’, ’vie’, ...] [’Spoken’] found human-annotated CC BY 4.0
MassiveScenario (FitzGerald et al. 2022) [’ind’, ’tha’, ’vie’, ...] [’Spoken’] found human-annotated CC BY 4.0
Minang (Koto and Koto 2020) [’ind’] [’Encyclopaedic’, ’Written’] found derived MIT
MultiLingualSentiment (Mollanorozy, Tanti, and Nissim 2023) [’ind’, ’tha’, ’vie’] [’Reviews’, ’Written’] found derived
MurasuNews [’tam’] [’News’, ’Written’] found derived CC0
News (Khine, Nwet, and Soe 2017) [’mya’] [’News’, ’Written’] found derived GLP-3.0
News [’zsm’] [’News’, ’Written’] found derived
News [’khm’] [’Encyclopaedic’, ’Web’, ’News’, ...] found derived
News [’tam’] [’News’, ’Written’] found derived CC BY-SA 4.0
News (Phatthiyaphaibun 2025) [’lao’] [’News’, ’Written’] found derived
NewsDataset [’ind’] [’News’, ’Written’] found derived
NusaX (Winata et al. 2023) [’ind’] [’Social’, ’Economics’, ’Healthcare’, ...] found expert-annotated CC BY-SA 4.0
PhoATIS (Dao, Truong, and Nguyen 2021) [’vie’] [’Spoken’] found expert-annotated
PHElectionsSA [’fil’] [’Social’] found human-annotated
PHElectionsTD [’fil’] [’Social’] found human-annotated
Profanity (Galinato et al. 2023) [’fil’] [’Social’] found human-annotated
ReviewShopping (Phatthiyaphaibun et al. 2023) [’tha’] [’Reviews’, ’Written’] found human-annotated CC BY 3.0
SIB200 (Adelani et al. 2023) [’ind’, ’tha’, ’vie’, ...] [’News’, ’Written’] found expert-annotated CC BY-SA 4.0
SEATranslationeseResampled (Lovenia et al. 2024) [’ind’, ’tha’, ’vie’, ...] [’News’, ’Social’, ’Culture’, ...] found derived Apache license 2.0
SentEmoMobileApps (Riccosan and Saputra 2023) [’ind’] [’Reviews’, ’Written’] found human-annotated
SentimentAnalysis (Fe 2019) [’ind’] [’Social’, ’Written’] found derived CC BY-NC-ND 4.0
ShopeeReviews (Purwarianti and Crisdayanti 2019) [’fil’] [’Social’, ’Written’] found human-annotated MLP-2.0
SMSA [’ind’] [’Reviews’, ’Written’] found derived MIT
SpamidPair (Chrismanto, Sari, and Suyanto 2022) [’ind’] [’Social’, ’Written’] found human-annotated CC BY 4.0
SpamReviews (Van Dinh, Luu, and Nguyen 2022) [’vie’] [’Reviews’, ’Written’] found human-annotated CC BY-NC 4.0
StudentFeedback (Nguyen et al. 2018b) [’vie’] [’Reviews’, ’Written’] found human-annotated MIT
TCAS61 (Phatthiyaphaibun et al. 2023) [’tha’] [’Social’, ’Written’] found human-annotated CC BY 3.0
The40ThaiChildrenStories (Pasupa, Netisopakul, and Lertsuksakda 2016) [’tha’] [’Encyclopaedic’, ’Written’] found human-annotated
ThuraMyanmarNews (Aung, Kyaw, and Thu 2024) [’mya’] [’News’, ’Written’] found derived MIT
TiktokHatespeech (Hernandez Urbano Jr et al. 2021) [’fil’] [’Social’, ’Written’] found human-annotated CC BY-SA 4.0
Tweets (Samson Juan, Saee, and Mohamad) [’zsm’] [’Reviews’, ’Written’] found derived
TyphoonYolandaTweets [’fil’] [’Social’, ’Written’] found human-annotated CC BY 4.0
UITViCTSD (Nguyen, Van Nguyen, and Nguyen 2021) [’vie’] [’Social’, ’Written’] found human-annotated
UITViHSD (Luu, Nguyen, and Nguyen 2021) [’vie’] [’Social’, ’Written’] found human-annotated
UITViSFD (Luc Phan et al. 2021) [’vie’] [’Social’, ’Written’] found human-annotated
UITVION (Khanh et al. 2021) [’vie’] [’Social’, ’Written’] found human-annotated
UITVSMEC (Ho et al. 2020) [’vie’] [’Social’, ’Written’] found human-annotated
VaccinesTweets [’ind’] [’Social’, ’Written’] found human-annotated
ViOCD (Nguyen et al. 2021) [’vie’] [’Reviews’, ’Written’] found human-annotated
VLSP2016Sentiment (Nguyen et al. 2018a) [’vie’] [’Reviews’, ’Written’] found human-annotated
WisesightSentiment (Suriyawongkul et al. 2019) [’tha’] [’Social’, ’News’, ’Written’] found expert-annotated CC0-1.0
WongnaiReviews [’tha’] [’Reviews’, ’Written’] found derived LGPL-3.0

Table A.12: The datasets included in SEA-BED (part 1).
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Type Name Languages Domains Sample creation Annotations creators License

Clustering EMoTES3K (Catapang and Visperas 2023) [’fil’] [’Morality’, ’Written’] found human-annotated Apache license 2.0
MurasuNews [’tam’] [’News’, ’Written’] found derived CC0
News (Phatthiyaphaibun 2025) [’lao’] [’News’, ’Written’] found derived
News (Jiang et al. 2022) [’khm’] [’News’, ’Written’] found derived
News (Chandra 2020) [’ind’] [’News’, ’Written’] found derived
News [’tam’] [’News’, ’Written’] found derived CC BY-SA 4.0
News (Khine, Nwet, and Soe 2017) [’mya’] [’News’, ’Written’] found derived
SIB200 (Adelani et al. 2023) [’ind’, ’tha’, ’vie’, ...] [’News’, ’Written’] found expert-annotated CC BY-SA 4.0
UITVION (Khanh et al. 2021) [’vie’] [’Social’, ’Written’] found human-annotated
ViOCD (Nguyen et al. 2021) [’vie’] [’Reviews’, ’Written’] found human-annotated

Instruction Retrieval AlpacaInstruct [’ind’] None found LM-generated Apache license 2.0
Vietnamese52KAlpaca (Nhiem 2023) [’vie’] None found LM-generated
WangchanThaiInstruct [’tha’] [’Medical’, ’Finance’, ’Legal’, ...] found human-annotated CC BY-SA 4.0
WangchanXSyntheticInstructThai120k (Pengpun et al. 2024b) [’tha’] [’Encyclopaedic’, ’Written’] found LM-generated MIT

Multi-label Classification BurmesePrachathai67k (Phatthiyaphaibun et al. 2023) [’mya’] [’News’, ’Web’, ’Written’] created human-annotated Apache license 2.0
CASA (Arfinda Ilmania 2018) [’ind’] [’Reviews’, ’Written’] found human-annotated MIT
Dengue (Livelo and Cheng 2018) [’fil’] [’Social’, ’Written’] found derived GLP-3.0
GKLMIPNews (Jiang et al. 2021a) [’khm’] [’News’, ’Written’] found derived
HateSpeech (Ibrohim and Budi 2019) [’ind’] [’Social’, ’Written’] found human-annotated CC BY-SA 4.0
HoASA (A. N. Azhar and Sutiono) [’ind’] [’Reviews’, ’Written’] found human-annotated MIT
Netifier (Izzan, Wibisono, and Putra 2025) [’ind’] [’Social’, ’Written’] found human-annotated CC BY-SA 4.0
Prachathai67k (Phatthiyaphaibun et al. 2023) [’tha’] [’News’, ’Web’, ’Written’] found derived Apache license 2.0
TrueVoiceIntent [’tha’] [’Conversation’] found derived
VLSP2018SAHotel (Dang, Nguyen, and Do 2022) [’vie’] [’Reviews’, ’Written’] found human-annotated
VLSP2018SARestaurant (Dang, Nguyen, and Do 2022) [’vie’] [’Reviews’, ’Written’] found human-annotated

Pair Classification BurmeseXNLI (Conneau et al. 2018) [’mya’] [’Non-fiction’, ’Fiction’, ’Government’] created human-annotated CC BY-NC 4.0
IDKMRCNLI [’ind’] [’Encyclopaedic’, ’News’, ’Written’] found
IndicXNLI (Aggarwal, Gupta, and Kunchukuttan 2022) [’tam’] [’Non-fiction’, ’Fiction’, ’Government’] found expert-annotated CC BY-NC 4.0
IndoNLI (Mahendra et al. 2021) [’ind’] [’Encyclopaedic’, ’Web’, ’News’, ...] found expert-annotated CC BY-SA 4.0
MultilingualNLI26lang2mil7 (Laurer et al. 2022) [’ind’, ’vie’] [’Non-fiction’, ’Fiction’, ’Government’] found machine-translated and reviewed
MyXNLI (Htet and Dras 2024) [’mya’] [’Non-fiction’, ’Fiction’, ’Government’] found human-annotated CC BY-NC 4.0
NewsPHNLI (Cruz et al. 2020) [’fil’] [’News’, ’Written’] found human-annotated GPL-3.0
PAWS [’fil’] [’Web’] found human-annotated
SQuADNLI [’ind’] [’Encyclopaedic’, ’News’, ’Written’] found
TyDIQANLI [’ind’] [’Encyclopaedic’, ’News’, ’Written’] found
WReTE (Setya and Mahendra 2018) [’tha’] [’Encyclopaedic’, ’Web’, ’News’] found expert-annotated MIT
XNLI (Conneau et al. 2018) [’tha’, ’vie’] [’Non-fiction’, ’Fiction’, ’Government’] found expert-annotated CC BY-NC 4.0
XNLITranslated (Conneau et al. 2018) [’khm’, ’zsm’, ’lao’] [’Non-fiction’, ’Fiction’, ’Government’] machine-translated and verified machine-translated and reviewed CC BY-NC 4.0

Retrieval ACIQuAD (Doxolodeo and Krisnadhi 2024) [’ind’] [’Encyclopaedic’, ’Written’] found expert-annotated CC-BY 4.0
Agricutlure1K (Min Si Thu,Khin Myat Noe) [’mya’] [’Encyclopaedic’, ’Written’] found expert-annotated CC BY-SA 4.0
AskCovidDrBot (Aung and San 2025) [’mya’] [’Encyclopaedic’, ’Written’] found human-annotated MIT
ChatGPTOpenQA [’zsm’] [’Encyclopaedic’, ’Written’] found LM-generated CC BY-NC-SA 2.0
ContextSearch (Nguyen et al. 2025) [’tha’] [’STEM’, ’Humanities’, ’Social Sciences’, ...] found human-annotated MIT
IAppWiki (Viriyayudhakorn and Polpanumas 2021) [’tha’] [’Encyclopaedic’, ’Web’, ’News’] found expert-annotated MIT
IDKMRC (Putri and Oh 2022) [’tnd’] [’Encyclopaedic’, ’Written’] found human-annotated CC BY-SA 4.0
IndicQA (Doddapaneni et al. 2022) [’tam’] [’Web’, ’Written’] machine-translated and verified human-annotated CC BY 4.0
IndoNLG (Cahyawijaya et al. 2021) [’ind’] [’Religion’, ’Writen’] found human-annotated CC BY-SA 4.0
IndoQA (Jakarta Artificial Intelligence Research) [’ind’] [’Web’] found expert-annotated CC BY-ND 4.0
MLDR (Chen et al. 2024) [’tha’] [’Encyclopaedic’, ’Written’] found LM-generated MIT
MLQA (Lewis et al. 2019) [’vie’] [’Encyclopaedic’, ’Written’] found human-annotated CC BY-SA 3.0
MIRACL (Zhang et al. 2023) [’ind’, ’tha’] [’Encyclopaedic’, ’Written’] found expert-annotated Apache license 2.0
Microbiology1K (Si Thu 2024) [’mya’] [’Encyclopaedic’, ’Written’] found human-annotated CC BY-SA 4.0
QASiNa (Rizqullah, Purwarianti, and Aji 2023) [’ind’] [’Religion’, ’Writen’] found human-annotated MIT
ThaiWikiQA (Trakultaweekoon et al. 2019) [’tha’] [’Encyclopaedic’, ’Written’] found human-annotated CC BY-NC-SA 3.0
TyDiQA (Clark et al.) [’ind’, ’tha’] [’Encyclopaedic’, ’Written’] found human-annotated Apache license 2.0
ViQuAD2_0 (Nguyen et al. 2022) [’vie’] [’Encyclopaedic’, ’Written’] found expert-annotated MIT
WangchanXLegalThaiCCLRAG (Akarajaradwong et al. 2025) [’tha’] [’Legal’, ’Written’] found human-annotated MIT
XQuAD (Artetxe, Ruder, and Yogatama 2019) [’tha’, ’vie’] [’Web’, ’Written’] found human-annotated CC BY-SA 4.0

Reranking MIRACL (Zhang et al. 2023) [’ind’, ’tha’] [’Encyclopaedic’, ’Written’] found expert-annotated Apache license 2.0

STS Biosses (Soğancıoğlu, "Ozt"urk, and "Ozg"ur 2017) [’tha’, ’mya’] [’Medical’] created human-annotated GPL-3.0
BiossesCrosslingual (Soğancıoğlu, "Ozt"urk, and "Ozg"ur 2017) [’tha’, ’mya’] [’Medical’] created human-annotated GPL-3.0
IndicCrosslingual (Ramesh et al. 2022) [’tam’] [News, Non-fiction, Web, ...] found expert-annotated CC0-1.0
SemRel2024 (Ousidhoum et al. 2024a) [’ind’] [’Spoken’, ’Written’] found human-annotated
STS17 (Cer et al. 2017) [’tha’, ’mya’] [’News’, ’Web’, ’Written’] created human-annotated
STS17Crosslingual (Cer et al. 2017) [’tha’, ’mya’] [’News’, ’Web’, ’Written’] created human-annotated
STS22 (Chen et al. 2022) [’tha’, ’mya’] [’News’, ’Written’] created human-annotated
STS22Crosslingual (Chen et al. 2022) [’tha’, ’mya’] [’News’, ’Written’] created human-annotated
STS24 (Ousidhoum et al. 2024b) [’tha’, ’mya’] [’Spoken’, ’Written’] created human-annotated
STS24Crosslingual (Ousidhoum et al. 2024b) [’tha’, ’mya’] [’Spoken’, ’Written’] created human-annotated
STSBenchmark (Cer et al. 2017) [’ind’, ’tha’, ’vie’, ...] [’News’, ’Web’, ’Written’] machine-translated and verified machine-translated and reviewed CC BY-SA 4.0

Table A.13: The datasets included in SEA-BED (part 2).
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