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Video engagement is important in online advertisements where there is no physical interaction with the
consumer. Engagement can be directly measured as the number of seconds after which a consumer skips
an advertisement. In this paper, we propose a model to predict video engagement of an advertisement
using only a few samples. This allows for early identification of poor quality videos. This can also help
identify advertisement frauds where a robot runs fake videos behind the name of well-known brands.
We leverage on the fact that videos with high engagement have similar viewing patterns over time.
Hence, we can create a similarity network of videos and use a graph-embedding model called
DeepWalk to cluster videos into significant communities. The learned embedding is able to identify view-
ing patterns of fraud and popular videos. In order to assess the impact of a video, we also consider how
the view counts increase or decrease over time. This results in a heterogeneous graph where an edge indi-
cates similar video engagement or history of view counts between two videos. Since it is difficult to find
labelled samples for ‘fraud’ video, we leverage on a one-class model that can determine ‘fraud’ videos
with outlier or abnormal behavior. The proposed model outperforms baselines in F-measure by over 20%.

� 2021 Elsevier B.V. All rights reserved.
1. Introduction

Video marketing and analysis has become increasingly popular
in recent years thanks to 5G but also thanks to advancements in
multimodal processing [9,31,26,8]. In this paper, we aim to study
the online behavior of consumers on YouTube, where videos are
hosted and shared among friends and subscribers. Several brands
display their advertisement in the beginning of a YouTube video.
The advertiser pays money proportional to the number of views
and likes that his advertisement receives. However, recently there
has been an explosion of fake views that are generated by a robot.
It is very difficult to label such fraudulent activity using a human
expert. Hence, in this paper we consider a heterogeneous engage-
ment model that can combine different types of metrics such as
viewing duration and view counts. Since, less than 1% of videos
are targets of fraud this results in an imbalanced dataset. We can
use a one-class model to guide the learning of latent embeddings
or communities in a network of videos.

Fig. 1 shows an example of a YouTube Advertisement. The view
count is shown as over 500K and the number of likes is 3.3K. In
order to understand the engagement, we also need to look at the
percentage of viewing duration using a software that can record
actions such as play, pause and rewind. Fake views will result in
spikes in the view counts and will disappear over time. Hence, in
this paper if the total view count for a video is above a threshold
after three months, we label it as a popular video [21]. The collec-
tion of online behavior is dependent on the availability of a strong
internet connection. The one-class model predicts contours that
minimize the distance of all videos from the origin. View counts
that lie outside a contour can be discarded as noisy or fake views
[32,22].

Our problem is similar to advertisement click fraud where a
robot keeps clicking on products and does not make a purchase
[14]. In [28], the authors used a binary tree where leaf nodes are
IP address to track clusters of malicious websites. However, they
concluded that IP address is a poor indicator as bots may keep get-
ting discovered and removed. Instead, we rely on the viewing pat-
terns of each video over time. DeepWalk is a popular algorithm for
community detection in social networks [24,6]. For a given input
network it can learn communities that maximize the probability
of a random path through the network [5]. Heterogeneous Deep-
Walk is challenging due to the presence of nodes of different types
[11]. Here, in order to deal with the imbalanced community prob-
lem, we employ a one-class model to guide the selection of random
paths through the network. The resulting model is referred to as
Heterogeneous Engagement Auxiliary DeepWalk (HEAD).

http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2021.08.127&domain=pdf
https://doi.org/10.1016/j.neucom.2021.08.127
https://doi.org/10.1016/j.neucom.2021.08.127
http://www.sciencedirect.com/science/journal/09252312
http://www.elsevier.com/locate/neucom


Fig. 1. Example of a YouTube Advertisement. The number of views, likes and dislikes are recorded over time. For capturing video engagement, a software to record actions
such as play, pause or rewind is used.
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The Fig. 2 illustrates the flowchart for the proposed HEAD algo-
rithm. We consider two different types of dataset for each video
namely the view counts and the viewing duration on each day.
Each video is labelled as ‘fraud’ or ‘popular’ based on the total view
counts at the end of three months. Next, a one-class model is used
to identify outlier videos that will hinder the convergence of the
multimodal DeepWalk model. Next, we construct a network of
videos where edges are allowed between videos with the same
labels and also high covariance. A few edges are allowed between
borderline videos. DeepWalk determines the embedding corre-
sponding to the highest probability path through the network that
also corresponds to the global maxima of the convex polytope for
the sequence of videos. We concatenate the embeddings for both
types of dataset into a single vector. Lastly, we can use this hetero-
geneous embedding to predict the embedding and label for any
new video for which either the viewing durations or view counts
are known.
Fig. 2. This figure illustrates the flowchart for the proposed HEAD algorithm. Starting wi
predict the label for any new video. First, we remove outliers using a one-class model.
embeddings for different data types are concatenated resulting in a heterogeneous repre
as fraud or popular.
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The organization of the paper is as follows: Section 2 reviews
related works and datasets on video engagement; Section 3 pro-
vides the preliminary concepts necessary to understand the pre-
sent work such as the DeepWalk and One-class model; Section 4
introduces the proposed heterogeneous model for the fusion of
video engagement and view count data; Section 5 validates the
proposed method on two real-world datasets; finally, Section 6
provides concluding remarks.
2. Related work and contributions

In recent years, video marketing and multimodal analysis have
raised growing interest within both the scientific community, for
the many exciting open challenges, as well as the business world,
due to the remarkable benefits to be had frommarketing and finan-
cial prediction [15,4,7,34]. Unfortunately, this has also led to the
emergence of ‘fraud’ videos. Marciel et al. [19] showed that portals
th two different types of dataset namely viewing durations and view counts, we can
For the remaining videos latent embeddings are determined using DeepWalk. The
sentation for each video. Lastly, we can use network regression to label a new video
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suchasYouTubeare susceptible to attacks. Theyusedaprobe togen-
erate views for a video from different IP addresses and then com-
pared it to the number of view counts. The pattern of view
generated by a software bot will be different from that of a real
humanbeing.Hence,wepropose amultimodal classifier for predict-
ing fraudulent video advertisements. Advertisements with high
engagement can also be semantically connected to the content of a
YouTube video [33].

DeepWalk is an algorithm to learn structural regularities using
short random walks in a given network [23]. Each node in the net-
work is represented by a latent feature vector that captures the
neighborhood similarity and community membership. Such a
model is unable to accommodate new users and assumes all the
edges have the same similarity metric. In this paper, we overcome
these challenges using network regression to predict features for
any new user or modality.

Most previous graph embedding methods focus on homoge-
neous networks consisting of a single type of nodes and links
[17,27]. In [25], the authors proposed fusion methods for com-
bining different types of data in a heterogeneous network. They
propose the use of semantic meta paths to constrain the embed-
ding. However, such paths are often not known. Hence, in this
paper, we introduce a small number of random edges between
different types of data nodes. For the remaining video nodes,
we only allow edges between videos with similar view counts
and online behavior. Our work is inspired by the deep clustering
algorithm proposed in [30]. Here, a reconstruction loss for pre-
dicting graph structure using an attention auto-encoder is used
during clustering. In contrast, we first cluster the data using a
one-class model to remove outliers, next we predict the embed-
ding for the best clustering.

In [29] the authors recommend friends in a heterogeneous
social network where an edge can represent friendship, con-
tact or chat relationships. They use DeepWalk on each homo-
geneous sub-network and then combine the learned
embeddings using a neural network. Such a method can only
predict two existing users. In contrast, we use covariance
between embeddings to determine the heterogeneous neigh-
bors for a new consumer and network regression to predict
the embedding.

Predicting clicks accurately has widespread application in
advertising and real-time bidding. It is necessary to make predic-
tions billions of times per day and update the model as new
clicks and non-clicks are observed. In [14] the authors aim to
predict if a particular link is clicked or not. They use an online
probit regression model where the probability that a link is
clicked is sampled from a Gaussian distribution. The mean and
variance of the distribution are updated with each new sample.
To ensure stability they consider pruning of weights. Instead, in
[20] the authors used regularization to ensure sparsity in an
online logistic loss model. An explosion of information might
make it difficult for users to select the right content due to
information overloading. Here, it is useful to prune the content
and select only the best web pages. We can also include infor-
mation such as location and user fatigue while predicting clicks.
In [1] the authors show that there is an increased propensity to
click the same link.

In order to improve the accuracy of heterogeneous auxiliary
networks, a better fusion of extracted features was proposed in
[16,10]. They also show that it is better to simultaneously tackle
multiple tasks such as optical flow estimation and lane detection
during autonomous driving. Similar to their approach we consider
the simultaneous extraction of embeddings from both viewing
duration and view counts.

The following is a summary of the significance and contribu-
tions of the research work presented in this paper:
230
� Only a fraction of videos can be labelled as fraud resulting in an
imbalanced dataset. We propose to use a one-class model that
can be trained on only samples from a single class. Videos that
lie far away from the origin are outliers that can be discarded
prior to training.

� In order to model the online behaviour of consumers we con-
sider a time series of view counts and total viewing duration
over three months. We can leverage on the sequence of videos
viewed by a consumer in a particular channel to approximate
the heterogenous convex objective function.

� We learn the embedding separately for both view counts and
viewing durations. These are concatenated resulting in a
heterogeneous embedding. For a new test video, we can use
covariance to determine the closest neighbours in the training
set. Next, network regression can be used to predict the embed-
ding and class label without the need for retraining.

� We show that the heterogenous latent embeddings learned by
the model are easily clustered into two communities where
one of them can be labelled as fraud videos using training
labels. Fraud videos are fake viewing patterns generated by a
bot.

Validation of the method is performed on two benchmark data-
sets. Due to lack of available benchmark datasets for video engage-
ment, we validate the model on a benchmark dataset for click fraud
detection. A fraud person will randomly browse for products with-
out any purchases. In contrast, a genuine customer will actively
compare products of a certain type and make a purchase. This
dataset is from a ‘Talking Data’ challenge that aims to identify a
fraud from a genuine customer who will buy an app. Here, we con-
sider the sequence of clicks or apps viewed from a specific IP
address. Each click is represented by the app id that was viewed.
The click sequence is labelled as ‘fraud’ or ‘buy’ depending on
whether there is a purchase or not. Next, we consider a heteroge-
neous dataset of viewing durations and view count history for You-
Tube advertisements collected at a university campus. The view
counts represent the evolution of popularity over time and the
video sequence corresponds to duration in minutes spent by a user
on a video.

The click fraud dataset has samples of fraud robots that ran-
domly browse apps on the website without actually purchasing
anything. Genuine customers are labelled based on their account
profiles and purchases. There is however no visible difference in
the pattern of clicks. Similarly, the only way to annotate a real view
as opposed to a fake one is to verify the credibility of the account
owner. The view counts of a fraud advertisement will have spikes
that are generated by a bot and the corresponding engagement in
the form of viewing durations will be low. It could also take the
form of pixel stuffing where the advertisement is never visible to
users. Such spikes will however not determine the long term influ-
ence of the video. Hence, in this paper we used the total view
counts at the end of three months to categorize a video as popular
or fraud.
3. Preliminaries

In this section, we introduced some theoretical models for clas-
sifying videos in a social network based on the level of engage-
ment. The aim of the model is to differentiate fraudulent online
behavior that is generated using a bot from that of a human. We
consider a temporal regression model to label each video as ‘fraud’
or ‘popular’. We show that the error between the true and
predicted label in the training videos can be used to learn the influ-
ence of each neighbor in the social network [3]. In order to effi-
ciently learn labels of a large number of videos, we use a
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heuristic approach called DeepWalk [28]. Here, each video is repre-
sented by a vector of features such that videos in the same commu-
nity lie close to each other in the vector space.

3.1. Online behavior

Online user behavior can be recorded in the form of view counts
or a video viewing durations. Let us consider a sequence of adver-
tisements that appear on a particular channel given by
x ¼ ðx1; x2; . . . ; xnÞ where xi is a vector of observations and n is
the number of videos in that channel. Each video is classified as
‘fraud’ or ‘popular’. Hence, the class label yi 2 f0;1g. We can use
the label of the previous advertisement in a channel to predict
the label of the current advertisement. The resulting model can
be defined as follows:

hi ¼ f ðhiÞ þ gðhiÞhi�18i ¼ 1;2; . . . ;n� 1
h1 ¼ f ðh1Þ þ gðh1Þxi þ b
yi ¼ hn

ð1Þ

where hi is the latent representation of xi and b is the bias that is
learned using gradient descent. The functions f ðhÞ and gðhÞ define
the activation function for input neurons and the inter-connected
neurons respectively. Hence, f ðhiÞ is a function mapping each video
to the output label yi and gðhiÞ is a function mapping each video hi

given the previous video hi�1 in the sequence to the channel label yi.
Here, the index i corresponds to the position of a video in the
sequence and ranges from 1 to n. The latent representation hi for
each video is dependent on the previous video hi�1. Hence, videos
in the same community will influence the label of each other. To
determine this latent embedding hi we propose to use DeepWalk
in the next section.

We consider a sequence of videos in the social network such
that each pair in the sequence is connected. The label yi for video
i in the sequence is dependent on the weighted sum of the previous
n videos. The latent representation of each video i is denoted by the
vector hi. Hence, hn is the latent feature vector for the penultimate
video in the sequence.

In order to learn the parameters h ¼ ðh; bÞ, we update using the
ground truth y�:

e ¼ y� � yDh ¼ @e
@h

¼ @e
@f ðhÞ :

@f ðhÞ
@h

ð2Þ

where f ðhÞ is the mapping function to latent space.

3.2. DeepWalk

In this paper, we consider the use of DeepWalk to determine the
mapping function f ðhÞ for videos in a given channel. As the name
suggests DeepWalk finds the sequence of videos (also known as
a walk) that has highest posterior probability given a particular
class label. This means that in DeepWalk ‘fraud’ videos would lie
on the same path or sequence as defined above using Eq. (1).

DeepWalk is a method that learns a latent space representation
of social interactions in a graph of users [23]. For example, in Fig. 3
we illustrate a network with two communities denoted by differ-
ent colors. The representation learned by DeepWalk aims to
encode the community structure into a vector space such that
communities are well separated. We can note the correspondence
between the community structure in the input graph and the
embedding learned.

Consider a graph Gwith a set of nodes X that are connected by a
set of edges. The aim of DeepWalk is to classify the nodes of the
graph into one or more categories. Unlike traditional machine
learning here we utilize the dependence of the examples
embedded in the structure of G to label the graph. Previous authors
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considered approximate inference algorithms such as Gibbs Sam-
pling and label relaxation to compute the posterior distribution
of labels given the network structure [13]. Instead, DeepWalk is
an unsupervised method that learns features that capture the
graph structure independent of the label distribution.

Our goal is to determine a small number of latent dimensions
m� d from the complete graph adjacency matrix of dimension
m�m. These d low-dimensional representations are distributed
meaning that each social phenomenon is expressed by a subset
of dimensions. We denote a random walk rooted at vertex hi as a
stochastic process with random variables hiþ1;hiþ2; . . . ;hiþn such
that hiþ1 is a vertex chosen at random such that an edge exists with
hi and n is the length of the random walk. We can rephrase the
problem of estimating the class of a vertex given all previous ver-
tices in a random walk as a language model.

In a language model we consider a sequence of words
ðhi;hiþ1 . . . ;hiþnÞ appearing in a corpus and the aim is to maximize
pðhijhiþ1; . . . ;hiþnÞ over the whole training corpus. However, our
goal is to learn a latent representation, not only a probability dis-
tribution of node co-occurrences, so we introduce a mapping func-

tion f ðhiÞ 2 Rm�d where R is the set of real numbers. This mapping f
represents the latent social representations associated with each
vertex hi in the graph. Furthermore, the context is composed of
words appearing to the left and the right side of a word.

Here we consider a heterogeneous model that can combine dif-
ferent types of datasets. The time-series dataset can be approxi-
mated using a Taylor series of a convex polytope. Here, the
gradient of each video in a sequence is dependent on the previous
n videos. The resulting gradient is piecewise linear and is able to
model complex multimodal datasets. DeepWalk uses maximum
posterior probability to determine the sequence of videos in the
convex polytope corresponding to a global maxima. It is previously
shown that for a convex polytope of n vertices, the Taylor series
approximation is a summation over piecewise gradients of the ver-
tices. We can hence rewrite Eq. (2) as follows:

Dh ¼
Xiþn=2

k¼i�n=2

@e
@f ðhkÞ :

@f ðhkÞ
@h

h ¼ argmaxh � log pðhi�n=2; . . . ;hi�1;hiþ1; . . . ;hiþn=2jf ðhijhÞÞ
ð3Þ

where the maximum probability path of h vertices in the graph cor-
responds to the global solution of h. It is reasonable to assume that
such a piecewise solution is able to handle multimodal functions in
heterogenous datasets well.

Computing the partition function for this equation is expensive.
We can assign the vertices to the leaves of a binary tree, then the
prediction problem turns into maximizing the probability of a
specific path in the tree. We can speed up the training process by
assigning shorter paths to the frequent vertices in the random
walks. In this paper, we use DeepWalk to predict the interactions
between users in a classroom or consumers of a product. We can
use the time series of click sequences collected online to determine
the similarity or edges between users and then DeepWalk is used
to identify communities of users with different behaviors or pro-
duct preferences.

For a given network structure an edge between two nodes indi-
cates they are from the same community and have high similarity.
In order to reduce the dimensionality of the network, we represent
each node as a vector such that similar nodes lie close to each other
in the new vector space. In order to discover the neighborhood of a
node, we consider a fixed number of random walks of length l
starting at each node.

Each randomwalk is a sequence of nodes where the first node hi

is denoted by B (Begin) and the last node hiþn is denoted by O



Fig. 3. Random walks in a network with two communities. The Skip-chain walk has a second-order dependency to the underlying Linear-chain.
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(Outside). The nodes that lie on the path are denoted as I (Inside).
Such a random walk is denoted as a linear chain of red arrows in
Fig. 3. Next, we learn a low dimensional vector embedding such
that the occurrence probability of each node given its immediate
neighbor in the random walks is maximum using Eq. (3).

We might also be interested in the co-occurrence probability of
a node given the previous two nodes in a random walk. This is
achieved by introducing a constraint on the random walk path.
In particular, each pair of consecutive nodes in the graph is repre-
sented by a new node Ci ¼ Ii; Iiþ1. Now, walks are only allowed
from Ci to Ciþ1 such that Ci ¼ Ii; Iiþ1 and Ciþ1 ¼ Iiþ1; Iiþ2. Next, we
can maximize the co-occurrence probabilities of this new set of
skip nodes Ci to compute the low dimensional vectors using Eq. (3).

Fig. 4 shows a sample network for the heterogeneous video
data. We have two types of nodes (1) Fraud videos (2) Popular
videos. Edges are only allowed among nodes of the same types if
the covariance between them is above a threshold. Borderline
videos can have edges to both fraud and popular videos.

4. Heterogeneous auxiliary DeepWalk

In this section, we show that network regression can be used to
predict embeddings of new videos in a channel. In order to cope
with the imbalanced samples available for fake videos, we also
use a one-class model to remove outliers. Lastly, we describe the
heterogeneous DeepWalk for combining embeddings learned from
both video viewing and view count data.

4.1. Network regression

During testing we can predict the mapping function or embed-
ding for a new video xy using network regression. We can define
the embedding of xy as a weighted combination of its closest neigh-
bors in the training set.

xy ¼ wN
1
N

X

j2Ni

xj þ b

xy ¼ bxN þ b
ð4Þ

where Ni is the set of neighborhood nodes for video xy;b are the
coefficients for each neighbor and the noise term is b.
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Using DeepWalk as described in the previous section we can
compute b using the mapping function f ðxNÞ.

4.2. One-class SVM

It is relatively easy to gather training data for popular videos.
On the other hand, collection of samples for fraud videos is rare
and sometimes impossible. Even if we simulate a fraud video, there
is no way to guarantee that it will capture all the behavior of a
robot. To cope with this problem, one class classification models
have been developed. By just providing the popular videos as train-
ing data, it can create a representative model. During testing each
sample that is too different from this model is labelled as out-of-
class. In this paper, we consider a one-class support vector
machine (SVM) model to represent the set of online users.

The traditional SVM defines a hyper-plane that partitions that
training samples into two vector spaces corresponding to each
class. The distance from the closest point from each class to the
hyper-plane is equal, thus the constructed hyper-plane searches
for the maximal margin between the classes. Furthermore, when
the data is not linearly separable, we can project the data to a high
dimensional space f ðxÞ where a hyper-plane exists. As an exten-
sion, the one-class SVM separates the data points from the origin
and maximizes the distance from this hyper-plane wTx ¼ 0 to the
origin.

Hence, due to lack of labelled samples for fraud videos, we also
consider a one-class model to determine the mapping function
f ðxiÞ.

min
w;g;q

1
2 jjwjj2 þ 1

v�n

Xn

i¼1

gi � q

ðw:f ðxiÞÞ P q� gi;gi P 0 i ¼ 1;2; . . . ;n

ð5Þ

where v 2 ð0;1Þ controls the fraction of outliers and g is set of slack
variables that can lie within the separation margin and avoid over-
fitting.

We can solve the above equation for w and variable q that gives
the best accuracy on training data. A limitation of one-class SVM is
that we can only determine the contours around origin in two
dimensions. Hence, it is difficult to interpret the outliers in multi-
ple dimensions. In this paper, we consider random pairs of users in



Fig. 4. This diagram illustrates the process of predicting embeddings for any new test video shown as a dark blue circle with a * notation. The first network is used to
determine the neighborhood of the new test video using MSE. This can be used to predict the heterogeneous embedding (both video and view counts) of the new video in the
second network. Edges are not allowed between a fraud and a popular video.
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two dimensions and the one-class model that has the highest aver-
age accuracy for both classes. Here a contour is used to minimize
the distance of samples from the origin. We can discard videos that
are outliers in both ‘viewing durations’ and ‘view counts’ datasets.
This will improve the convergence of DeepWalk in determining the
convex polytope corresponding to a global maxima solution.

Algorithm 1. HEAD Algorithm

1: % Training of HEAD model
2: for For all videos hi do
3: for For all videos hj do
4: if covarianceðhi;hjÞ > c then
5: Gði; jÞ ¼ 1
6: else
7: Gði; jÞ ¼ 0
8: end if
9: end for
10: end for
11: DeepWalk: Embedding f ðhÞm�d

12: % Testing of HEAD model
13: f ðhÞ ¼ f ðhvÞS f ðhcÞ
14: for For all test videos hyi do
15: for For all hj 2 f ðhÞ do
16: if covarianceðhyi ;hjÞ > c then
17: Gði; jÞ ¼ 1
18: else
19: Gði; jÞ ¼ 0
20: end if
21: end for
22: end for

23: Predict f ðhyi Þ as weighted sum over G
24: c: k-Means clustering of f ðhÞ
25: Classify hi to closest centroid in c
4.3. Heterogeneous framework

In order to run DeepWalk on the click sequence data, we need
to create a network representation of the users. Here, we use time
series Euclidean similarity to determine whether an edge exists
between two users. In addition, we also use the known class label
of the training data, edges are not allowed between videos from
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different class labels. Algorithm 1 details the HEAD algorithm.
The algorithm takes as input the sequence of video viewing dura-
tions: hv as well as the view count history: hc for each video. The
videos are labelled as ‘fraud’ or ‘popular’ based on the total view
count. Each sequence for video i is denoted by a vector xi and the
label is yi 2 f0;1g. The model has two steps (i) determine the out-
liers using one-class SVM (ii) determine the embedding using
DeepWalk. For each contour predicting by one-class SVM we com-
pute the overall accuracy of both classes on labelled training data.
We select the contour with the highest accuracy as optimal for the
dataset. Next, we eliminate these outliers from the dataset. Here,
we assume that the online consumption of videos in the same
channel or category is similar. We create a network G where each
node is a video and the edges correspond to high similarity
between two nodes. The similarity between the two nodes is deter-
mine using covariance of the collected dataset. We also use the
total view count of a video during training to constrain the pres-
ence of an edge between them. For example, ‘popular’ videos
may only connect to ‘popular’ peers. On the other hand, ‘border-
line’ videos may connect to both ‘popular’ and ‘fraud’ videos. We
convert the high-dimensional YouTube network to low-
dimensional vector embeddings using DeepWalk. Now each video
is represented by a new vector such that videos with similar view
counts and consumption lie closer in the vector space.

During testing, we combine the graph embeddings from both
types of dataset: f ðhÞ ¼ f ðhv ÞS f ðhcÞ . Next, we create a heteroge-
neous similarity network G on the combined embedding using

co-variance. For each test video hy we can select the closest neigh-
bor video in the original vector space. Next, we predict the embed-
ding of the test video as a weighted sum over edges in G. The
coefficients can be determined using the original dataset. Lastly,
we cluster the learned embeddings of the training videos into
‘fraud’ and ‘popular’ using k-means. The test video is classified to
the closest centroid among the two clusters. Here we used the
prior knowledge that the two clusters should correspond to fake
and popular videos. Hence, we set k to two. Furthermore, during
initialization we randomly assigned one centroid to a popular
video and another centroid to a fake video. We do not see any sig-
nificant change in accuracy when different videos were chosen as
starting centroids.

Fig. 4 illustrate the process of predicting embeddings for any
new test video shown as a dark blue circle with a * notation. The
first network is determined using training samples of viewing
durations for each video. Videos with high covariance are con-
nected by an edge. Videos with a red circle are annotated as ‘fraud’



Table 1
Statistics of click fraud and video advertisement fraud dataset.

Click Fraud
# of Apps 322
# IP Address for Testing 2000 Fraud and 2000 Human
# of Click Time Stamps 30

Video Advertisement Fraud
# of Videos 5667
# of Views 99,568
# Videos for Training 100 Fraud and 100 Normal
# Videos for Testing 50 Fraud and 50 Normal
# of historic viewing durations 50 engagements
# of historic view counts 90 days

Table 2
Comparison of F-measure of HEAD against k-NN and Multinomial models. The last
row shows the F-measure of Heterogeneous model.

Dataset Fraud Real Total
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based on the total view counts at the end of three months. Edges
are only allowed among videos with the same label namely ‘popu-
lar’ or ‘fraud’. We also allow a few edges between borderline videos
in both classes. These have an average number of total view counts.
The neighboring of the new test video is determined using highest
covariance. Next, we use MSE to determine the coefficients for the
weights of each neighbor in predicting the ‘viewing durations’ of
the new test video.

DeepWalk is used to predict embeddings for each video using
the network for ‘viewing durations’ and also for ‘view counts’.
Next, we concatenate the embeddings for each video resulting in
a heterogeneous embedding. Now we can predict the heteroge-
neous embedding for the new test video as a weighted sum over
the neighborhood and the coefficients determined using the origi-
nal ‘viewing duration’. Finally, we can cluster the heterogeneous
embeddings into two clusters corresponding to ‘fraud’ and ‘popu-
lar’ videos. The new test video is labelled based on the closest cen-
troid to the predicted embedding.
Multinomial Fraud 0.56 0.46 0.51
Video 0.42 0.52 0.47
Count 0.49 0.56 0.52

k-NN Fraud 0.50 0.50 0.50
Video 0.47 0.45 0.46
Count 0.61 0.53 0.57

HEAD Fraud 0.7 0.75 0.73
Video 0.71 0.73 0.72
Count 0.60 0.56 0.58

Video+Count 0.75 0.81 0.78

The F-measure of HEAD shown in bold is the highest across the three algorithms for
each dataset.
5. Experiments

In this section, the proposed HEAD algorithm (available on
GitHub1) was applied to two online behavior classification problems
in order to assess its efficacy. The first dataset was provided by an
online advertisement company. A sequence of click from the same
IP address that does not result in a purchase is labelled as a Fraud.
The second dataset is collected from a university campus. The data-
set has two types of information (1) Video viewing durations for dif-
ferent YouTube advertisements on campus (2) View count history
for the video from YouTube API. The videos are labelled as fraud if
the total view counts are below a threshold.

We compare the F-measure of the proposed HEAD with two
baselines: (a) k-Nearest neighbor (b) Multinomial Naïve Bayes.
The k-Nearest neighbor algorithm computes the class label for a
node based on the nearest neighbors in the feature space. Since,
we are predicting labels using the neighbors in a social network
hence it is ideal to compare with this method. The multinomial
Naïve Bayes model is a popular choice for discrete datasets. For
example, in the click fraud data there are 322 possible Apps in
the store. Hence, the click sequence is discrete and can be modeled
as a multinomial. Lastly, we also compare the proposed model with
two heterogenous network baselines on YouTube dataset: (a)
Metapath and (b) HIN.

5.1. Advertisement tracking

When companies advertise online, they can become victims of
click frauds. A click fraud happens when empty clicking of an
advertisement drives up the cost and results in misleading click
data. The current approach to prevent click fraud for an app devel-
oper is to measure the journey of a user’s clicks across their port-
folio, and flag IP addresses which produce lots of clicks, but
never end up installing apps. They ‘TalkingData’ challenge provides
the app viewing history for each IP address resulting in a sequence
of clicks. The aim is to predict if the IP address resulted in buying
an app or was it just a visit or a fraud user. Table 1 provides the
statistics for click fraud dataset. Here, we consider a balanced data-
set of 2000 fraud and 2000 genuine click sequences. Each sequence
has a length of 30 clicks and each click is an App id from 1 to 322.
For testing we created another balanced dataset of 100 fraud and
100 genuine IP addresses.

Table 2 compares the F-measure of the proposed HEAD with
two baselines: (a) k-Nearest neighbor (b) Multinomial Naïve Bayes.
1 http://github.com/ichaturvedi/heterogenous-engagement-auxillary-deepWalk.
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Both the baselines have only around 50% accuracy on ‘click fraud’
identification. In contrast, the proposed HEAD algorithm has an
accuracy of 73%. Hence, it shows an improvement of over 20%.
The multinomial model has slightly higher F-measure of 56% for
‘fraud’ click sequences compared to only 46% for human
sequences. The proposed model performs equally well on both
class labels. Hence, we can conclude that the proposed model is
ideal for detecting fraudulent activity on the web.

5.2. Video engagement

We consider video advertisement consumption of YouTube data
in a university campus [2]. The skipping behavior or the number of
seconds of viewing duration for each video was recorded. This was
achieved using the TSTAT tool to collect HTTP requests over six
months when users were exposed to video advertisements. A total
of 5,668 video ads were identified and matched to 99,658 views.
This data was combined with YouTube API to collect the total dura-
tion and view counts for the video. In order to study engagement,
we divide the viewing duration by the total duration of each video.
Next, we represent each video by a vector of normalized viewing
durations for all viewers on the campus. Table 1 provides the
statistics for the video fraud dataset. Here, we consider a balanced
dataset of 100 fraud and 100 genuine viewing durations. Each
sequence has 50 viewing durations and 90 days of historic view
counts. For testing we created a similar balanced dataset of 50
fraud and 50 genuine viewing durations. As previously explained
here we use the total view count to threshold and label the training
videos.

For labeling the videos we use the total view counts at the end
of six months. The training videos were labelled as ‘popular’ if the
view counts were above a threshold and the remaining videos
were labelled ‘fraud’. The YouTube API is also able to provide the
evolution of a video’s popularity from the time it was uploaded

http://github.com/ichaturvedi/heterogenous-engagement-auxillary-deepWalk
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until the time it is viewed. This is referred to as the view count his-
tory. Hence, we can also represent each video as a vector of view
counts over time and the label is determined using the total view
counts at the time of viewing.

We compute the network embeddings for videos on both types
of datasets namely viewing durations and view counts. Next, we
combine both of the embeddings while predicting the label for
new test video as described in Section 4. Table 2 compares the
Fig. 5. One-class SVM contours and F-measure for (a) C
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F-measure of the proposed HEAD with two baselines: (a)
k-Nearest neighbor (b) Multinomial Naïve Bayes. When using only
video viewing durations both baselines show around 46%
F-measure. In contrast, the proposed HEAD algorithm has an
F-measure of 72%. For the historic view counts the multinomial
model had an F-measure of 52% and the k-NN model had a much
higher F-measure of 57%. Here, the proposed HEAD is only slightly
higher in F-measure with 58%. This shows us that k-NN is suitable
lick Fraud (b) Video Engagement (c) View Counts.



Table 3
Comparison of F-measure of HEAD against Heterogenous network based models on
YouTube dataset.

HIN [18] Metapath [12] HEAD

0.37 0.49 0.78

The F-measure of HEAD shown in bold is the highest across the three algorithms for
each dataset.
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model for view count data. Lastly, we consider the combined
embeddings of both view durations and view counts in the hetero-
geneous model. Here, we see an improvement of over 6% over the
homogenous video model and the F-measure is 78%. Hence, we
can conclude that the proposed model is optimal for predicting
video engagement.
5.3. Parameters

For the one-class SVM we had to compare a pair of videos or
click time-stamps to determine the contours. Hence, we randomly
choose 100 combinations from the dataset. The F-Measure is com-
puted for each contour level and the value that gives the highest
accuracy for both classes is chosen as the optimal boundary for
classification. Fig. 5 shows the one-class contours for (a) Fraud
advertisements dataset (b) Video Engagement and (c) View count
history data. We can see that for the Fraud dataset the optimal con-
tour value is 3 and for video data it is slightly lower at 2.5. Next,
using this value we determine the outliers and discard them from
the dataset before training the DeepWalk embedding. For Deep-
Walk we consider an embedding of length 64 for each node follow-
ing previous authors.
5.4. Comparison with heterogenous network models

In [12], the authors use a Metapath based heterogeneous net-
work for user intent recommendation in online product websites.
They define a heterogeneous network where each node can be a
user, an item or a query. Next, to reduce the complexity of the
model they constrain the query to be made up of a set of terms
whose embedding’s are fixed. In effect they are transforming the
heterogeneous model to a homogenous model since each node
embedding is made up of the same constituents. Instead, the pro-
posed HEAD algorithm will learn the latent embedding’s for each
type of dataset independently and then combine them together
using network regression. Due to concatenation of embedding vec-
tors the complexity of the model is low. Table 3 shows that Meta-
path algorithm performs poorly on the YouTube dataset with an F-
measure of only 0.49. Here, to determine an edge between a view
counts and viewing durations we consider the covariance between
total view counts and viewing durations for each day.

Another application of heterogeneous information networks
(HIN) is in aspect extraction from text reviews [18]. The owner of
a shop can learn phrases also known as aspects that correspond
to the overall rating for a product. A topic distribution is considered
to model the gap between aspect ratings and overall review rat-
ings. However, it is difficult to clearly define structural relation-
ships between a product, a shop and a critic node. In contrast,
we propose to independently learn embedding’s for each node type
and concatenate them for each product in latent space. Table 3
shows that HIN algorithm performs poorly on the YouTube dataset
with an F-measure of only 0.37.
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6. Conclusion

We propose a model that aims to fuse heterogeneous meta data
such as view counts and viewing durations for classification of
engagement level of a YouTube advertisement. Only a small frac-
tion of videos is fake hence we consider a one-class model where
the objective is to maximize the distance from the origin. The clas-
sification boundary takes shape of a contour around origin and
videos beyond the biggest contour are discarded as outliers.

Engagement of consumers is represented as a time series of
views over three months. We can also determine the sequence of
videos viewed using engagement as a similarity metric. We create
a network of advertisements for each type of data and concatenate
the latent embeddings for each video resulting in the HEAD
framework.

Clustering of embeddings can reveal the community of fraud
videos. During testing we use network regression to predict
embeddings for the new advertisement without the need for
retraining. Experiments show that we outperform baselines in
accuracy for both the fraud and popular class of videos.
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