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A B S T R A C T

Metaphor is a special linguistic phenomenon, challenging diverse natural language processing tasks. Previous
works focused on either metaphor identification or domain-specific metaphor interpretation, e.g., interpreting
metaphors with a specific part-of-speech, metaphors in a specific application scenario or metaphors with
specific concepts. These methods cannot be used directly in everyday texts. In this paper, we propose a
metaphor processing model, termed MetaPro, which integrates metaphor identification and interpretation
modules for text pre-processing. To the best of our knowledge, this is the first end-to-end metaphor processing
approach in the present field. MetaPro can identify metaphors in a sentence on token-level, paraphrasing
the identified metaphors into their literal counterparts, and explaining metaphoric multi-word expressions. It
achieves state-of-the-art performance in the evaluation of sub-tasks. Besides, the model can be used as a text
pre-processing method to support downstream tasks. We examine the utility of MetaPro text pre-processing
on a news headline sentiment analysis task. The experimental results show that the performance of sentiment
analysis classifiers can be improved with the pre-processed texts.
. Introduction

Metaphor is defined as using one or several words to describe
concept that is different from the conventional meaning of the

ords [1]. Given a sentence, ‘‘the comedian convulsed1 the children’’,
‘convulsed’’ means that the comedian made the children laugh loudly
s if they are convulsive, whereas the children are not literally con-
ulsive. Thus, ‘‘convulsed’’ is a metaphor in the context. We do not
xplicitly distinguish metaphors from other figurative languages, such
s simile, metonymy, personification, and idiom, which is in line with
he metaphor definition in many widely recognized corpora [2–4].

Since metaphors do not take the conventional meanings, these
xpressions are particularly challenging for natural language process-
ng (NLP). For example, given a sentiment analysis classifier2 from
llenNLP, the classifier identifies the example sentence, ‘‘the comedian
onvulsed the children’’ as negative, incorrectly (see Fig. 1a). However,
f the sentence is paraphrased as ‘‘the comedian amused the children’’,

∗ Corresponding author.
E-mail addresses: mao.r@ruimao.tech (R. Mao), li.x@ruimao.tech (X. Li), mengshi001@e.ntu.edu.sg (M. Ge), cambria@ntu.edu.sg (E. Cambria).

1 Italics denote metaphors in this paper.
2 https://demo.allennlp.org/sentiment-analysis/roberta-sentiment-analysis Accessed 18 March 2021.
3 MetaPro is deployed at https://metapro.ruimao.tech
4 A single-word metaphor means that an individual word constitutes a metaphoric expression in a sentence. The whole spectrum of metaphoric expressions

overs single-word metaphor expressions and metaphoric MWEs (see the metaphor definition above), where a single-word metaphor can be interpreted individually,
hile a metaphoric MWE has to be interpreted as a whole.

the classifier can yield a positive prediction, correctly (see Fig. 1b).
The paraphrasing of metaphors is supportive for several NLP tasks
including machine translation [5,6], sentiment analysis [7], question
answering [8] and intention mining [9]. Such observations motivate
us to study an end-to-end metaphor processing method for improving
downstream NLP tasks.

Linguistic metaphor processing consists of two independent tasks,
namely metaphor identification and interpretation [10]. The research
in metaphor identification was more popular than that of metaphor
interpretation, because of the absence of large annotated datasets and
learning corpora for metaphor interpretation. Metaphor identification
was widely studied with supervised sequence tagging learning [11–
16] or dependent word pair classifications [17,18]. Previous metaphor
interpretation studies were domain-specific, focusing on a specific part-
of-speech (PoS) [5,6,19–22], a specific concept domain [23] or a
specific application scenario [24,25]. In this paper, we propose a
metaphor processing model — MetaPro3, combining metaphor iden-
tification and interpretation modules. MetaPro can identify metaphors
vailable online 26 June 2022
566-2535/© 2022 Elsevier B.V. All rights reserved.

ttps://doi.org/10.1016/j.inffus.2022.06.002
eceived 21 August 2021; Received in revised form 25 December 2021; Accepted 8
 June 2022

http://www.elsevier.com/locate/inffus
http://www.elsevier.com/locate/inffus
mailto:mao.r@ruimao.tech
mailto:li.x@ruimao.tech
mailto:mengshi001@e.ntu.edu.sg
mailto:cambria@ntu.edu.sg
https://demo.allennlp.org/sentiment-analysis/roberta-sentiment-analysis
https://metapro.ruimao.tech
https://doi.org/10.1016/j.inffus.2022.06.002
https://doi.org/10.1016/j.inffus.2022.06.002
http://crossmark.crossref.org/dialog/?doi=10.1016/j.inffus.2022.06.002&domain=pdf


Information Fusion 86–87 (2022) 30–43R. Mao et al.
Fig. 1. Sentiment analysis for (a) a metaphoric input, ‘‘the comedian convulsed the children’’; and (b) its literal counterpart, ‘‘the comedian amused the children’’.
in a sentence on token-level, then paraphrase single-word metaphors or
explain metaphoric multi-word expressions (MWEs)4. To the best of our
knowledge, this is the first end-to-end metaphor processing approach.
Thus, MetaPro can be used as a text pre-processing method.

We mean to develop a practical model for supporting NLP tech-
niques, rather than addressing all linguistic metaphor issues in this
work. Thus, we focus on identifying and interpreting metaphoric open-
class words, say verbs, nouns, adjectives, and adverbs5 in single word
metaphors and idiomatic MWEs, and the improvement of downstream
NLP techniques. We believe that interpreting metaphors in these PoS
can better support downstream tasks in semantics-related NLP prac-
tices, because closed-class words have little lexical meanings [28],
e.g., given ‘‘you are in danger’’, Lakoff [2] argued that ‘‘in’’ is
metaphoric, because it is conceptually understood as being in a harmful
location in this context, where the source concept, a harmful location
is different from the target a harmful situation. For sentiment analysis,
e.g., ‘‘danger’’ has more semantic information than ‘‘in’’, because ‘‘in’’
mainly expresses the grammatical relationship between ‘‘you’’ and
‘‘danger’’ in the sentence as a function word. Besides, removing ‘‘in’’
does not change the sentiment polarity prediction in the AllenNLP
sentiment analysis classifier, which can be explained by the finding
of the input reduction of Feng et al. [29]. Thus, the interpretation
of metaphoric open-class words is more important than interpreting
metaphors in other PoS in practice. For interpreting metaphoric MWEs,
we focus on explaining idiomatic MWEs. This is due to the fact
that idioms make up a significant part of metaphoric MWEs [3,30].
Besides, interpreting other types of metaphoric expressions with more
than one word, such as extended metaphor (the interpretation of
metaphoric MWEs is based on a discourse-level) and metaphorical
inference (the interpretation is based on the conceptual mappings of
source and target domains of MWEs) is limited by current techniques,
learning resources and theoretical foundations in both linguistic and
computational linguistic communities [10]. As a result, we mean to
support downstream NLP techniques practically. The performance of
our method is ultimately evaluated in a downstream task.

We examine our model, MetaPro on two metaphor identification
tasks, a metaphor interpretation task, and a sentiment analysis task. For
metaphor identification, we examine MetaPro on the largest all-word
annotated metaphor dataset [3]. MetaPro outperforms the strongest
baselines by 1.3% F1 scores on average with respect to open-class
metaphor identification and all-PoS metaphor identification tasks. For
metaphor interpretation, MetaPro exceeds the baselines across all three
evaluation dimensions (coherence, semantic completeness, and literal-
ity), according to human evaluation results. By using MetaPro as a text

5 Linguistic studies [26,27] also categorized proper nouns and interjections
as open-class words. We identify these metaphors without interpreting them
in this paper, because interpreting these types of metaphors, e.g., ‘‘Steve Jobs
is the Michael Jackson of the tech world’’ and ‘‘well, very worried’’ requires
very specific domain knowledge. We will study the interpretation of these
metaphors in future work.
31
pre-processing method, the average gain of three sentiment analysis
APIs from NLTK [31], AllenNLP6 and Microsoft Azure Text Analytics7

achieves 4.0% F1 in SemEval2017 Task 5 news headline dataset [32].
We also observe an average gain of 1.9% F1 in a strong news headline
sentiment analysis task-specific classifier.

The contribution of this work is threefold: (1) we propose the
first end-to-end metaphor processing model, termed MetaPro for the
text pre-processing; (2) The metaphor identification and interpreta-
tion modules of MetaPro achieve state-of-the-art performance on each
task; (3) We demonstrate that MetaPro can support sentiment analysis
classifiers in classifying metaphoric texts.

2. Related works

Metaphor is a special linguistic phenomenon, which has been widely
studied in the communities of linguistics and computational linguistics.

Metaphor studies in linguistics have proposed several methods for
identifying metaphors [33–39]. Pragglejaz [38] believed that there is a
semantic contrast between the contextual meaning and the basic mean-
ing of a metaphor in their Metaphor Identification Procedure (MIP).
Thus, one can identify a metaphor by interpreting the basic meaning
and the context meaning, and analyzing their semantic contrast. Wilks
[33][34] proposed a Selectional Preference Violation (SPV) theory for
identifying metaphors. A metaphor violates the selectional preference
of its context, where the selectional preference can be measured by a
word co-occurrence within a certain semantic category of contextual
words. Lakoff and Johnson [36] argued that metaphor is not only a lin-
guistic phenomenon, but also reflects human thoughts and behaviors in
their Conceptual Metaphor Theory (CMT). They believed that metaphor
is a conceptual projection from source to target domains. Thus, it can
be identified by mapping concepts from two different domains.

Computational metaphor processing can be categorized as lin-
guistic metaphor processing and conceptual metaphor processing. The
former studies the surface realization of metaphors [10], e.g., identify-
ing metaphors and interpreting the metaphors from semantic aspects,
while the later investigates metaphor concept mapping mechanisms be-
tween source and target domains [40]. Since we mean to support down-
stream NLP tasks, we focus on linguistic metaphor processing in this
work. There are two popular tasks in linguistic metaphor processing,
namely metaphor identification and interpretation.

Metaphor identification is the most widely studied sub-task in
computational metaphor processing [41,42]. Previous works iden-
tified metaphoricity on sentence-level [43,44], word-pair-level [17,
18], or token-level [5,45] with different feature engineering methods,
e.g., word embeddings, topic modeling, image features, dependency-
tree-based features, lexical resources, and word co-occurrences. Com-
pared with sentence-level and phrase-level approaches, token-level

6 https://allennlp.org Accessed 18 March 2021.
7 https://azure.microsoft.com Accessed 18 March 2021.

https://allennlp.org
https://azure.microsoft.com
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approaches can identify the exact metaphorical words in a full sen-
tence. Mao et al. [5] proposed an unsupervised verbal metaphor
identification method by modeling the semantic similarity between a
metaphorical verb and its literal counterpart. Song et al. [46] also
focused on verbal metaphor identification by explicitly modeling the
grammatical, sentential and semantic relationship between a verb and
its context. However, the implicit condition of previous token-level
methods is that the position of a target word whose metaphoricity is
to be identified has been given in advance, which is not highlighted in
real-word texts. Currently, deep neural network (DNN)-based sequence
tagging methods are widely applied in metaphor identification [11–
16], because they can identify metaphors on token-level for all words
in a sentence. Hence, the sequence tagging metaphor identification
methods are more readily applied for metaphor interpretation. MIP
and SPV were incorporated as linguistic features to improve sequential
metaphor identification performance [13,47]. Semantic and syntactic
features, e.g., word clusters and PoS tags were also widely used features
in DNN-based models [11,14,48].

Metaphor interpretation targets to interpret the real meaning of a
etaphor, e.g., paraphrasing metaphors into their literal counterparts

n linguistic metaphor processing. Many of previous works focused on
specific application scenario, e.g., answering metaphorical queries of
sers about Unix [24] and analyzing mental state descriptions [25];
specific concept domain, e.g., motion verbs [23]; specific depen-

ency relationships, e.g., adjective-noun and subjective-verb-object re-
ations [49]; or a specific class of PoS, e.g., verbal metaphor interpre-
ation [5,19,20] and nominal metaphor interpretation [21,22], based
n manually defined knowledge, lexical resources, web searching or
ord co-occurrence modeling. However, one cannot directly use these
etaphor interpretation approaches for interpreting everyday texts

rom different domains. Recently, Wan et al. [50] used gloss as addi-
ional features for metaphor identification and interpretation. However,
he output of such a metaphor interpretation method that identifies the
loss of a metaphor cannot be processed by a downstream task.

In contrast to previous metaphor identification and interpretation
orks, we combine the two tasks as a unified metaphor processing task,
rocessing texts that are not limited to specific conceptual or practical
omains. Both input and output of our model are natural language.
hus, our method can be used as a text pre-processing technique to
upport downstream NLP tasks and linguistic learners.

. Methodology

As seen in Fig. 2, there are two technical modules in MetaPro,
amely metaphor identification (the blue) and metaphor interpreta-
ion (the green). The metaphor identification module means to detect
etaphors on token-level from an input sequence. The metaphor in-

erpretation module means to interpret the identified metaphors by
araphrasing single-word metaphors into their literal counterparts, or
airing identified metaphoric MWEs with their dictionary meanings.
inally, the output of MetaPro is given by integrating (the gray box)
he paraphrases of single-word metaphors and the paired meanings
f metaphoric MWEs into the literal context of the input sequence.
n the output sequence, the single-word metaphors are replaced with
heir paraphrases (the literal counterparts). The metaphoric MWEs
re explained with a clause beginning with ‘‘where’’, e.g., given ‘‘the
omedian convulsed the children in a red letter day’’, the metaphor iden-
ification module detects ‘‘convulsed’’, ‘‘red’’ and ‘‘letter ’’ are metaphors.
he interpretation module paraphrases ‘‘convulsed’’ (a single-word
etaphor) as ‘‘amused’’, explaining ‘‘red letter day’’ (a metaphoric
WE) as ‘‘a day of significance’’, because an MWE classifier detects

hat ‘‘red letter day’’ is an MWE. Finally, the output is integrated as
‘the comedian amused the children in a red letter day, where ‘red
etter day’ means that a day of significance’’. The technical details of
he metaphor identification and interpretation modules are introduced
n the following subsections.
32
Fig. 2. The overall framework of MetaPro. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)

3.1. Metaphor identification

We adopt a multi-task learning (MTL) model for jointly learning
metaphor identification and PoS tagging8. The model and the soft-
parameter sharing method (Gated Bridging Mechanism) were firstly
proposed in the work of Mao and Li [16]. The motivation is: (1) MTL
reduces the risk of overfitting, learning richer features from different
tasks [52]; (2) Previous works have demonstrated the utilities of MTL in
metaphor identification [15,16,53]; (3) PoS tags are sufficient features
for sequential metaphor identification [11,14,48]. Fig. 3 shows (a) the
framework of our MTL model with two sub-tasks, (b) the structure of
Gated Bridging Mechanism. The equations below (Eqs. (1)–(11)) are
cited from Mao and Li [16].

Given an input sequence 𝑡1,… , 𝑡𝐿 (𝑡 is a token; 𝐿 denotes the
length), RoBERTa [54] is employed as an encoder, encoding the input
sequence, yielding sharing hidden states 𝐻𝑠 in MTL.

𝐻𝑠 = 𝑅𝑜𝐵𝐸𝑅𝑇𝑎(𝑡1,… , 𝑡𝐿). (1)

Upon the sharing encoder, we use Transformers [55] to construct
task-specific towers. Previous works showed that sharing parame-
ters between task-specific towers can further improve model perfor-
mance [52]. Thus, we introduce a Gated Bridging Mechanism 𝐺𝐵𝑀𝜙𝑖,𝑗
(⋅) for soft-parameter sharing, where 𝑖 denotes Block 𝑖 in a task-specific
tower, 𝑗 is a tower that learns Task 𝑗 (𝜏𝑗). 𝜙 denotes learned parameters
in a function. A block consists of a Gated Bridging Mechanism and
a Transformer layer (see Fig. 3a). The output of a Gated Bridging
Mechanism is given by taking the Transformer hidden states from a
previous bock (𝑖 − 1) across all towers

𝐺
𝜏𝑗
𝑖 = 𝐺𝐵𝑀𝜙𝑖,𝑗 (𝐻

𝜏1
𝑖−1,… ,𝐻

𝜏𝑗
𝑖−1,…). (2)

The details of 𝐺𝐵𝑀𝜙𝑖,𝑗 (⋅) will be explained later.
Next, the hidden states of Transformer in each block are given by

⎧

⎪

⎨

⎪

⎩

𝐻
𝜏𝑗
0 = 𝑇 𝑟𝑎𝑛𝑠𝜙0,𝑗 (𝐻

𝑠),

𝐻
𝜏𝑗
𝑖 = 𝑇 𝑟𝑎𝑛𝑠𝜙𝑖,𝑗 (𝐺

𝜏𝑗
𝑖 ), 0 < 𝑖 ≤ 𝑛.

(3)

or Block 0, Transformer (𝑇 𝑟𝑎𝑛𝑠𝜙0,𝑗 (⋅)) takes the sharing hidden states
𝐻𝑠) as input. For other blocks, Transformer (𝑇 𝑟𝑎𝑛𝑠𝜙𝑖,𝑗 (⋅)) takes the

8 The Universal Dependency PoS labels are obtained via spaCy toolkit [51].
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Fig. 3. The framework of metaphor identification module in MetaPro. The figure is adapted from the work of Mao and Li [16]. (a) The multi-task learning model with Gated
Bridging Mechanisms (GBM). There are two subtasks (𝜏1 , 𝜏2) in the model. Each subtask consists of 𝑛+ 1 blocks. 𝑡 is an input token. 𝐿 is the length of the input sequence. 𝑦𝜏1 is a
metaphoricity label. 𝑦𝜏2 is a PoS tag. (b) The structure of Gated Bridging Mechanism. 𝑖 denotes Block 𝑖. 𝐻 is Transformer hidden states. 𝜏𝑗 and 𝜏𝑚 are two different subtasks in
multi-task learning, where 𝜏𝑗 is the focused task in a private Tower 𝑗. 𝑚 is a neighbor tower, where 𝑚 ≠ 𝑗. 𝑅𝑚

𝑖 is a reset gate. 𝐶𝑚
𝑖 is new current states. 𝑍𝑚

𝑖 is an update gate. 𝐹𝑚
𝑖

is the fusion of 𝐻𝜏𝑗 and 𝐶𝑚
𝑖 . 𝜎 is sigmoid activated fully connected layer. 𝐺𝜏𝑗

𝑖 is the output.
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output of a Gated Bridging Mechanism (𝐺𝜏𝑗
𝑖 ) in the same block and

ower as input.
We fuse all the Transformer hidden states in each tower via a

eighted sum pooling strategy, because the findings of Liu et al. [56]
nd Mao et al. [48] demonstrated that different Transformer layers
ave different utilities in modeling semantic and syntactic information.
he hidden states for the pooling of Tower 𝑗 (𝐻𝜏𝑗

𝑝𝑜𝑜𝑙) is given by

𝐻
𝜏𝑗
𝑝𝑜𝑜𝑙 =

𝑛
∑

𝑖=0
𝛼
𝜏𝑗
𝑖 𝐻

𝜏𝑗
𝑖 , (4)

where, the weight 𝛼𝜏𝑗𝑖 ∈ R is a parameter for learning.
The predicted task-specific feature (𝑌 𝜏𝑗 ) of the input sequence is

iven by a fully connected layer (𝑓𝑐)

̂ 𝜏𝑗 = 𝑊
𝜏𝑗
𝑓𝑐𝐻

𝜏𝑗
𝑝𝑜𝑜𝑙 + 𝑏

𝜏𝑗
𝑓𝑐 , (5)

here 𝑊 and 𝑏 are parameters for learning.
Finally, we use Cross-entropy Loss that integrates the final softmax

unction in Fig. 3a, where the loss () is given by

=
∑

𝜏𝑗

CrossEntropy(𝑌 𝜏𝑗 , 𝑌 𝜏𝑗 ). (6)

ated Bridging Mechanism: Inspired by Cho et al. [57], Gated Bridg-
ng Mechanism uses gating mechanisms as controllers for the filtering
nd fusing information between different MTL towers, e.g., a reset gate
𝑚
𝑖 is employed for controlling the information flow of Transformer
idden states in a previous block (𝑖 − 1) from a neighbor tower (𝐻𝜏𝑚

𝑖−1)
assing to a private tower.

𝑚
𝑖 = 𝜎(𝑊 𝑚

𝜙𝑅,𝑖,𝑗
𝐻𝜏𝑚

𝑖−1 + 𝑏𝑚𝜙𝑅,𝑖,𝑗 ), (7)

here 𝜎 denotes the sigmoid activation function. We use 𝑗 denotes a
rivate tower that processes 𝜏𝑗 in Fig. 3b. Tower 𝑚 is a neighbor tower,
here 𝑚 ≠ 𝑗. The filtered information (𝐶𝑚

𝑖 ) from a neighbor tower in
lock 𝑖 is given by

𝑚
𝑖 = 𝑡𝑎𝑛ℎ(𝑊 𝑚

𝜙𝐶,𝑖,𝑗
(𝑅𝑚

𝑖 ⊙𝐻𝜏𝑚
𝑖−1) + 𝑏𝑚𝜙𝐶,𝑖,𝑗

), (8)

where ⊙ denotes element-wise product. There is a non-linear projection
in Eq. (8), because we believe that hidden states in different towers
are from different vector spaces. The non-linear projection function can
project the hidden states from the neighbor tower space to the space of
33

hidden states of the private tower. f
Next, we introduce an update gate 𝑍𝑚
𝑖 . 𝑍𝑚

𝑖 controls if 𝐶𝑚
𝑖 fuses with

he hidden states (𝐻𝜏𝑗
𝑖−1) in the previous block of the private tower.

𝑚
𝑖 = 𝜎(𝑊 𝑚

𝜙𝑍,𝑖,𝑗
𝐻

𝜏𝑗
𝑖−1 + 𝑏𝑚𝜙𝑍,𝑖,𝑗

+ 𝑉 𝑚
𝜙𝑍,𝑖,𝑗

𝐶𝑚
𝑖 + 𝑑𝑚𝜙𝑍,𝑖,𝑗

), (9)

here 𝑉 and 𝑑 are parameters for learning. The post-fused feature (𝐹𝑚
𝑖 )

f a private tower and a neighbor tower is given by
𝑚
𝑖 = 𝑍𝑚

𝑖 ⊙𝐻
𝜏𝑗
𝑖−1 + (1 −𝑍𝑚

𝑖 )⊙ 𝐶𝑚
𝑖 . (10)

s seen in Eq. (10), there is a trade-off between 𝐻
𝜏𝑗
𝑖−1 and 𝐶𝑚

𝑖 . Fus-
ng more information from a private tower means that Gated Bridg-
ng Mechanism rejects more information from a neighbor tower. This
unction allows Gated Bridging Mechanism to make the best use of
nformation from different towers in the same block.

Finally, the output (𝐺𝜏𝑗
𝑖 ) of Gated Bridging Mechanism 𝐺𝐵𝑀

𝜏𝑗
𝜙𝑖,𝑗

(⋅)
n 𝜏𝑗 Block 𝑖 is given by
𝜏𝑗
𝑖 = 𝜎(𝑊

𝜏𝑗
𝜙𝐺,𝑖,𝑗

𝐹𝑚
𝑖 + 𝑏

𝜏𝑗
𝜙𝐺,𝑖,𝑗

). (11)

.2. Metaphor interpretation

.2.1. Linguistic hypothesis
We mean to paraphrase a single-word metaphor into its seman-

ically similar literal counterpart. Our linguistic hypothesis mainly
epends on MIP and SPV, because MIP and SPV explain the mechanisms
f metaphors semantically (see Section 2). The difference is that MIP
as proposed for human metaphor identification. A metaphor can be

dentified by the contrast between its basic and contextual meanings in
IP. SPV is machine-friendly. The selectional preference is measured

y the statistics of word co-occurrences, where a literal word that
atisfies the selectional preference of its context also frequently appears
n its context. This is in line with corpus studies that metaphors take
bout a third of sentences in typical corpora [3,58,59]. We believe that
IP and SPV are fundamentally similar, because the basic meaning

f a metaphor violates the selectional preference of a context in SPV,
hile the inferred contextual meaning of the metaphor can satisfy the

electional preference. Thus, the basic meaning of a metaphor contrasts
he contextual meaning in MIP. On the other hand, the basic and
ontextual meanings of a literal are similar, because both can satisfy
he selectional preference of the context.

Given MIP and SPV, we hypothesize that a literal counterpart
hich represents the contextual meaning of a metaphor satisfies the

electional preference of the context, thus, having a high co-occurrence

requency, appearing in a context.
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Fig. 4. The paraphrasing workflow in MetaPro. 𝑡 is a context word. 𝑚 is an identified metaphor. 𝑗 is the metaphor position. 𝐿 is the length of an original input sequence. 𝑘𝑚
s the PoS of the metaphor. 𝑆𝑚 is a candidate set for paraphrasing 𝑚, where 𝑤 ∈ 𝑆𝑚. 𝑟 is a window size. 𝑃𝑚 is the probability distribution of words appearing in the metaphor
osition. 𝑦∗𝑚 is the best-fit word for the context. 𝑦𝑚 is the paraphrase of 𝑚, aligning to the word form in PoS 𝑘𝑚. Black texts are inputs and outputs. Gray texts are inputs. (For
nterpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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.2.2. Metaphor paraphrasing
We use a pre-trained Language Model and WordNet [60] hypernyms

nd synonyms to paraphrase identified single-word metaphors. This
ethod was firstly proposed in the work of Mao et al. [5]. In that work,
Continuous Bag of Words (CBOW)-based word2vec [61] language
odeling method was employed for inferring the literal counterpart

f a verbal metaphor. However, current deep learning-based Language
odels achieve better performance in diverse NLP tasks [54,62,63]. In

his work, we use RoBERTa [54] pre-trained Language Model instead of
ord2vec. We also newly incorporate a word form alignment process

o align the word forms of paraphrases to the original metaphor word
orms, compared with the work of Mao et al. [5].

RoBERTa consists of multi-Transformer layers. It was trained to
redict the probability of a masked word, appearing in the context
ith a very large corpus (160 GB). Thus, we can use RoBERTa to
redict a possible paraphrase that most likely co-occurs with a given
ontext. The works of Mao et al. [5] and Mao et al. [6] demonstrated
hat hypernyms and synonyms in WordNet are eligible semantic-similar
andidates for a word in different sense classes. The hypernyms and
ynonyms also cover metaphorical sense classes, e.g., ‘‘amuse’’ is a
ypernym of ‘‘convulse’’ in the sense of ‘‘make someone convulse with
aughter’’ in WordNet. We can use WordNet as a lexical resource to
onstrain a paraphrase prediction that is semantically similar to the
etaphorical sense. The paraphrase is identified as the literal counter-
art of a metaphor, according to the hypothesis in Section 3.2.1. The
etailed metaphor paraphrasing workflow can be viewed in Fig. 4.

First (the green boxes in Fig. 4), we parse the input sequence with
paCy, obtaining the PoS tags (𝑘) of metaphors. The PoS tags are
epresented as coarse-grained PoS (𝑘𝑐𝑟𝑠 ∈ {verb, noun, adjective, adverb})
nd fine-grained PoS (𝑘𝑓𝑛), respectively. 𝑘𝑓𝑛 are the Penn Treebank Part
f Speech Tags [64], representing both PoS classes and word forms. The
ypernyms and synonyms of metaphors are gathered from WordNet.
e define a function (, ) that maps an identified metaphor 𝑚 and its

oarse-grained PoS class 𝑘𝑐𝑟𝑠𝑚 to a candidate set 𝑆𝑚.

𝑚 = (𝑚, 𝑘𝑐𝑟𝑠𝑚 ). (12)

𝑚 contains the hypernyms and synonyms of 𝑚, and their inflections in
𝑐𝑟𝑠
𝑚 . These words (𝑤,𝑤 ∈ 𝑆𝑚) are the paraphrasing candidate words of
.

Next (the blue boxes in Fig. 4), we compute the best substitution
34

ord for the metaphor 𝑚, based on pre-trained RoBERTa Language 2
odel. We hypothesize that a very large context may bring noise for
redicting an optimal paraphrase (see Section 5.2.1). Thus, the full
nput sequence is pruned, according to a manually defined window
ize 𝑟, where 𝑟 words before and after the metaphor are included
n the Language Model input sequence. A single-word metaphor is
eplaced with a special token ‘‘[mask]’’ (see Section 3.2.3 for metaphoric
WE detection). If an original sentence has multiple identified single-
ord metaphors, we prepare multiple Language Model inputs where
ach input has a ‘‘[mask]’’. ‘‘<s>’’ and ‘‘</s>’’ are placed at the be-
inning and the end of a Language Model input sequence, because
hese special tokens were defined during the RoBERTa pre-training
rocedure. Thus, an original sequence 𝑡1,… , 𝑚𝑗 ,… , 𝑡𝐿 is formatted as

⟨𝑠⟩, 𝑡𝑗−𝑟,… , [mask]𝑗 ,… , 𝑡𝑗+𝑟, ⟨∕𝑠⟩. We predict the probability distribution
(𝑃𝑚) of words appearing in the metaphor position with pre-trained
RoBERTa Language Model (𝐿𝑀(⋅)).

𝑃𝑚 = 𝐿𝑀(⟨𝑠⟩, 𝑡𝑗−𝑟,… , [mask]𝑗 ,… , 𝑡𝑗+𝑟, ⟨∕𝑠⟩). (13)

We find the best-fit word (𝑦∗𝑚) that has the highest probability co-
occurring with the context from the candidate set (𝑆𝑚) of 𝑚. 𝑦∗𝑚 is given
by
{

𝑦∗𝑚 = 𝑎𝑟𝑔 max
𝑤∈𝑆𝑚

(𝑃𝑚(𝑤)), if 𝑦∗𝑚 ∈ {top 𝑢 words}

𝑦∗𝑚 = 𝑚𝑗 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
(14)

We setup a hyperparameter 𝑢, denoting a set of top 𝑢 words that most
likely appear in the context among all RoBERTa predictions (including
non-candidates). Given the threshold 𝑢, the best-fit word prediction
with low confidence (not one of top 𝑢 predictions) is not used for
paraphrasing to avoid ruining the original sentence (see Table 13 for
the sensitivity tests of 𝑢 in Section 5.3).

Finally (the gray boxes in Fig. 4), we align the word form of
the best-fit word to that of the original metaphor via a dictionary-
based mapping function ( (, )). We develop a dictionary, mapping a
lemma and all its possible word forms mutually, based on the Penn
Treebank Part of Speech Tags (𝑘𝑓𝑛). The PoS tags, lemmas, mappings
and vocabularies in the dictionary are obtained by parsing a Wikipedia
dump9 with spaCy. The mapping function first maps the predicted best-
fit word to its lemma form, then mapping the lemma to the form in the

9 https://dumps.wikimedia.org/enwiki/20170920/ Accessed 1 November
017.

https://dumps.wikimedia.org/enwiki/20170920/
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PoS 𝑘𝑓𝑛𝑚 that is same to the original metaphor in the context. Given the
fine-grained PoS tag 𝑘𝑓𝑛𝑚 of the original metaphor, best-fit word 𝑦∗𝑚 and
he word form mapping function  (, ), the final paraphrase (𝑦𝑚) of the

metaphor is given by

𝑦𝑚 =  (𝑦∗𝑚, 𝑘
𝑓𝑛
𝑚 ). (15)

For example, given 𝑚 = 𝑐𝑜𝑛𝑣𝑢𝑙𝑠𝑒𝑑 in ‘‘the comedian convulsed the
children’’, where 𝑘𝑓𝑛𝑐𝑜𝑛𝑣𝑢𝑙𝑠𝑒𝑑 = 𝑉 𝐵𝐷 (𝑉 𝐵𝐷 means verb in past tense),
the predicted best-fit word at the position of ‘‘convulsed’’ is ‘‘amuses’’
𝑦∗𝑚 = 𝑦∗𝑐𝑜𝑛𝑣𝑢𝑙𝑠𝑒𝑑 = 𝑎𝑚𝑢𝑠𝑒𝑠). Thus, the final paraphrase has to be aligned
o the form of ‘‘amused’’ (‘‘amuses’’ in VBD). Mathematically, 𝑦𝑚 =
𝑚𝑢𝑠𝑒𝑑 =  (𝑎𝑚𝑢𝑠𝑒𝑠, 𝑉 𝐵𝐷).

.2.3. Metaphoric multi-word expression interpretation
Since the interpretation of metaphoric MWEs cannot be paraphrased

oken-by-token, we employ a simple yet efficient dictionary and rule-
ased method to identify and interpret metaphoric MWEs. A dictionary
nd rule-based method is computationally economic and lighter than
NN models. Such a method allows us to identify different metaphoric
WEs on token-level, and match the identified MWEs to the vocabu-

aries of our pre-defined MWE dictionary and the associated meanings
rom end-to-end. In contrast, to the best of our knowledge, the cur-
ent sequence tagging-based method [65] and Graph Convolutional
etwork-based method [66] can only reach the target of identifying the

ndividual tokens that belong to MWEs. As a result, there is still a gap
etween the identifying of MWE tokens and the pairing of the meanings
f MWEs (our target) in these Machine Learning-based methods. Thus,
e use the dictionary and rule-based method.

We parse and lemmatize an input sentence with spaCy, first. Then,
e pair the sentence features with dependency tripe features and

emma features that are pre-defined in our MWE dictionary via rules
o identify MWEs. Finally, a paired MWE is explained by its meaning
n the dictionary.
ependency triple pairing method: Dependency pairing was widely
sed in searching domains [67–69]. Intuitively, an MWE has a conven-
ional syntactic structure, interacting within the context, because it acts
s a united unit, spanning common word boundaries [70]. Thus, we can
se a dictionary and rule-based dependency triple (head word lemma,
ependency relationship, child word lemma) matching method to de-
ect metaphoric MWEs. Compared with previous dictionary-based MWE
etection methods [71,72], our dependency triple pairing method takes
dvantage of handling gap flexibility, e.g., the method of Ghoneim
nd Diab [72] is based on a Maximum Forward Matching algorithm.
owever, they argued that this algorithm cannot handle an MWE with
n insertion, e.g., ‘‘break up’’ can be paired with the vocabulary in a
ictionary based on Maximum Forward Matching, while ‘‘break it up’’
s an exception. In contrast, target MWEs (MWEs in a sentence) and
ource MWEs (MWEs in our dictionary) are paired according to the
ependency triples in our method. Given ‘‘We have been silent for a
ong while. I want to break it up’’, ‘‘break it up’’ is lemmatized and parsed
s (‘break’, ‘prt’, ‘up’) which can successfully match to the pre-defined
ependency triple feature of ‘‘break up’’ (‘break’, ‘prt’, ‘up’), because
he head (‘break’) and child (‘up’) lemmas have the same dependent
elationship (‘prt’). The dependency triple pairing rule is:
1. If the pre-defined dependency triple features of an MWE in the
ictionary is a subset of the dependency triple features of a given
entence in lemma forms, the matched head and child words in the
entence are an MWE.
ependency triple feature preparation: Our metaphoric MWE dic-

ionary covers the vocabulary and meanings of The Idioms10 (the
argest idiom dictionary) and the collection of Agrawal et al. [73] (the
argest idiom dataset to the best of our knowledge). We use these
wo data sources, because they provide sufficient coverage in idioms.

10 https://www.theidioms.com Accessed 8 February 2021.
35

b

Idioms make up our metaphoric MWE dictionary, because idiomatic
phrases are figurative [74,75], taking a significant part of metaphoric
MWEs [30]. Idioms were also annotated as metaphors in the largest
all-word annotated metaphor dataset [3], based on MIP. We remove
those idiomatic MWEs from our dictionary, whose meanings can be
interpreted by paraphrasing (see Section 3.2.2), e.g., ‘‘I don’t buy
believe) it’’ and ‘‘I blew (wasted) it’’.

The pre-defined dependency triple features in the dictionary are
arsed from example sentences and manually selected. We use Google
o search example sentences, containing the MWEs (10 sentences per
WE). The example sentences are parsed with spaCy. The principle

f selecting our pre-defined dependency triple features of an idiom
rom the 10 example sentences is that we include open-class words
f the idiom and exclude closed-class words as much as possible,
ecause metaphoric open-class words can be identified by the metaphor
dentification module; Besides, we select those triples that are flexible
or fitting different contexts. Thus, not all dependency relationships
elated to the tokens of an MWE are included as the matching items,
.g., [(‘poor’, ‘prep’, ‘as’), (‘mouse’, ‘compound’, ‘church’)] is the pre-
efined dependency triple features for ‘‘as poor as a church mouse’’,
here (‘poor’, ‘advmod’, ‘as’) is excluded from the list, because the

diom, ‘‘as poor as a church mouse’’ is possibly written in the form
f ‘‘poor as a church mouse’’ in its example sentences, where (‘poor’,

advmod’, ‘as’) is not covered by the example sentences. An MWE may
ave multiple sets of triple features so that they can be better paired
ith idioms in different syntactic structures, e.g., both [(‘brew’, ‘nsubj’,

storm’)] and [(‘brewing’, ‘compound’, ‘storm’)] can be paired with
diomatic ‘‘storm is brewing ’’. We do not define a specific list of inclusive
ependency relationships, because the selected triple features cannot be
recisely governed by specific dependencies. Thus, we manually select
he triple features of an idiom, based on the parsing results of the idiom
nd its 10 different contexts.
emma pairing method: We employ an additional lemma pairing rule
o support the idiom detection, because not all MWEs can be perfectly
epresented as dependency triples, e.g., given ‘‘we finally decided it
as now or never to buy the car’’, the parsed dependency relationships

elated to the target MWE ‘‘now or never ’’ are (‘be’, ‘advmod’, ‘now’)
nd (‘buy’, ‘neg’, ‘never’), where ‘‘be’’ and ‘‘buy’’ do not belong to the
diomatic MWE. In this case, pairing MWEs by lemma sequences is
ore effective. Besides, dependency parser performance issues are not
ncommon. Thus, lemma pairing is supportive in such a scenario. The
emma pairing rule is:
2. If a lemmatized string of a sentence contains all lemmatized

eatures of an MWE in the dictionary, the tokens in the sentence are
dentified as an MWE.
emma feature preparation: The lemma features of idioms are ob-
ained from the lemmatized sequences of the collected example sen-
ences (10 for each). We select the chunk of lemma tokens that
atches an idiomatic expression in our dictionary as its lemma features.

or those MWEs in the dictionary, containing indefinite pronouns,
.g., ‘‘know something inside out ’’, the MWE is featured as a list of lemma
equence fragments, such as [‘know’, ‘inside out’], where the indefinite
ronoun, ‘‘something’’ is excluded.
n additional rule for multi-matching: It is possible that a sentence
atches multiple MWEs, e.g., both ‘‘first world’’ and ‘‘first world prob-
em’’ can match to ‘‘they are just the first word problems for me’’ by their
emmas. In this case, the rule is:
3. If a given sentence matches the features of multiple MWEs, and the

eature of an MWE is a subset of the feature of the other matched MWE,
he longer one wins.

R3 also works for the dependency triple matching method, e.g., if
oth ‘‘drop in’’ ([(‘drop’, ‘prep’, ‘in’)]) and ‘‘a drop in the ocean’’ ([(‘drop’,

prep’, ‘in’), (‘in’, ‘pobj’, ‘ocean’)]) are matched by a sentence, we will
ake the later one as an identified MWE in the sentence.
ense pairing method: Finally, the interpretation of an MWE is given

y:

https://www.theidioms.com
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R4. If any tokens of an MWE in an input sequence were identified
as metaphoric by the metaphor identification module, the MWE is
explained with its sense in the dictionary.
R5. If an MWE has multiple senses, we choose the one that is the most
semantically similar to the sentence as the sense of the MWE in the
context.

The semantic similarity is measured by cosine similarity of the
sequence embeddings (𝑣𝑠) between a sense sequence and the original
nput sentence. The selected sense (𝑠𝑒𝑛𝑠𝑒∗) for output is given by

𝑒𝑛𝑠𝑒∗ = arg max
𝑠𝑒𝑛𝑠𝑒∈𝑑𝑖𝑐𝑡.

𝑐𝑜𝑠(𝑣𝑠𝑠𝑒𝑛𝑠𝑒, 𝑣
𝑠
𝑖𝑛𝑝𝑢𝑡), (16)

here 𝑣𝑠 is the mean pooling of RoBERTa hidden states of tokens in a
equence.

Totally, 3560 lemma pairing features and 3470 dependency triple
airing features are defined for 3050 unique idiomatic MWEs. Each
WE has 2.7 meanings on average. To the best of our knowledge,

his is the largest idiom dictionary that specifies the dependency triple
eatures, lemma features, and the meanings of idioms.

. Experiments

.1. Setups

In the metaphor identification module (MetaPro-ID11), we employ 2
ask-specific towers upon a RoBERTa-large sharing encoder for learning
etaphor identification (the main task) and PoS tagging (the auxiliary

ask). Each task-specific tower consists of 4 Transformer layers and 3
ssociated Gated Bridging Mechanisms. Each Transformer has 16 heads
nd 1024 dimensions. We keep the shape of Gated Bridging Mechanism
utput the same to the Transformer output. Thus, the learned param-
ters in Gated Bridging Mechanism (𝑊 and 𝑉 in Eqs. (7),(8),(9),(11))
lso have 1024 dimensions. We use the default setups of PyTorch [76]
or the initialization of learning parameters. The model is trained with
batch size of 4, optimized with Adam optimizer (1e-5 initial learning

ate and a Step Decay schedule) [77]. We train the model 20 epochs.12

he model that has the highest F1 score on a validation set is used for
he evaluation of the corresponding testing set. Since RoBERTa-large
s used as the sharing encoder, where the input tokens are encoded as
yte-Pairs. In order to keep the length of output metaphoricity labels
he same to the length of the input sequence, we use the prediction of
he first word-piece token of a word as the prediction for the word.

In the metaphor paraphrasing model, the window size for predicting
he probability of a candidate paraphrase is 16 (𝑟 = 16 in Eq. (13)). We
et up a threshold for filtering out unconfident paraphrase predictions
hose probabilities are not top 5000 (𝑢 = 5000 in Eq. (14)) among
oBERTa Language Model predictions.

.2. Baselines

.2.1. Metaphor identification
Wu et al. [11] proposed a Convolutional Neural Network (CNN)

78] and Bi-directional Long Short Term Memory (BiLSTM) [79] model
or identifying metaphors on token-level. The model uses word2vec,
oS tags, and word2vec clusters as features, achieving the best perfor-
ance on the 2018 Metaphor Detection Shared Task [41].

Gao et al. [12] proposed a typical sequence tagging model for
etaphor identification. The model has a BiLSTM layer and a softmax

lassifier, using the concatenation of ELMo [80] and GloVe [81] as
eatures.

11 Without further specification, MetaPro-ID is based on a RoBERTa-large en-
oder. The subscript besides MetaPro-ID specifies the variation of MetaPro-ID
ith a different encoder.
12 The model can achieve convergence within 20 epochs.
36
Mao et al. [13] proposed a linguistic-inspired model by modeling
the semantic contrast between a metaphor and its context (SPV). The
concatenation of ELMo and GloVe is encoded by BiLSTM first, then the
semantic contrast is modeled by using a multi-head contextual attention
mechanism.

Dankers et al. [53] proposed MTL models, learning metaphor de-
tection and emotional auxiliary tasks. The best model is given by a
BERT-based hard parameter sharing model, where the auxiliary task
is predicting valence scores.

Le et al. [15] proposed an MTL model, based on Graph Convo-
lutional Network, learning metaphor identification and Word Sense
Disambiguation iteratively. Their model used ELMo, GloVe and index
embeddings as features.

Su et al. [14] proposed a reading comprehension paradigm-based
model for metaphor identification. The model encodes multi-features,
e.g., global and local contexts, question information, and PoS with
RoBERTa, yielding state-of-the-art results on the 2020 Metaphor De-
tection Shared Task [42].

RoBERTa [54] is a state-of-the-art pre-trained Language Model. We
use it as a sequence tagging model to evaluate the improvement of our
MTL strategy and Gated Bridging Mechanism.

RoBERTa+PoS is introduced as a baseline to compare the perfor-
mance difference between MTL-based MetaPro-ID and a single task
learning-based classifier. RoBERTa+PoS consists of a RoBERTa encoder
and 4 Transformer layers upon the RoBERTa encoder. The RoBERTa
hidden states are concatenated with one-hot encoded PoS tags, then
feeding to the Transformers and a softmax classifier.

4.2.2. Metaphor interpretation
We test two different Language Models, e.g., BERT-large and ALBERT

xxlarge-v2 for metaphor paraphrase evaluation. These Language Mod-
els are used in a similar way as our proposed RoBERTa-based method.

BERT [62] is a Transformer-based pre-trained Language Model. It
uses context Word Pieces [82] to predict a masked word and the next
sentence during the pre-training procedure.

ALBERT [63] is a lighter pre-trained Language Model, compared
with BERT. The parameter size is reduced in ALBERT by introducing
factorized embedding parameterization and cross-layer parameter shar-
ing methods. Besides, ALBERT computes sentence-order prediction loss
instead of the loss of next sentence prediction of BERT in language
modeling.

For the metaphoric MWE detection evaluation, we test two Machine
Learning models, namely RoBERTa (sequence tagging) and BiLSTM-
CRF.

BiLSTM-CRF [83] is a classical sequence tagging model that was
used in an idiom detection task by Saxena and Paul [65]. BiLSTM and
the Conditional Random Field (CRF) [84] layers allow the model to
learn contextual information and the conditional probabilities of tag
transition simultaneously. 300-dimension GloVe was employed as input
features.

4.2.3. Sentiment analysis
We test three publicly available sentiment analysis APIs from NLTK,

AllenNLP, and Microsoft Azure, respectively. These three APIs are
selected because of their different features:

Vader [85] is a rule-based method that has been built in the NLTK
package. It maps input sequence to a valence-based sentiment lexical
dictionary, yielding sentiment scores in positive, negative, and neutral
polarities. It achieved outstanding performance in the domains of social
media texts, news, movie reviews, and product reviews.

AllenNLP uses a RoBERTa-based deep learning model and Stanford
Sentiment Treebank dataset [86] to train a binary sentiment classifier
(negative or positive). It achieves 95.11% accuracy on the testing set.

Azure is a commercial NLP toolkit from Microsoft Azure Text An-
alytics, whereas the details of their sentiment analysis classifier are

unknown. We can use the Azure sentiment analysis classifier to obtain
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Table 1
VU Amsterdam Metaphor Corpus dataset statistics. OC is open-class word annotated. AP
is all-PoS annotated. # tgt token is the number of target tokens whose metaphoricity
is to be identified. % m is the percentage of metaphoric tokens among target tokens.
# seq is the number of sequences. Len seq is the average length of sequences.

# tgt token % m # seq Len seq

VUA-OC

Train 57,799 15.2 8,716 16.3
Valid 14,812 15.4 2,178 16.6
Test 22,196 17.9 3,698 15.5
All 94,807 15.9 14,592 16.1

VUA-AP

Train 116,622 11.2 6,323 18.4
Valid 38,628 11.6 1,550 24.9
Test 50,175 12.4 2,694 18.6
All 205,425 11.6 10,567 19.4

Table 2
Formal Idioms Corpus dataset statistics. # uniq MWEs is the number of unique MWEs.
Len MWE is the average length of the unique MWEs.

# uniq MWEs Len MWEs # seq Len seq

FIC 358 2.6 3136 25.9

the probabilities of positive, negative, and neutral polarities for an
input sequence.

We use the default setups of the above APIs. Vader and Azure
are domain non-specific. AllenNLP is a cross-domain classifier for our
examined news headline sentiment analysis task. We include another
RoBERTa-based sequence classification baseline model that is trained
and tested with the benchmarking dataset. This RoBERTa classifier is
news headline task-specific.

4.3. Datasets

VUA VU Amsterdam Metaphor Corpus (VUA) [3] is the largest all-
word annotated metaphor detection dataset. It covers metaphors from
different genres, e.g., academic texts, conversation, news, and fiction.
The dataset was used with different annotation paradigms. Metaphor
Detection Shared Task 2018 [41] and 2020 [42] used the VUA dataset
for learning open-class (OC) metaphor detection, where only the target
words are evaluated. Gao et al. [12] prepared another widely used
VUA benchmark dataset, considering all tokens in a sequence as target
tokens. This dataset covers metaphors in all-PoS (AP), used by Mao
et al. [13], Dankers et al. [53], Le et al. [15] and Mao and Li [16].
We evaluate our MetaPro-ID model on these two datasets (VUA-OC13

nd VUA-AP14). Since the VUA-OC dataset does not have a validation
et, we randomly split 20% of the training sentences as the validation
et. We also randomly select 100 sentences from the VUA-OC testing
et, containing 266 metaphors to evaluate the metaphor paraphrasing
odule. The detailed statistics can be viewed in Table 1.15

IC Formal Idioms Corpus16 (FIC) was collected by Saxena and Paul
[65] in their English Possible Idiomatic Expressions (EPIE) corpus.
It covers idioms with various lexical modifications. We use FIC to
test our dictionary and rule-based method in detecting MWEs with
different variations. Each idiomatic lemma has 8.8 associated sentences
on average. The dataset is pre-processed with lowercase. The detailed
statistics can be viewed in Table 2.
NHSA News headline sentiment analysis (NHSA) dataset was collected
from the financial domain in SemEval 2017 Task 5 [32]. We use

13 Based on the toolkit from https://github.com/EducationalTestingService/
etaphor/tree/master/VUA-shared-task Accessed 2 September 2020.
14 Originally provided by https://github.com/gao-g/metaphor-in-context
ccessed 6 November 2018.
15 We exclude the sentences that do not have a target word in VUA-OC
ataset.
16 Originally provided by https://github.com/prateeksaxena2809/EPIE_
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orpus Accessed 8 February 2021.
Table 3
News headline sentiment analysis dataset statistics. % pos is the percentage of positive
sequences among all sequences. % neg is the percentage of negative sequences among
all sequences.

# seq % pos % neg Len seq

NHSA 1597 58.5 41.5 9.6

Table 4
Metaphor identification performance on the VUA-open-class testing set.

Model P R F1 Acc

Wu et al. [11] 61.1 67.7 64.3 –
Su et al. [14] 72.8 72.6 72.7 90.2

RoBERTa 74.1 68.5 71.2 90.2
RoBERTa+PoS 74.2 69.1 71.6 90.3
MetaPro-ID 74.3 71.9 73.1* 90.5*

*Denotes the improvement is statistically significant, based on a 2-tailed test (𝑝 < 0.05).

Table 5
Metaphor identification performance on the VUA-all-PoS testing set.

Model P R F1 Acc

Gao et al. [12] 71.6 73.6 72.6 93.1
Mao et al. [13] 73.0 75.7 74.3 93.8
Dankers et al. [53] – – 76.9 –
Le et al. [15] 74.8 75.5 75.1 93.8

RoBERTa 78.7 75.6 77.1 94.3
RoBERTa+PoS 78.7 75.9 77.3 94.4
MetaPro-ID𝐵𝐸𝑅𝑇 78.3 76.9 77.6* 94.5*
MetaPro-ID 80.9 77.6 79.2* 94.9*

NHSA to test MetaPro text pre-processing, based on different sentiment
analysis classifiers. The original dataset17 was labeled with numerical
sentiment scores, ranging from −1 to 1. For a fair comparison between
ifferent classifiers, we binarize the scores into positive and negative
entiment polarities. We exclude 50 instances with 0 scores, because
he sentiment analysis API from AllenNLP can only yield positive
nd negative predictions. Besides, if the predicted positive probability
s higher than the predicted negative probability, the prediction is
ositive in Vader and Azure, otherwise, negative. Table 3 shows the
tatistics of NHSA.

. Results

We evaluate the sub-modules of MetaPro on metaphor identification
Section 5.1) and interpretation (Section 5.2) tasks, respectively. The
valuation of overall performance of MetaPro is based on a downstream
entiment analysis task in Section 5.3.

.1. Metaphor identification

We benchmark the metaphor identification module of MetaPro
Metaphor-ID) on the VUA-OC dataset and VUA-AP dataset, respec-
ively. The performance is measured by F1 score, where metaphors are
ositive labels.

As seen in Tables 4 and 5, MetaPro-ID surpasses all the base-
ines. Compared with the strongest external baseline in each dataset,
etaPro-ID achieves an average gain of 1.3% F1 scores. Specifically, Su

t al. [14] achieves 72.7% F1 on VUA-OC; Dankers et al. [53] achieves
6.9% F1 on VUA-AP; MetaPro achieves 73.1% F1 on VUA-OC and
9.2% F1 on VUA-AP, respectively. Our BERT-based model (MetaPro-
D𝐵𝐸𝑅𝑇 , 77.6%) also outperforms the strongest BERT-based baseline

17 Originally provided by https://alt.qcri.org/semeval2017/task5/index.
php?id=data-and-tools Accessed 15 February 2021.

https://github.com/EducationalTestingService/metaphor/tree/master/VUA-shared-task
https://github.com/EducationalTestingService/metaphor/tree/master/VUA-shared-task
https://github.com/gao-g/metaphor-in-context
https://github.com/prateeksaxena2809/EPIE_Corpus
https://github.com/prateeksaxena2809/EPIE_Corpus
https://alt.qcri.org/semeval2017/task5/index.php?id=data-and-tools
https://alt.qcri.org/semeval2017/task5/index.php?id=data-and-tools
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Table 6
Metaphor identification performance on different types of open-class words in the

VUA-open-class testing set.
Model P R F1 Acc

VERB
Su et al. [14] 73.8 77.3 75.5 85.0
MetaPro-ID𝐴𝑃 78.8 74.5 76.6 86.2
MetaPro-ID𝑂𝐶 77.3 76.7 77.0 86.2

NOUN
Su et al. [14] 74.3 69.8 72.0 92.7
MetaPro-ID𝐴𝑃 76.8 61.9 68.5 92.4
MetaPro-ID𝑂𝐶 76.6 66.9 71.4 92.8

ADJ
Su et al. [14] 70.2 69.9 70.1 89.0
MetaPro-ID𝐴𝑃 73.1 60.5 66.2 88.6
MetaPro-ID𝑂𝐶 71.6 69.8 70.7 89.3

ADV
Su et al. [14] 58.7 58.3 58.5 92.8
MetaPro-ID𝐴𝑃 68.9 61.8 65.2 94.3
MetaPro-ID𝑂𝐶 65.9 66.9 66.4 94.2

[53] (76.9%) by 0.7% F1 on the VUA-AP dataset. Using RoBERTa pre-
trained Language Model instead of BERT further boosts the model per-
formance by 1.6% on VUA-AP. Compared with using a vanilla RoBERTa
sequence tagging model, our MTL and Gated Bridging Mechanism-
based model yields an average gain of 2.0% on the two datasets.18

ompared with RoBERTa+PoS, MetaPro-ID yields an average gain of
.7% F1 over the two datasets. This shows that the MTL-based MetaPro-
D has better feature fusion capacity than the single task learning-based
oBERTa+PoS model. Besides, MTL takes the advantage of reduc-

ng the risk of overfitting [52], compared with single-task learning.
hus, MetaPro-ID yielding extra gains. The above improvements show
hat MetaPro-ID is the state-of-the-art model in sequential metaphor
dentification.

In the breakdown analysis of open-class metaphor identification, we
enchmark with the work of Su et al. [14], because it is the strongest
aseline on the VUA-OC dataset. We are also interested in the perfor-
ance of models that are trained on different datasets with different

nnotation paradigms (all-PoS and open-class word annotations). Thus,
etaPro-ID that was trained on VUA-AP dataset and VUA-OC dataset

s also introduced for benchmarking, termed as MetaPro-ID𝐴𝑃 and
etaPro-ID𝑂𝐶 . As seen in Table 6, MetaPro-ID𝑂𝐶 achieves the highest

1 scores on verbs, adjectives, and adverbs among all the baselines. In
he comparison between models that were trained on different datasets,
etaPro-ID𝑂𝐶 yields higher F1 scores on the four PoS than MetaPro-

D𝐴𝑃 . In light of this, we embed the model that was trained on the
UA-OC dataset into MetaPro.

.2. Metaphor interpretation

We compare the performance of our proposed RoBERTa-based
etaphor paraphrasing method to BERT and ALBERT-based methods.
hese methods follow a similar framework that uses Language Models
nd WordNet. We do not benchmark with other external metaphor
nterpretation baselines, because as argued in Section 2 (metaphor
nterpretation related works), these methods cannot be directly used
n everyday texts from end-to-end. The applications of these methods
epend on hand-coded knowledge in a specific application scenario,
specific PoS, or a specific concept domain. However, our metaphor

nterpretation evaluation data (VUA) is natural language from four
ifferent genres (academic texts, conversation news, and fiction) with
ifferent open-class PoS and concepts.

18 The detailed ablation analysis of using multi-task learning, different
nformation transformation mechanisms, weighted sum pooling strategy, and
he effectiveness of Gated Bridging Mechanism in the fusing and filtering of
nformation between the multi-task learning towers of metaphor identification
nd PoS tagging can be viewed in the work of Mao and Li [16].
38
Due to the absence of gold labels of metaphor paraphrases, we
cannot use automatic evaluation matrices, such as BLEU [87] and
ROUGE [88]. Thus, the paraphrases are evaluated by humans. For
evaluating the coverage and accuracy of our dictionary and rule-based
metaphoric MWE detection method, we introduce Machine Learn-
ing baselines (BiLSTM-CRF and RoBERTa) and an external idiomatic
dataset (FIC) that has diverse variations in idiom word forms and
contexts.

5.2.1. Preliminary window size evaluation and human evaluation introduc-
tion

We first identify the optimal window size for the paraphrasing
module of MetaPro. We sample 40 unique target metaphors (non-
MWEs) from their associated 40 long sentences (the length of a sentence
is greater than 30 tokens) in the VUA-OC validation set. Each PoS
(verbs, nouns, adjectives, and adverbs) has 10 different metaphoric
target words. The average length of the selected sentences is 45.8
tokens. We set up five types of windows sizes (window = {4, 8, 12,
16, none}). None-window means that all context words in a sequence
are used for predicting the paraphrase of the target metaphor.

We evaluate the quality of a paraphrased word from three di-
mensions with three questions in human evaluation: Q1. Does the
paraphrased word semantically and grammatically fit the context (co-
herence)? Q2. To what extent does the paraphrased word represent
the contextual meaning of the original target word (semantic com-
pleteness)? Q3. Is the paraphrased word a literal counterpart of the
original target word (literality)? The basic meaning of an appropriate
literal counterpart of a target word should be similar to the contextual
meaning of the target word. The options of each question are in a 1–5
interval scale, representing very unlikely, unlikely, maybe, likely, and
very likely, respectively. Each paraphrase is evaluated by three native
English speakers from the UK and the US. The survey was conducted
on Amazon Mechanical Turk.19 We employ Fleiss [89] kappa (𝜅) as an
greement measure for human evaluations, where 𝜅𝑐𝑜ℎ. (coherence),

𝜅𝑠.𝑐. (semantic completeness) and 𝜅𝑙𝑖𝑡. (literality) are 0.53, 0.55 and
0.57, respectively. The result is averaged over the number of target
metaphors and participants in each evaluation dimension and window
size. The overall performance is measured by the average score of the
three dimensions.

As seen in Fig. 5a, the optimal window sizes for RoBERTa, AL-
BERT, and BERT are 16, none, and none, respectively, where RoBERTa
outperforms the other two pre-trained Language Models across all the
window sizes in this long sentence metaphor interpretation evaluation
task. A common trend is that large window size is more appropriate
for inferring the paraphrases in long sentences. This is because a larger
context can provide more dependent information for the best-fit word
prediction in Eqs. (13) and (14). However, we also observe a drop
in RoBERTa in using the full context (non-window). It shows that
for RoBERTa, a very large context may introduce errors in predicting
paraphrases. By viewing Fig. 5b, c, and d, the overall optimal window
size also works for each individual evaluation dimension. Thus, we will
use these identified window sizes in the following metaphor paraphrase
evaluation.

5.2.2. Human metaphor paraphrase evaluation
We conduct another formal human evaluation task for selecting

an optimal Language Model to embed it in MetaPro. We randomly
sample 100 sentences from the VUA-OC testing set. Each selected
sentence has at least a paraphrase for an identified metaphor. MetaPro
identifies 249 metaphors (117 verbs, 97 nouns, 24 adjectives, and
11 adverbs), where RoBERTa, ALBERT, and BERT-based paraphrasing
modules yield 220, 223, and 218 paraphrases (the human evaluation
targets), respectively. Compared with verbs and nouns, the numbers of

19 https://www.mturk.com Accessed 16 April 2021.

https://www.mturk.com
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Fig. 5. Window size analysis for metaphor paraphrases in long sentences. The higher score the better. (a) Overall comparison between different pre-trained Language Models. The
performance of (b) RoBERTa, (c) ALBERT, and (d) BERT in coherence, semantic completeness and literality evaluation dimensions.
Table 7
Metaphor paraphrase performance.

Model Coh. S.C. Lit. Avg

ALBERT 4.30 3.91 3.79 4.00
BERT 4.34 4.03 3.77 4.05
RoBERTa 4.48 4.18 4.00 4.22

identified adjective and adverbial metaphors are much lower in the 100
random sentences. This is because adjective and adverbial metaphors
are less common in our applied dataset, e.g., adjective and adverbial
metaphors only take 14.9% and 3.4% of all metaphors in the testing
set, respectively. Besides, the numbers of paraphrases that are given
by different Language Models are lower than the number of identified
metaphors. This is because, if the probability of the best-fit word of a
metaphor is not one of the top 𝑢 (𝑢 = 5000) possible replacements, the
dentified metaphor is not paraphrased. We will test the sensitivity of
with different values on a sentiment analysis task later. We use the

ame evaluation criteria that were mentioned in Section 5.2.1 (three
uestions for three evaluation dimensions, and three native English
peaker annotators for each question). 𝜅𝑐𝑜ℎ., 𝜅𝑠.𝑐. and 𝜅𝑙𝑖𝑡. are 0.54, 0.51
nd 0.56, respectively in this human evaluation task.

As seen in Table 7, RoBERTa achieves better performance across all
he evaluation dimensions, yielding a gain of 0.17 on the average score
gainst BERT. Although ALBERT is lighter than the other two models,
he performance is weaker. Thus, we embed RoBERTa-based metaphor
araphrasing model into MetaPro.

In the individual evaluation dimension, the common trend is that
ach Language Model achieves higher scores in coherence, while the
cores in literality are comparatively lower. This is because the selected
anguage Models can easily yield coherent missing words by training
ith large corpora, while a paraphrase is still possibly metaphoric. This

s likely because conventional metaphors have been commonly appear-
ng in everyday language. Thus, these metaphors also have high prob-
bilities of appearing in a context during the metaphor paraphrasing
rocedure.

In breakdown analysis in Table 8, we observe that RoBERTa takes
dvantage across all the open-class PoS. Compared RoBERTa to other
anguage Models, the largest gain in average scores appears in ad-
erbs (0.55). Overall, the RoBERTa-based method yields acceptable
araphrases, measured by the average score (above 3.98) across all the
39

pen-class PoS.
Table 8
Metaphor interpretation performance on different types of open-class words.

Model Coh. S.C. Lit. Avg

VERB
ALBERT 4.24 4.02 3.85 4.04
BERT 4.35 4.14 3.87 4.12
RoBERTa 4.55 4.28 4.07 4.30

NOUN
ALBERT 4.38 3.89 3.79 4.02
BERT 4.34 3.95 3.71 4.00
RoBERTa 4.41 4.11 3.97 4.16

ADJ
ALBERT 4.31 3.56 3.46 3.78
BERT 4.30 3.72 3.72 3.91
RoBERTa 4.33 3.8 3.8 3.98

ADV
ALBERT 4.06 3.72 3.44 3.74
BERT 4.27 3.80 3.13 3.73
RoBERTa 4.67 4.27 3.93 4.29

Table 9
Idiomatic multi-word expression pairing performance, measured by accuracy.

Setup Acc

Dependency triple pairing only (R1-R3) 88.9
Lemma pairing only (R2-R3) 91.6
Dependency and lemma pairing (R1-R2-R3) 98.5

5.2.3. Metaphoric multi-word expression pairing evaluation
We test our dictionary and rule-based MWE detection method, based

on an idiom dataset (FIC). The performance is measured by accuracy,
where the accuracy is given by the number of correctly identified MWEs
above the total number of MWEs on token-level.

As seen in Table 9, simply using dependency triple pairing features
(R1-R3, 88.9%) and lemma pairing features (R2-R3, 91.6%) achieves
90.3% accuracy on average. The accuracy is improved to 98.5% by
combining the two pairing methods. As argued before, there are limi-
tations in each pairing method. However, their combination takes the
complementary advantage, thus, yielding better performance. The high
accuracy of the combination method also shows that our method has
good coverage in identifying idiomatic MWEs with diverse modifica-
tions.

Next, we compare the combination of dependency and lemma pair-
ing methods (R1-R2-R3) to sequence tagging models, namely BiLSTM-
CRF that was reported by Saxena and Paul [65] along with the FIC
dataset, and RoBERTa. Following Saxena and Paul [65], the training
and testing sets are the splits of 75% and 25% of the full FIC. We
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Table 10
Token-level idiomatic MWE detection performance.

Method Seen Unseen

Macro-F1 Acc Macro-F1 Acc

BiLSTM-CRF 93.0 98.0 70.2 92.1
RoBERTa 97.5 99.1 85.5 95.3

Ours (R1-R2-R3) 94.4 98.7 97.9* 99.4*

develop two types of testing sets. The seen case testing set includes
the idioms that also appear in the contexts of the training set, while
the testing set with unseen cases contains idioms that never appear in
the training set. Saxena and Paul [65] formalized the idiom detection
task as a sequence tagging task, where the labels employ the B-I-O
annotation paradigm, denoting the beginning, the inside, and the out-
side of an idiomatic expression, respectively. The accuracy is measured
by the number of correctly identified idiomatic tokens above the total
number of tokens in the testing sets. We report the highest Macro-F1
score and accuracy for the baseline models on the testing set after 20
epoch training.

As seen in Table 10, our method achieves comparable performance
against the Machine Learning-based methods on the seen case evalu-
ation at the token level. 86.9% errors of our method are due to the
annotation difference between the FIC dataset and our MWE dictionary,
which should not be problematic in practice. For example, Saxena and
Paul [65] annotated the chunk of ‘‘is on cloud nine’’ as an idiom in
‘‘Niall is on cloud nine’’, while the chunk of ‘‘on cloud nine’’ is defined
as an idiom in our dictionary. For the unseen case evaluation, we
observe a sharp decrease in both Machine Learning models (more than
−12.0% Macro-F1), while the performance of our method is slightly
improved (+5.5% Macro-F1). This is because Machine Learning-based
methods are also challenged by insufficient coverage of the training set,
although RoBERTa (−12.0% Macro-F1) is more generalizable than the
BiLSTM-CRF model of Saxena and Paul [65] (−22.8% Macro-F1). On
the other hand, idiomatic expressions are more conventional, having
similar meanings and pragmatics in contexts, compared with other
figurative languages [90]. Our MWE dictionary has covered the vocab-
ularies of the largest idiom dictionary (The Idioms) and dataset [73].
Thus, the performance of our dictionary and rule-based method on
the FIC seen and unseen case testing sets are similar. Considering (a)
the computational cost of embedding another RoBERTa model that has
355,364,869 parameters in processing MWEs, and (b) the gap between
identifying MWE tokens and pairing the identified tokens with the
meanings of MWEs in the RoBERTa model, we employ the dictionary
and rule-based MWE processing method in MetaPro.

5.3. Metaphor processing for sentiment analysis

We examine MetaPro on a sentiment analysis task, because
metaphor understanding is considered as a challenge of achieving
human-like sentiment analysis [91]. To achieve better performance
on this downstream task, we retrain MetaPro-ID on the combination
of VUA-OC training and validation sets. The new model yields 74.0%
F1 on the VUA-OC testing set. A news headline dataset (NHSA) from
SemEval-2017 Task 5 [32] is used for sentiment analysis evaluation,
because news headlines are likely to use metaphors to express rich
emotional information, while keeping the language concise [92]. Thus,
MetaPro can be more helpful in this scenario. We do not use a metaphor
sentiment analysis dataset, because we mean to conduct an unbiased
evaluation by keeping the distribution of metaphors in our testing set
similar to the metaphor distribution in real-world texts. Furthermore,
current sentiment analysis models have achieved accurate performance
on many other types of texts [93,94], e.g., the RoBERTa-based senti-
ment analysis API provided by AllenNLP achieved 95.11% accuracy on
the testing set of Stanford Sentiment Treebank [86], where the texts
40
Table 11
Sentiment analysis results, given by domain non-specific and cross-domain APIs.

API Pos. label = Pos. Pos. label = Neg. Avg Acc

P R F1 P R F1 F1

Vader
Original 54.2 43.1 48.0 37.7 48.6 42.5 45.3 45.4
MetaPro 55.7 45.0 49.8 39.0 49.6 43.7 46.8 46.9
Gain +1.5 +1.9 +1.8 +1.3 +1.0 +1.2 +1.5 +1.5

Allen.
Original 86.2 52.8 65.5 57.0 88.1 69.2 67.4 67.4
MetaPro 87.2 56.2 68.4 58.9 88.4 70.7 69.6 69.6
Gain +1.0 +3.4 +2.9 +1.9 +0.3 +1.5 +2.2 +2.2

Azure
Original 69.3 48.7 57.2 49.0 69.5 57.5 57.4 57.4
MetaPro 69.7 79.7 74.4 64.2 51.3 57.0 65.7 67.9
Gain +0.4 +31.0 +17.2 +15.2 −18.2 −0.5 +8.4 +10.5

Avg gain +1.0 +12.1 +7.3 +6.1 −5.6 +0.7 +4.0 +4.7

are from movie reviews. However, the API achieves 67.4% accuracy
on our applied news headline dataset. It shows that news headlines
are more challenging for the AllenNLP sentiment analysis API. Thus,
potentially, we can improve news headline sentiment analysis with
metaphor processing in the scenario that a given classifier is domain
non-specific (Vader and Azure), or cross-domain (AllenNLP).

As seen in Table 11, MetaPro achieves 4.7% extra gains in accuracy
and 4.0% gains in average F1 score across the three APIs on average.
The largest improvement appears in Azure (+8.4% average F1 and
+10.5% accuracy). This is because MetaPro fixes many Azure false
negative predictions whose true labels are positive (+31.0% recall,
given positive polarity as positive labels), although MetaPro also in-
troduces incorrect positive predictions for those negative instances
(−18.2% recall, given negative polarity as positive labels). Besides,
MetaPro yields extra gains in both rule-based (+1.5% F1 and +1.5%
accuracy in Vader) and deep learning-based (+2.2% F1 and +2.2%
accuracy in AllenNLP) methods. The above observations demonstrate
that metaphoric languages are challenging for news headline sentiment
analysis with domain non-specific and cross-domain classifiers. Turn-
ing the metaphors into literal languages with MetaPro can somewhat
address the issue.

Given a news headline, ‘‘Rio Tinto CEO Sam Walsh rejects fears over
China growth, demand’’, the three APIs incorrectly classify the news
headline as negative. This is probably because ‘‘fears’’ conveys negative
sentiment and ‘‘rejects’’ likely associate negative contexts. However,
MetaPro detects these words are metaphoric. The news headline is
paraphrased as ‘‘Rio Tinto CEO Sam Walsh eliminates concerns over
China growth, demand’’. With the paraphrased input, all the APIs
can correctly yield positive predictions. Similar improvements can be
observed in interpreting metaphoric MWEs as well, e.g., ‘‘Royal Dutch
Shell pulls plug on Arctic exploration’’ is misidentified as positive
before pre-processing, while MetaPro interprets the headline as ‘‘Royal
Dutch Shell pulls plug on Arctic expedition, where ‘pull the plug’ means
that to kill or discontinue’’, which can be successfully classified as
negative by the three APIs.

On the other hand, MetaPro may introduce errors for the APIs.
MetaPro paraphrases the headline ‘‘UPDATE 1-Norway’s Statoil shakes
up top management, replaces CFO’’ as ‘‘UPDATE 1-Norway’s Statoil
changes up top management, replaces CFO’’, resulting in the failure
of the sentiment classifiers. This is because ‘‘changes’’ cannot fully
represent the meaning of ‘‘shakes’’ that upsets the stability of the top
management in the context. This type of error shows the limitation
of our paraphrasing method. The WordNet hypernym and synonym-
based paraphrasing method cannot capture the nuance of a metaphoric
meaning, e.g., the emotional information and conceptual inferences in
a metaphoric expression. Thus, paraphrases may introduce errors for a
sentiment analysis classifier. Another type of error is due to the failure
of language modeling. Current missing word prediction-based language
modeling methods are sub-optimal for inferring the literal counterpart
of a metaphor, because they did not use the information of metaphoric
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Table 12
The number of introduced and fixed errors in different sentiment analysis APIs.

Vader Allen. Azure

Introduced errors 37 51 173
Fixed errors 61 85 341

Table 13
Sensitivity tests on different sizes of pools of possible replacements of a metaphor in
sentiment analysis. Performance is measured by averaged F1 score.

Top 𝑢 words Vader Allen. Azure Avg Gain Time

Original 45.3 67.4 57.4 56.7 – –
𝑢 = 100 46.8 68.1 64.4 59.8 +3.1 1.0x
𝑢 = 1000 46.9 69.1 64.8 60.3 +3.6 1.1x
𝑢 = 3000 46.6 69.4 64.7 60.2 +3.5 1.4x
𝑢 = 5000 46.8 69.6 65.7 60.7 +4.0 1.7x
𝑢 = 7000 46.7 69.6 64.8 60.4 +3.7 1.8x
𝑢 = 9000 46.8 69.4 64.7 60.3 +3.6 1.8x

Table 14
Sentiment analysis results, given by a news headline sentiment analysis task-specific
RoBERTa classifier.

Setup Pos. label = Pos. Pos. label = Neg. Avg Acc

P R F1 P R F1 F1

Original 91.7 86.8 89.2 86.5 91.4 88.9 89.1 89.0
MetaPro 93.4 88.9 91.1 88.6 93.1 90.8 91.0 91.0
Gain +1.7 +2.1 +1.9 +2.1 +1.7 +1.9 +1.9 +2.0

words during the Language Model pre-training. We will address these
issues in future work. The statistics of introduced and fixed errors for
each API can be viewed in Table 12.

A threshold that represents the confidence of a metaphor paraphrase
(if top 𝑢) was manually defined in Eq. (14) in the metaphor paraphras-
ing module. Here, we conduct sensitivity tests for different 𝑢 in the
sentiment analysis task. Give 𝑢 ∈ {100, 1000, 3000, 5000, 7000, 9000}, we
observe that with the growth of 𝑢, the accuracy of sentiment analysis
can be further improved before 𝑢 < 7000 in Table 13. This is because
a metaphor is more likely to be paraphrased with a larger 𝑢. However,
there is a slight drop in 𝑢 = 7000 and 𝑢 = 9000, respectively. This
shows that the accuracy of metaphor processing decreases in sentiment
analysis, if paraphrases are less reliable (low probability in context co-
occurrence). Besides, a big 𝑢 also takes more time for searching the
best-fit word (see the column of time in Table 13). In practice, one may
choose an appropriate 𝑢 to balance the trade-off between accuracy and
time costs.

Another possible application scenario is to employ MetaPro as a text
pre-processing method before model training. We examine the utility of
MetaPro pre-processing, based on a RoBERTa sequence classification
model and NHSA dataset. We split 10% of the official NHSA training
set of SemEval 2017 Task 5 as the development set. The testing set (365
sequences, where 52.1% are positive and 47.9% are negative) is in line
with the task. The model is trained and tested on the two versions of
the NHSA dataset, namely original and MetaPro pre-processed datasets,
respectively. In this case, the trained RoBERTa model (either trained
with metaphoric texts or paraphrased literal texts) is news headline sen-
timent analysis task-specific. The reported performance in Table 14 is
given by the model that achieves the highest accuracy on the validation
set by training 20 epochs.

As seen in Table 14, the classifier trained with MetaPro pre-
processing texts delivers 1.9% extra gains on average F1 and 2.0% gains
in accuracy, compared with the model trained with the original texts.
It shows that MetaPro is also supportive for the task-specific classifier.
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6. Conclusion

In this paper, we propose the first end-to-end English metaphor
processing model, termed MetaPro, which can be used as a text pre-
processing method. MetaPro embeds two modules, namely metaphor
identification and metaphor interpretation. Give an input text se-
quence, the metaphor identification module identifies metaphors on
token-level. This is achieved by using a multi-task learning model
with a novel information transformation mechanism. We employ Gated
Bridging Mechanism [16] for soft-parameter sharing between the sub-
task towers, jointly learning metaphor identification and PoS tagging.
Next, the metaphor interpretation module can interpret the identi-
fied metaphors. If an identified metaphor is an MWE, it is explained
via a dictionary and rule-based method. Otherwise, the metaphor is
paraphrased as its literal counterpart by using a Language Model and
WordNet hypernyms and synonyms of the metaphor. The output of
MetaPro is natural language, where the single-word metaphors are re-
placed with their paraphrases, and the metaphoric MWEs are explained
by their dictionary meanings via a clause, beginning with ‘‘where’’.

We examine MetaPro on metaphor identification and interpreta-
tion tasks, yielding state-of-the-art performance in both cases. Our
dictionary and rule-based idiomatic MWE detection method also de-
livers sufficient coverage and accuracy, compared with Machine Learn-
ing baselines, based on an idiom dataset with various modifications.
Finally, we extensively examine the output of MetaPro on a senti-
ment analysis downstream task. The experimental results show that
MetaPro can improve three publicly available sentiment analysis APIs
and a strong task-specific classifier on a news headline sentiment
analysis task. The improvement can be observed in rule-based, deep
learning-based and commercial sentiment classification approaches.

Finally, we find that our method can be further optimized by mod-
eling emotional information and improving the accuracy of a Language
Model to better support sentiment analysis. Though our method cannot
interpret metaphors in proper nouns and interjections, these metaphors
can still be identified. We will study these areas in future work.
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