
H I S T O R I E S A N D F U T U R E S

74 1541-1672/17/$33.00 © 2017 IEEE iEEE iNTElliGENT SYSTEmS
Published by the IEEE Computer Society

AFFECTIVE COMPUTING AND SENTIMENT ANALYSIS

Deep Learning-Based
Document Modeling
for Personality
Detection from Text
Navonil Majumder, Instituto Politécnico Nacional
Soujanya Poria, Nanyang Technological University
Alexander Gelbukh, Instituto Politécnico Nacional
Erik Cambria, Nanyang Technological University

Editor: Erik cambria, Nanyang Technological University, Singapore, cambria@ntu.edu.sg

health, and numerous other preferences. Automatic
detection of a person’s personality traits has many
important practical applications. In the context of
sentiment analysis,1 for example, the products and
services recommended to a person should be those
that have been positively evaluated by other users
with a similar personality type. Personality detection
can also be exploited for word polarity disambigua-
tion in sentiment lexicons,2 as the same concept can
convey different polarity to different types of people.
In mental health diagnosis, certain diagnoses cor-
relate with certain personality traits. In forensics,
knowing personality traits helps reduce the circle of
suspects. In human resources management, person-
ality traits affect one’s suitability for certain jobs.

Personality is typically formally described in
terms of the Big Five personality traits,3 which are
the following binary (yes/no) values:

•	Extroversion (EXT). Is the person outgoing, talk-
ative, and energetic versus reserved and solitary?

•	Neuroticism (NEU). Is the person sensitive and
nervous versus secure and confi dent?

•	Agreeableness (AGR). Is the person trustworthy,
straightforward, generous, and modest versus
unreliable, complicated, meager, and boastful?

•	Conscientiousness (CON). Is the person effi -
cient and organized versus sloppy and careless?

•	Openness (OPN). Is the person inventive and cu-
rious versus dogmatic and cautious?

Texts often reflect various aspects of the au-
thor’s personality. In this article, we present a
method to extract personality traits from stream-
of-consciousness essays using a convolutional
neural network (CNN). We trained fi ve different
networks, all with the same architecture, for the
fi ve personality traits (see the “Previous Work in
Personality Detection” sidebar for more informa-
tion). Each network was a binary classifi er that
predicted the corresponding trait to be positive or
negative.

To this end, we developed a novel document-
modeling technique based on a CNN features ex-
tractor. Namely, we fed sentences from the essays to
convolution fi lters to obtain the sentence model in
the form of n-gram feature vectors. We represented
each individual essay by aggregating the vectors of
its sentences. We concatenated the obtained vectors
with the Mairesse features,4 which were extracted
from the texts directly at the preprocessing stage;
this improved the method’s performance. Discard-
ing emotionally neutral input sentences from the es-
says further improved the results.

For fi nal classifi cation, we fed this document vec-
tor into a fully connected neural network with one
hidden layer. Our results outperformed the current
state of the art for all fi ve traits. Our implementa-
tion is publicly available and can be downloaded
freely for research purposes (see http://github.com
/senticnet/personality-detection).

Personality is a combination of an individual’s

behavior, emotion, motivation, and thought-

pattern characteristics. Our personality has great im-

pact on our lives; it affects our life choices, well-being,

march/april 2017 www.computer.org/intelligent 75

Overview of the Method
Our method includes input data pre-
processing and filtering, feature ex-
traction, and classification. We use two
types of features: a fixed number of
document-level stylistic features, and
per-word semantic features that are
combined into a variable-length repre-
sentation of the input text. This vari-
able-length representation is fed into a
CNN, where it is processed in a hier-
archical manner by combining words
into n-grams, n-grams into sentences,
and sentences into a whole document.
The obtained values are then com-
bined with the document-level stylistic
features to form the document repre-
sentation used for final classification.

Specifically, our method includes the
following steps:

•	Preprocessing. This includes sen-
tence splitting as well as data clean-

ing and unification, such as reduction
to lowercase.

•	Document-level feature extraction.
We used the Mairesse baseline fea-
ture set, which includes such global
features as the word count and av-
erage sentence length.

•	 Filtering. Some sentences in an es-
say may not carry any personality
clues. Such sentences can be ignored
in semantic feature extraction for
two reasons: first, they represent
noise that reduces the classifier’s
performance, and second, removal
of those sentences considerably re-
duces the input size, and thus the
training time, without negatively
affecting the results. So, we remove
such sentences before the next step.

•	Word-level feature extraction. We
represent individual words by word
embedding in a continuous vector
space; specifically, we experimented

with the word2vec embeddings.5
This gives a variable-length feature
set for the document: the document
is represented as a variable number
of sentences, which are represented
as a variable number of fixed-length
word feature vectors.

•	Classification. For classification, we
use a deep CNN. Its initial layers pro-
cess the text in a hierarchical man-
ner. Each word is represented in the
input as a fixed-length feature vector
using word2vec, and sentences are
represented as a variable number of
word vectors. At some layer, this vari-
able-length vector is reduced to fixed-
length vector of each sentence, which
is a kind of sentence embedding in a
continuous vector space. At that level,
documents are represented as a vari-
able number of such fixed-length sen-
tence embeddings. Finally, at a deeper
layer, this variable-length document

The Big Five, also known as the Five Factor Model, is the
most widely accepted model of personality. Initially, it
was developed by several independent groups of re-

searchers. However, it was advanced by Ernest Tupes and Ray-
mond Christal1; J.M. Digman made further advancements,2
and Lewis Goldberg later perfected it.3

Some earlier work on automated personality detection from
plain text was done by James Pennebaker and Laura King,4
who compiled the essay dataset that we used in our experi-
ments (see http://web.archive.org/web/20160519045708/http://
mypersonality.org/wiki/doku.php?id=wcpr13). For this, they
collected stream-of-consciousness essays written by volunteers
in a controlled environment and then asked the authors of the
essays to define their own Big Five personality traits. They used
Linguistic Inquiry and Word Count (LIWC) features to deter-
mine correlation between the essay and personality.5

François Mairesse and colleagues used, in addition to
LIWC, other features, such as imageability, to improve per-
formance.6 Saif Mohammad and Svetlana Kiritchenko per-
formed a thorough study on this essays dataset, as well as
the MyPersonality Facebook status dataset, by applying dif-
ferent combinations of feature sets to outperform Mairesse’s
results, which they called the Mairesse baseline.7

Recently, Fei Liu and colleagues developed a language-
independent and compositional model for personality trait
recognition for short tweets.8

On the other hand, researchers have successfully used
deep convolutional networks for related tasks such as senti-
ment analysis,9 aspect extraction,10 and multimodal emotion
recognition.11

References
 1. E. Tupes and R. Christal, Recurrent Personality Factors Based

on Trait Ratings, tech. report ASD-TR-61-97, Lackland Air Force
Base, 1961.

 2. J. Digman, “Personality Structure: Emergence of the Five-
Factor Model,” Ann. Rev. Psychology, vol. 41, no. 1, 1990,
pp. 417–440.

 3. L. Goldberg, “The Structure of Phenotypic Personality Traits,”
Am. Psychologist, vol. 48, no. 1, 1993, pp. 26–34.

 4. J.W. Pennebaker and L.A. King, “Linguistic Styles: Language
Use as an Individual Difference,” J. Personality and Social Psy-
chology, vol. 77, no. 6, 1999, pp. 1296–1312.

 5. J.W. Pennebaker, R.J. Booth, and M.E. Francis, Linguistic In-
quiry and Word Count: LIWC2007, operator’s manual, 2007.

 6. F. Mairesse et al., “Using Linguistic Cues for the Automatic Rec-
ognition of Personality in Conversation and Text,” J. Artificial
Intelligence Research, vol. 30, 2007, pp. 457–500.

 7. S.M. Mohammad and S. Kiritchenko, “Using Hashtags to Cap-
ture Fine Emotion Categories from Tweets,” Computational In-
telligence, vol. 31, no. 2, 2015, pp. 301–326.

 8. F. Liu, J. Perez, and S. Nowson, “A Language-Independent and
Compositional Model for Personality Trait Recognition from
Short Texts,” Computing Research Repository (CoRR), 2016;
http://arxiv.org/abs/1610.04345.

 9. S. Poria et al., “A Deeper Look into Sarcastic Tweets using Deep
Convolutional Neural Networks,” Proc. 26th Int’l Conf. Compu-
tational Linguistics, 2016, pp. 1601–1612.

 10. S. Poria, E. Cambria, and A. Gelbukh, “Aspect Extraction for
Opinion Mining with a Deep Convolutional Neural Network,”
Knowledge-Based Systems, vol. 108, 2016, pp. 42–49.

 11. S. Poria et al., “Convolutional MKL Based Multimodal Emotion
Recognition and Sentiment Analysis,” Proc. IEEE Int’l Conf.
Data Mining, 2016, pp. 439–448.

Previous Work in Personality Detection

76 www.computer.org/intelligent iEEE iNTElliGENT SYSTEmS

vector is reduced to a fixed-length doc-
ument vector. This fixed-length fea-
ture vector is then concatenated with
the document-level features giving a
fixed-length document vector, which
is then used for final classification.

When aggregating word vectors into
sentence vectors, we use convolution to
form word n-gram features. However,
when aggregating sentence vectors into
the document vector, we do not use
convolution to form sentence n-gram
features. We tried this arrangement,
but the network did not converge in 75
epochs, so we left this experiment to
our future work.

Network Architecture
We trained five separate neural classifiers,
all with the same architecture, for the Big
Five personality traits. The processing flow
in our network comprises four main steps:

•	word vectorization, in which we use
fixed-length word2vec word embed-
dings as input data;

•	 sentence vectorization, from se-
quences of words in each sentence
to fixed-length sentence vectors;

•	 document vectorization, from the
sequence of sentence vectors to the
document vector; and

•	 classification, from the document vec-
tor to the classification result (yes/no).

Accordingly, the network comprises
seven layers: input (word vectorization),
convolution (sentence vectorization),
max pooling (sentence vectoriza-
tion), 1-max pooling (document vec-
torization), concatenation (document
vectorization), linear with Sigmoid
activation (classification), and two-
neuron softmax output (classification).

Figure 1 depicts the end-to-end
network for two sentences. In the rest
of this article, we discuss these steps
and layers in detail.

Input
We represent the dataset as a set of
documents: each document d is a se-
quence of sentences, each sentence si
is a sequence of words, and each word
wj is a real-valued vector of fixed
length known as word embedding. In
our experiments, we used Google’s
pretrained word2vec embeddings.5

Thus, our input layer is a four-
dimensional real-valued array from

D×S×W×E, in which D is the number
of documents in the dataset, S is the
maximum number of sentences in a
document across all documents, W is
the maximum number of words in a
sentence across all documents, and E
is the length of word embeddings.

In implementation, to force all doc-
uments to contain the same number
of sentences, we padded shorter doc-
uments with dummy sentences. Simi-
larly, we padded shorter sentences
with dummy words.

Aggregating Word Vectors into
Sentence Vectors
We use three convolutional filters to
extract unigram, bigram, and trigram
features from each sentence. After max
pooling, the sentence vector is a concat-
enation of the feature vectors obtained
from these three convolutional filters.

Convolution. To extract the n-gram
features, we apply a convolutional filter

Figure 1. Architecture of our network. The network consists of seven layers. The input
layer (shown at the bottom) corresponds to the sequence of input sentences (only
two are shown). The next two layers include three parts, corresponding to trigrams,
bigrams, and unigrams. The dotted lines delimit the area in a previous layer to which
a neuron of the next layer is connected—for example, the bottom-right rectangle
shows the area comprising three word vectors connected with a trigram neuron.

200

200

Convolution layer

Max pooling layer

Concatenation layer

Word→
vectorWord embedding

size: 300

I
willvisitIndiain

winter

It
is

toohotin
summer

Mairesse features d Mairesse
1-max pooling layer

Do
cu

m
en

t
ve

cto
r d

Fully connected layer

Softmax output

Se
nt

en
ce

ve
cto

r s i

march/april 2017 www.computer.org/intelligent 77

of size n × E on each sentence s ∈
RW×E. We use 200 n-gram feature
maps for each n = 1, 2, 3. So, for each
n, our convolutional filter applied
on the matrix s is ∈ × ×Fn

conv n E200 .
We add a bias ∈Bn

conv 200

to the out-

put of the filter, which gives, for a
given sentence, three feature maps

FMn
W n200 (1) 1∈ × − + × , n = 1, 2, 3. To

introduce nonlinearity, we apply the
Rectified Linear Unit (ReLU) function
to the feature maps FMn.

Max pooling. Next, we apply max
pooling to each feature map FMn to fur-
ther down-sample it to a feature map

∈ × ×DFMn
200 1 1, which we flatten to

obtain a feature-vector of size 200.

Convolution. Finally, we concatenate
the vectors obtained for the three
types of n-gram to obtain a vector s
∈ R600 representing the sentence. We
apply convolution and max pooling
to each sentence in the document. The
network parameters are shared be-
tween all sentences of the document.
In particular, although we pad all sen-
tences to a common size with dummy
words, we do not need to pad all doc-
uments to a common size with dummy
sentences.

Aggregating Sentence Vectors
into a Document Vector
After individual sentences are pro-
cessed, the document vector is a vari-
able-sized concatenation of all its
sentence vectors.

We assume that the document has
some feature if at least one of its sen-
tences has this feature. Each sentence
is represented as a 600-dimensional
vector. To obtain the document vec-
tor, for each of these 600 features,
we take the maximum across all
the sentences of the document. This
gives a 600-dimensional real-valued
vector dnetwork ∈ R600 of the whole
document.

Adding Document-Level Features
to Document Vector
François Mairesse and colleagues de-
veloped a document-level feature set
for personality detection, consisting of
84 features.4 It comprises the Linguis-
tic Inquiry and Word Count features6;
Medical Research Council features7;
utterance-type features; and prosodic
features. Examples of the features in-
cluded in this set are the word count
and average number of words per sen-
tence, as well as the total number of
pronouns, past tense verbs, present
tense verbs, future tense verbs, letters,
phonemes, syllables, questions, and
assertions in the document.

We then concatenated those 84 fea-
tures, dMairesse, with the document vector
dnetwork. This gave the final 684-dimen-
sional document vector d = (dnetwork,
dMairesse) ∈ R684. We also used the feature
set dMairesse as a baseline in our evaluation.

Classification
For final classification, we use a two-
layer perceptron consisting of a fully
connected layer of size 200 and the
final softmax layer of size two, repre-
senting the yes and no classes.

Fully connected layer. We multiply
the document d ∈ R684 by a matrix
Wfc ∈ R684×200 and add a bias Bfc ∈
R200 to obtain the vector dfc ∈ R200.
Introducing nonlinearity with Sig-
moid activation improved the results:

dfc = σ(d Wfc + Bfc),

where

σ(x) = 1/(1 + exp(–x)).

We also experimented with ReLU
and tanh as activation functions, but
they yielded lower results.

Softmax output. We use the softmax
function to determine the probabil-

ity of the document to belong to the
classes yes and no. For this, we build
a vector

(xyes, xno) = dfc Wsm + Bsm,

where Wsm ∈ R200×2 and the bias Bsm
∈ R2, and we calculate the class prob-
abilities as

()() ()
()

=
+

P i
x

x x
network parameters

exp

exp exp

i

yes no

for i ∈{yes, no}.

Training
We use Negative Log Likelihood as the
objective function for training. We ran-
domly initialize the network parame-
ters F F F B B B, , , , , ,conv conv conv conv conv conv

1 2 3 1 2 3

Wfc, Bfc, Wsm, and Bsm. We use Stochas-
tic Gradient Descent with Adadelta8
update rules to tune the network pa-
rameters in order to minimize the error
defined as negative log likelihood. In
our experiments, after 50 epochs, the
network converged, with 98 percent
training accuracy.

Experimental Results
To evaluate our method, we tested
it on a well-known dataset typically
used to compare personality detec-
tion techniques.

Dataset
We used James Pennebaker and Laura
King’s stream-of-consciousness essay
dataset.6 It contains 2,468 anonymous
essays tagged with the authors’ person-
ality traits: EXT, NEU, AGR, CON,
and OPN. We removed from the dataset
one essay that contained only the text
“Err:508,” and we experimented with
the remaining 2,467 essays.

Experimental Setting
In all of our experiments, we used ten-
fold cross-validation to evaluate the
trained network.

78 www.computer.org/intelligent iEEE iNTElliGENT SYSTEmS

Preprocessing. We split the text into
a sequence of sentences at the period
and question mark characters. Then
we split each sentence into words at
whitespace characters. We reduced
all letters to lowercase and removed
all characters other than ASCII let-
ters, digits, exclamation marks, and
single and double quotation marks.

Some essays in the dataset con-
tained no periods or missing periods,
resulting in absurdly long sentences.
For these cases, we split each obtained
“sentence” that was longer than 150
words into “sentences” of 20 words
each (except the last piece that could
happen to be shorter).

Extracting document-level features.
We used Mairesse and colleagues’
library (http://farm2.user.srcf.net
/ re search /personality/recognizer
.html) to extract the 84 Mairesse fea-
tures from each document.4

Sentence filtering. We assumed that
a relevant sentence would have at least
one emotionally charged word. After
extracting the document-level features,
but before extracting the word2vec fea-
tures, we discarded all sentences that
had no emotionally charged words.

We used the NRC Emotion Lexicon
(http://saifmohammad.com/WebPages/
NRC-Emotion-Lexicon.htm) to ob-
tain emotionally charged words.9,10
This lexicon contains 14,182 words
tagged with 10 attributes: anger, antici-
pation, disgust, fear, joy, negative, posi-
tive, sadness, surprise, and trust. We
considered a word to be emotionally
charged if it had at least one of these at-
tributes; there are 6,468 such words in
the lexicon (most of the words in this
lexicon have no attributes).

So, if a sentence contained none of
the 6,468 words, we removed it be-
fore extracting the word2vec features
from the text. In our dataset, all es-

says contained at least one emotion-
ally charged word.

We also experimented with not re-
moving any sentences and with ran-
domly removing half of each essay’s
sentences. Randomly removing half
of the sentences improved the results
as compared with no filtering at all;
we do not have a plausible explana-
tion for this fact. Removing emotion-
ally neutral sentences as described
earlier further improved the results,
producing the best results for all five
traits. Filtering also improved the
training time by 33.3 percent.

Extracting word-level features. We
used the word2vec embeddings5 (http://
drive.google.com/file/d/0B7XkCwpI5
KDYNlNUTTlSS21pQmM/edit) to
convert words into 300-dimensional
vectors. If a word was not found in
the list, we assigned all 300 coordi-
nates randomly with a uniform distri-
bution in [−0.25, 0.25].

Word n-gram baseline. As a baseline
feature set, we used 30,000 features:
10,000 most-frequent-word unigrams,
bigrams, and trigrams in our dataset. We
used the Scikit-learn library to extract
these features from the documents.11

Classification. We experimented with
three classification settings. In the vari-
ant marked MLP in Table 1, we used
the network shown in Figure 1, which is
a multiple-layer perceptron (MLP) with
one hidden layer, trained together with
the CNN. In the variant marked SVM
(support vector machine) in the table,
we first trained the network shown in
Figure 1 to obtain the corresponding
document vector d for each document
in the dataset, and then used these vec-
tors to train a polynomial SVM of de-
gree 3. In the variant marked sMLP/
MP in the table, in a similar manner
we used the vectors d (the max pool-
ing layer) to train a stand-alone MLP

Table 1. Accuracy obtained with different configurations.

Document
vector d Filter Classifier

Convolution
filter

Personality traits

EXT NEU AGR CON OPN

N/A N/A Majority N/A 51.72 50.02 53.10 50.79 51.52

Word n-grams Not used SVM N/A 51.72 50.26 53.10 50.79 51.52

Mairesse12 N/A SVM N/A 55.13 58.09 55.35 55.28 59.57

Mairesse
(our experiments)

N/A SVM N/A 55.82 58.74 55.70 55.25 60.40

Published
state of the
art per trait12

N/A N/A N/A 56.45 58.33 56.03 56.73 60.68

CNN N/A MLP 1, 2, 3 55.43 55.08 54.51 54.28 61.03

CNN N/A MLP 2, 3, 4 55.73 55.80 55.36 55.69 61.73

CNN N/A SVM 2, 3, 4 54.42 55.47 55.13 54.60 59.15

CNN + Mairesse N/A MLP 1, 2, 3 54.15 57.58 54.64 55.73 61.79

CNN + Mairesse N/A SVM 1, 2, 3 55.06 56.74 53.56 56.05 59.51

CNN + Mairesse N/A sMLP/FC 1, 2, 3 54.61 57.81 55.84 57.30 62.13

CNN + Mairesse Used sMLP/MP 1, 2, 3 58.09 57.33 56.71 56.71 61.13

CNN + Mairesse Used MLP 1, 2, 3 55.54 58.42 55.40 56.30 62.68

CNN + Mairesse Used SVM 1, 2, 3 55.65 55.57 52.40 55.05 58.92

CNN + Mairesse Used MLP 2, 3, 4 55.07 59.38 55.08 55.14 60.51

CNN + Mairesse Used SVM 2, 3, 4 56.41 55.61 54.79 55.69 61.52

CNN + Mairesse Used MLP 3, 4, 5 55.38 58.04 55.39 56.49 61.14

CNN + Mairesse Used SVM 3, 4, 5 56.06 55.96 54.16 55.47 60.67

*Bold indicates the best result for each trait.

march/april 2017 www.computer.org/intelligent 79

(using 50 epochs) with the same config-
uration as the last two layers in Figure
1 (that is, using the 1-max pool layer
from Figure 1 as input).

In another experiment, we fed to the
stand-alone MLP the values from the fully
connected layer instead of d; this variant is
marked as sMLP/FC in Table 1. For base-
line experiments not involving the use of
CNN, we used only a linear SVM.

Results
Table 1 shows our results. Our method
outperformed the state of the art for
all five traits, although with different
configurations for different traits.

Using n-grams showed no improve-
ment over the majority baseline: the
classifier rejected all n-grams. Apply-
ing filtering and adding the document-
level (Mairesse) features proved to be
beneficial. In fact, the CNN alone
without the document-level features
underperformed the Mairesse base-
line. We attribute this to insufficient
training data: our training corpus was
only 1.9 million running words.

Contrary to our expectations, ap-
plying SVM to the document vector d
built with the CNN did not improve
the results. Surprisingly, applying a
stand-alone MLP to d improved the
results. We cannot attribute this to the
fact that the system had thus received
an additional 50 epochs of training,
because the network used to build the
document vector d has converged in
its 50 epochs of initial training.

Increasing the window size for convo-
lution filters did not seem to consistently
improve the results; while the best result
for the NEU trait was obtained with 2-,
3-, and 4-grams, even sizes 1, 2, and 3
outperformed the current state of the art.

We also tried several configurations
not shown in Table 1, as well as some
variations of the network architecture.
In particular, in addition to using con-
volution filters to obtain a vector for
each sentence, we tried using convolu-

tion filters to obtain document vector d
from the sequence of sentence vectors
si. However, training did not converge
after 75 epochs, so we used 1-max
pooling layer on the array of sentence
vectors to obtain the document vector.

In the future, we plan to incorpo-
rate more features and preprocess-
ing. We plan to apply the Long Short
Term Memory (LSTM) recurrent net-
work to build both the sentence vec-
tor from a sequence of word vectors
and the document vector from a se-
quence of sentence vectors. In addi-
tion, we plan to apply our document
modeling technique to other emotion-
related tasks, such as sentiment analysis
or mood classification.13

References
1. E. Cambria, “Affective Computing and

Sentiment Analysis,” IEEE Intelligent Sys-

tems, vol. 31, no. 2, 2016, pp. 102–107.

2. E. Cambria et al., “SenticNet 4: A Se-

mantic Resource for Sentiment Analysis

based on Conceptual Primitives,” Proc.

26th Int’l Conf. Computational Lin-

guistics, 2016, pp. 2666–2677.

3. J. Digman, “Personality Structure: Emer-

gence of the Five-Factor Model,” Ann. Rev.

Psychology, vol. 41, 1990, pp. 417–440.

4. F. Mairesse et al., “Using Linguistic

Cues for the Automatic Recognition of

Personality in Conversation and Text,”

J. Artificial Intelligence Research, vol.

30, 2007, pp. 457–500.

5. T. Mikolov et al., “Efficient Estimation of

Word Representations in Vector Space,”

Computing Research Repository (CoRR),

2013; http://arxiv.org/abs/1301.3781.

6. J.W. Pennebaker and L.A. King,

“Linguistic Styles: Language Use as an

Individual Difference,” J. Personality

and Social Psychology, vol. 77, no. 6,

1999, pp. 1296–1312.

7. M. Coltheart, “The MRC Psycholinguis-

tic Database,” Quarterly J. Experimental

Psychology, vol. 33A, 1981, pp. 497–505.

8. M.D. Zeiler, “ADADELTA: An Adap-

tive Learning Rate Method,” Comput-

ing Research Repository (CoRR), 2012;

https://arxiv.org/abs/1212.5701.

9. S.M. Mohammad and P.D. Turney,

“Crowdsourcing a Word-Emotion As-

sociation Lexicon,” Computational Intel-

ligence, vol. 29, no. 3, 2013, pp. 436–465.

10. S. Mohammad and P. Turney, “Emotions

Evoked by Common Words and Phrases:

Using Mechanical Turk to Create an

Emotion Lexicon,” Proc. NAACL-HLT

Workshop Computational Approaches

to Analysis and Generation of Emotion

in Text, 2010, pp. 26–34.

11. F. Pedregosa et al., “Scikit-learn: Ma-

chine Learning in Python,” J. Machine

Learning Research, vol. 12, Oct. 2011,

pp. 2825–2830.

12. S.M. Mohammad and S. Kiritchenko,

“Using Hashtags to Capture Fine Emo-

tion Categories from Tweets,” Com-

putational Intelligence, vol. 31, no. 2,

2015, pp. 301–326.

13. B.G. Patra, D. Das, and S. Bandyopad-

hyay, “Multimodal Mood Classifica-

tion Framework for Hindi Songs,”

Computación y Sistemas, vol. 20, no. 3,

2016, pp. 515–526.

Navonil majumder is a postgraduate student

at the Centro de Investigación en Computación

(CIC) of the Instituto Politécnico Nacional,

Mexico. Contact him at navo@nlp.cic.ipn.mx.

Soujanya poria is a research assistant at

Temasek Laboratories at Nanyang Technologi-

cal University. Contact him at sporia@ntu.edu.sg.

alexander Gelbukh is a research professor

at the CIC of the Instituto Politécnico Na-

cional. Contact him at gelbukh@cic.ipn.mx.

Erik cambria is an assistant professor in the

School of Computer Science and Engineer-

ing at Nanyang Technological University.

He is also affiliated with the Rolls-Royce@

NTU Corporate Lab, A*STAR SIMTech,

and MIT Synthetic Intelligence Lab. Contact

him at cambria@ntu.edu.sg.

