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Recently, toxicity identification has become the most serious problem in online communities and social
networking sites. Therefore, an automatic toxic identification system needs to be developed for prevent-
ing and limiting users from these online environments. In this paper, we present a multichannel convo-
lutional bidirectional gated recurrent unit (MCBiGRU) for detecting toxic comments in a multilabel
environment. The proposed model generates word vectors using pre-trained word embeddings.
Moreover, this hybrid model extracts local features with many filters and different kernel sizes to model
input words with long term dependency. We then integrate multiple channels with a fully connected
layer, normalization layer, and an output layer with a sigmoid activation function for predicting multil-
abel categories. The experimental results indicate that the proposed MCBiGRU model outperforms in
terms of multilabel metrics.

� 2021 Elsevier B.V. All rights reserved.
1. Introduction

Online social networking sites provide a platform for people to
anonymously share and express their opinions [1]. Sometimes,
such opinions can be harassive, abusive, or trollicious to others
and cause some individuals to stop sharing, getting depressed, or
even have suicidal thoughts [2]. Therefore, an automatic system
needs to be developed to avoid, remove, or flag such unhealthy
contents from online platforms [3,4]. The development of such a
toxicity identification system, however, is a very challenging task
for online platform providers. Natural language processing (NLP)
helps to identify toxicity in texts, which are expressed as posts or
comments. These comments are naturally associated with multiple
toxic labels such as insult, threat, and toxicity. This paper aims to
focus on multilabel category detection. Moreover, various machine
learning and deep learning approaches were proposed to solve the
task of multilabel category detection. In traditional machine learn-
ing, the multilabel classification problem is solved using the prob-
lem transformation, adapted algorithms, and ensemble
approaches. These approaches employed the bag-of-words (BoW)
model representation.

However, the BoW model fails to capture semantic meaning
among words [5,6]. Furthermore, deep learning techniques solve
the multilabel classification problem with promising results
[7,8,9]. These techniques capture the semantic meaning among
words using word embeddings. In this paper, we propose a multi-
channel convolutional bidirectional gated recurrent unit (MCBi-
GRU) for multilabel category detection. The concept of
multichannel represents the standard version of the same model
(convolutional bidirectional gated recurrent unit) with different
word embeddings. First, the proposed MCBiGRU model creates
word vectors for the training data using pre-trained word vectors
[10]. Second, these word vectors are passed to the embedding layer
to capture the semantic meaning of words. Third, a convolutional
neural network (CNN) is used to extract local features with many
filters and different kernel sizes. Fourth, the extracted features
are fed into the bidirectional gated recurrent unit (BiGRU) to model
input words sequentially with long term dependency. These stan-
dard steps are repeated for each channel. We then integrate multi-
ple channels using the concatenation layer. This result passed to
the fully connected layer, normalization layer, and the output layer
with a sigmoid activation function for predicting multilabel cate-
gories. The experimental results reveal that the proposedMCBiGRU
model outperforms in terms of precision, recall, and F1-Score with
macro, micro, and weighted score for examples and labels.

The remainder of this paper is structured as follows: Section 2
presents the related works for multilabel toxic category detection;
Section 3 explains the proposed MCBiGRU model in detail; Sec-
tion 4 illustrates the multilabel evaluation metrics; Section 5 sum-
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marizes the results and their comparison with others; finally, Sec-
tion 6 presents the conclusion and future works.
2. Related works

Text representation and classification significantly play an
important role in the field of NLP [11]. Toxic comment classifica-
tion is a NLP task close to sentiment analysis [12,13] which aims
to further categorize negative comments into toxic (comments that
are threatening, obscene, or insulting) versus non-toxic (comments
that simply express a negative opinion). In recent years, toxic com-
ment classification has been increasingly leveraging machine
learning and deep learning models. Hossein et al. [14] proposed
an attack on Google’s perspective API for toxicity identification.
The authors showed the detailed examples that a highly toxic
phrase assigns lower toxic scores in the perturbing abusive phrases
and high toxic scores to benign phrases. Ibrahim et al. [8] pre-
sented three data augmentation techniques, namely, unique words
augmentation, random mask, and synonyms replacement to deal
with the class imbalance problem. Moreover, the authors proposed
an ensemble model (CNN, Bidirectional LSTM, and GRU) to detect
toxicity in user-generated content. Anand and Eswari [15] studied
various deep learning models (e.g., CNN, and LSTM) with and with-
out pre-trained word embeddings for abusive comment classifica-
tion. This study shows that CNN outperforms the pre-trained
GloVe word embeddings. Pavlopoulos et al. [16] examined the per-
formance of RNN with Greek news portal user comments and
Wikipedia comments. This study indicates that the GRU method
outperforms the logistic regression, multilayered perceptron, and
CNN models. Georgakopoulos et al. [7] investigated the perfor-
mance of CNN with text mining methodologies. Their study sug-
gested that CNN enhances the task of toxicity identification.
Mohammad [17] demonstrated the transformation of raw com-
ments with four classification models, namely, logit, NBSVM,
FastText-BiLSTM, and XGBoost. The author reveals that the models
achieve a relatively decent result without any transformation.

Van Aken et al. [18] presented an ensemble model with multi-
ple approaches for addressing the challenges in toxic comment
classification. Especially, this ensemble model outperforms with
high data variance and classes with few instances. Saeed et al.
[19] studied Deep Neural Network architectures and their compar-
ison for overlapping toxic sentiment data. The authors show that
the Bi-GRU model outperforms in the task of overlapping multil-
abel toxic sentiment classification. Khieu and Narwal [4] studied
the LSTM model and Kohli et al. [20] studied the LSTM model with
custom embeddings for toxicity identification. Moreover, Rezaeinia
et al. [22] proposed multiple block convolutional highways for text
categorization. This study improved the performance of CNN by
introducing improved word vectors. Quan et al. [24] proposed mul-
tichannel CNN for biomedical relation extraction. This study indi-
cates that the proposed MCNN can deal with long sentences.
Yoon and Kim [23] applied multichannel lexicon embeddings on
CNN-BiLSTM to improve the performance of sentiment classifica-
tion. Zhang et al. [25] proposed a multichannel convolutional long
short-term memory network (CNN-LSTM) for sentiment classifica-
tion. The authors revealed that the proposed model outperforms all
baseline algorithms. Li et al. [26] proposed a two-channel convolu-
tional gated recurrent unit for stance detection. Their experimental
results have shown a 15:6% improvement in the SVM (support vec-
tor machine) method. In summary, the existing researchers used
multichannel deep learning models for the single label and multi-
class problems. Therefore, we propose a multichannel convolu-
tional bidirectional gated recurrent unit for multilabel toxic
category detection.
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3. The proposed method

In this section, we describe the proposed MCBiGRU model for
multilabel category detection. The multichannel represents the
standard version of the same hybrid model (convolutional bidirec-
tional gated recurrent unit) with different window sizes [24,26] as
shown in Fig. 1. In particular, we discuss the main components of
the proposed model as follows.

3.1. Dataset

We use the Wikipedia talk pages dataset published by Google
Jigsaw on Kaggle [40]. This dataset includes 223;549 instances
with six labels, namely, toxic, obscene, severe toxic, insult, threat,
and identity hate. These labels define an instance as toxicity or
non-toxicity. In particular, it is one of the largest datasets with
class imbalance. Moreover, 201;081 instances were assigned with
a ‘clear’ category matching none of the above six labels. ‘Threat’ is
the least category in the dataset as shown in Table 1.

3.2. Multichannel convolutional bidirectional gated recurrent unit

The multichannel convolutional bidirectional gated recurrent
unit represents the multiple version of the standard CNN model
with different sizes of kernels. This representation allows the
instance or document to process in different n-grams such as 1-
gram, 2-gram, and 3-grams at the same time [32]. In particular,
we define the standard CNN model with a word embedding layer,
one-dimensional convolutional layer, dropout layer, max-pooling,
bidirectional gated recurrent unit, and dropout layer. This standard
version is defined with five channels for different n-grams. Each
component of the channel is explained as follows.

3.2.1. Multichannel word embedding
To obtain the quality of data, we remove punctuations and spe-

cial symbols to represent each word into a numeric vector for toxic
comments [21,22,26]. We then use pre-trained word embeddings
to generate word vectors to capture semantic information from
the training data. In particular, we use the GloVe word embeddings
[10] with 100 dimensions to capture the semantic meaning of
words. In the multichannel environment, we generate word
embeddings for each channel with different contexts or window
sizes from the same training data. The advantage of multichannel
word embeddings is to extract different input features parallel on
the same training data within a model [23]. Moreover, the learned
word vectors are not updated during the model training.

3.2.2. Convolutional neural network
The CNN is widely used in the applications of image classifica-

tion, image and video recognition, recommender systems, and NLP
[31,32,7,22]. The CNN is passed over an input sequence with many
filters in a fixed-length vector to produce new feature maps at dif-
ferent positions [26]. Specifically, we use a 1D-Convolution layer
with many filters (W) and five different kernel sizes (h) separately

for multichannel environments. Let Wi 2 Rhd be the filter for chan-

nel i in dimension d. Let Vi 2 RNd be the word embeddings for chan-
nel i with the maximum input sequence length N. Then, features
mk are generated as in (1).

mk ¼
Xc
i¼1

Vi k : kþ h� 1½ � �Wi þ b

 !
ð1Þ

C ¼ m1;m2;m3; . . . ;mk½ � ð2Þ

where Vi k : kþ h� 1½ � denotes the generated input feature vectors

by connecting row k to row kþ h� 1 in inputs Vi; f represents an



Fig. 1. The proposed MCBiGRU model.

Table 1
Label distribution for Wikipedia talk pages dataset.

Code Label Occurrences %

0 Toxic 21,384 8.53
1 Severe toxic 1962 0.78
2 Obscene 12,140 4.84
3 Threat 689 0.27
4 Insult 11,304 4.51
5 Identity hate 2117 0.84
– Clean 201,081 80.23
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activation function, b denotes a bias term, and � denotes element-
wise multiplication. Moreover, a new feature map C is produced by
applying a filter to each window for input sequences as in (2).
3.2.3. Pooling layers
Pooling layers are an integral part of CNN. Its main purpose is to

reduce the dimension of input feature maps. In particular, the pool-
ing layers produce sub-sampling upon each feature map. This
pooled feature map size is smaller than the generated feature
map [7]. In this work, we use maximum pooling operation upon
different channels to calculate the maximum feature value of the
local neighborhoods for each feature map.
3.2.4. Bidirectional gated recurrent unit
Recurrent Neural Networks takes words in sequential order for

interpreting a document. The RNN is difficult to train due to the
long-range dependencies. To overcome this problem, the variant
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of RNN is introduced such as LSTM and GRU [33,35]. The LSTM net-
work controls the input sequence with three gating mechanisms,
namely, forget gate, input gate, and update gate. The GRU network
controls the input sequences with the update gate and the reset
gate [26]. In this paper, we use the bidirectional GRU on the top
of CNN and the max-pooling layer for each channel. It memorizes
the past and future semantic information. The reset gate combines
the previous input and new input, and the update gate preserves
the required memory block as in (3)-(7). Moreover, the GRU works
faster than LSTM and it takes less computation to update hidden
states.

u ¼ r Wuht�1 þ Uuxt þ buð Þ ð3Þ
r ¼ r Wrht�1 þ Urxt þ brð Þ ð4Þ
c ¼ tanh Wc ht�1 � rð Þ þ Ucxt þ bcð Þ ð5Þ
ht
!¼ r u� cð Þ � 1� uð Þ � ht�1Þ ð6Þ

yt ¼ V ht
!

: ht

 � �
ð7Þ
3.3. Output layer

The result of the convolutional bidirectional gated recurrent
unit for each channel is fed into the concatenation layer, which
takes the same input size and concatenates them in a specified
dimension [34]. The output of this layer is passed to the dense
layer and normalization layer where the dense layer changes the
dimension of vectors for updating the trainable parameters and
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the normalization layer allows the model to learn more indepen-
dently on each layer of this network. We then use the output layer
with a sigmoid activation function [36] for predicting multilabel
categories. The proposed model uses binary cross-entropy as a loss
function to decide whether an instance belongs to a category or not
for each label.

4. Multilabel evaluation metrics

In this paper, we describe the multilabel evaluation metrics
such as sample-based, label-based, and rank-based metrics [37–
39] to deal with toxic classification problem. In particular, we dis-
cuss Hamming loss, exact match, and precision, recall, and F1-
score with samples, macro, micro, and weighted scores. Let
D ¼ xi;Yið Þ; i ¼ 1;2;3 . . .N;Yi # L, be the training samples assigned
with true labels Yið Þ. Let L be the set of all true labels and H be
the learned model. Then, the predicted labels defined as
Zi ¼ H xið Þ.

4.1. Sample-based metrics

Sample-based metrics evaluate the average difference between
the true labels and predicted labels over all samples on the evalu-
ation dataset [37]. In these metrics, we discuss Hamming Loss (HL),
exact match (EM), precision (P), recall (R), and F1-score (F1) as fol-
lows. The HL and EM measure the average of incorrectly classified
labels (8) and correctly classified labels (9) overall samples, respec-
tively. Similarly, precision and recall are defined as the fraction
between true labels and predicted labels as in (10) and (11). F1-
score is calculated by taking the harmonic mean between precision
and recall as in (12).

HL ¼ 1
N

XN
i¼1

jYi 4 Zij
jLj ð8Þ

where M denotes the difference between the true and predicted
labels.

EM ¼ 1
N

XN
i¼1

I Yi ¼ Zið Þ ð9Þ

where,

I Y ið Þ ¼ Z ið Þ
� �

¼ 1 iff Y ið Þ and Z ið Þ are identical
0 otherwise

(

P ¼ 1
N

XN
i¼1

jYi 4 Zij
Zi

ð10Þ

R ¼ 1
N

XN
i¼1

jYi 4 Zij
Yi

ð11Þ

F1 ¼ 1
N

XN
i¼1

jYi
T
Zij

jYij þ jZij ð12Þ
4.2. Label-based metrics

Label-based metrics evaluate the process for each label sepa-
rately based on true positives tpð Þ, false positives fpð Þ, false nega-
tives fnð Þ, and true negatives tnð Þ [37]. We define the precision
Pð Þ, recall Rð Þ, and F1-score F1ð Þ with their macro, micro, and
weighted scores as follows in (13)-(25).

P ¼ tp
tpþ fp

ð13Þ
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R ¼ tp
tpþ fn

ð14Þ

F1 ¼ 2� P � R
P þ R

ð15Þ

A ¼ 2� tpþ tn
tpþ fpþ fnþ tn

ð16Þ

Pmac ¼ 1
L

XL
i¼1

P of i ð17Þ

Pmac ¼ 1
L

XL
i¼1

R of i ð18Þ

F1mac ¼ 1
L

XL
i¼1

2� Pmac � Rmac

Pmac þ Rmac
ð19Þ

Pmic ¼

XL
i¼1

tp of label i

XL
i¼1

tp of label iþ fp of label ið Þ
ð20Þ

Rmic ¼

XL
i¼1

tp of label i

XL
i¼1

tp of label iþ fn of label ið Þ
ð21Þ

F1mic ¼ 2� Pmic � Rmic

Pmic þ Rmic
ð22Þ

Pweighted ¼
XL
i¼1

P of i�Weight of ið Þ ð23Þ

Rweighted ¼
XL
i¼1

R of i�Weight of ið Þ ð24Þ

F1weighted ¼
XL
i¼1

F1 of i�Weight of ið Þ ð25Þ
4.3. Rank-based metrics

Rank-based metrics measure the ranking of the predicted labels
on a classifier. It includes zero-one loss, coverage, ranking loss, and
average precision [37–39]. The zero-one loss strictly calculates the
fraction of misclassifications, if the subset is set to one. Otherwise,
it calculates the number of misclassifications over samples. Rank-
ing loss measures the average fraction of incorrectly ordered label
pairs for an instance. Label average precision computes the fraction
of truth labels that are assigned to each sample. The value of one
indicates the best average precision score. Coverage estimates
how far on average a model needs to go through in the ranked pre-
diction to cover all true labels of a sample.

5. Results and discussion

We evaluate the proposed MCBiGRU model on Kaggle’s toxic
comment dataset. This large dataset is randomly split into
80:10:10 for training, validation, and testing. In particular, we used
181074 instances for training, 20120 instances for validation, and



Table 2
Hyperparameters.

Hyperparameters Size Hyperparameters Size

Number of channel 5 Kernel sizes 1, 2, 3, 5, 6
Sequence length 150 Activation function ReLU
Number of words 20000 Pooling size 4
Embedding

dimension
100 Dropout 0.6

Word embedding GloVe Fully connected
units

32

GRU units 200 loss Binary
crossentropy

Trainable False optimizer Adam (0.003)
Filters 128 Epochs 100
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22355 instances for testing. The proposed model is evaluated in
multilabel environments using Google Colaboratory and Keras
libraries. In our model settings, we converted the instances from
upper case to lower case letters and removed the hyperlinks and
punctuations. A tokenization method is employed to represent
word sequences to integer sequences and then padded into a
fixed-length vector. Then, the pre-trained GloVe word embedding
method was applied to generate word vectors present in the train-
ing data. Moreover, we used one embedding layer, one 1D convo-
Fig. 2. The accuracy and loss curve for the MCBiGR

Table 3
Confusion matrix for MCBiGRU model with training, validation, and testing.

Label Train Va

NT T NT

Toxic NT 161730 2067 17830
T 4666 12611 603

Severe toxic NT 179259 258 19881
T 1136 421 153

Obscene NT 169745 1577 18737
T 1785 7967 309

Threat NT 180461 65 20041
T 397 151 66

Insult NT 170187 1775 18793
T 2273 6839 377

Identity hate NT 178997 366 19883
T 885 826 114
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lutional layer, one max-pooling layer, one gated recurrent unit
layer, and two dropout layers for each channel. Similarly, we
defined five channels with different kernel sizes such as 1, 2, 3, 4,
and 5. These channels merged with one concatenate layer and then
one fully connected layer and one normalization layer. Finally, one
output layer with a sigmoid activation function.

A random approach method was used for fine-tuning the hyper-
parameters (Table 2). Specifically, we evaluated the model based
on multilabel metrics such as sample-based metrics, rank-based
metrics, and label-based metrics [37–39] with 100 epochs. The
accuracy and loss curve for MCBiGRU with training, validation,
and testing is shown in Fig.2. The confusion matrix for the pro-
posed MCBiGRU model with training, validation, and testing is
shown in Table 3. Table 4 shows the Precision, recall, and F1-
score for each label. Table 5 shows the overall multilabel metrics
results such as exact match, Hamming loss, zero-one loss, label
ranking loss, ROC_AUC score, average precision score, and preci-
sion, recall, F1 score with micro, macro, and weighted. In particu-
lar, the proposed MCBiGRU model produces better mean training
and validation accuracy with multichannel. The model achieves
98:8% and 99:1% for validation and testing, respectively. Also,
the proposed model achieves a 71:7% F1-micro score and 98:2%
ROC_AUC score.
U model with training, validation, and testing.

lid Train Test

T NT T NT T

316 161882 1915 19903 319
1371 4550 12727 671 1462
38 179046 471 22082 69
48 945 612 125 79
218 169944 1378 20907 225
856 1808 7944 316 907
3 180435 91 22283 7
10 382 166 47 18
231 170168 1794 20958 301
719 2109 7003 349 747
45 179109 254 22093 48
78 945 766 131 83



Table 6
Result comparison with the existing models.

Authors Data size Model MVA MTA F1 MACF1 ROC_AUC

Georgakopoulos et al. [7] – CNN_rand 91.2 – – –
Elnaggar et al. [27] 159,571 Bi_RNN_CNN – – 59.0 –
Khieu and Narwal [4] 159,571 LSTM 92.7 – – 70.6
Chu et al. [28] 159,571 CNN_char_emb 94.0 – – –
Kohli et al. [20] 159,571 LSTM_Cus_emb 97.8 – – –
Chakrabarty [3] 159,571 6 Head_ML 98.1 – – 98.2
Anand and Eswari [15] 159,571 GloVe_CNN 97.9 97.3 – –
Aken et al. [18] 223,549 Ensemble – – 79.1 – 98.3
Koratana and Hu [29] 223,549 Bi_LSTM_Attn_FastT – 98.9 66.0 – –
Lessmann [30] 223,549 GRU Models – – 75.8 – 97.3
Proposed 223,549 MCBiGRU_Valid 98.8 – 71.2 54.5 98.1

MCBiGRU_Test – 99.1 71.7 59.1 98.2

Table 5
The model performance based on multilabel evaluation metrics.

Metrics Valid Test Metrics Valid Test

Mean accuracy 0.988 0.991 Recall score macro 0.477 0.527
Exact match 0.915 0.916 F1 score macro 0.545 0.591
Hamming Loss 0.021 0.019 Precision score micro 0.784 0.773
Zero-one loss 0.085 0.084 Recall score micro 0.655 0.668
Label Ranking Loss 0.003 0.003 F1 score micro 0.712 0.717
ROC_AUC score 0.981 0.982 Precision score weighted 0.777 0.771
Average precision score 0.996 0.996 Recall score weighted 0.655 0.668
Precision score macro 0.721 0.704 F1 score weighted 0.706 0.713

Table 4
Precision, recall, and F1-score for each label.

Class Valid Test

P R F1 P R F1

Toxic 0.813 0.695 0.749 0.821 0.685 0.747
Severe toxic 0.558 0.239 0.334 0.534 0.387 0.449
Obscene 0.797 0.735 0.765 0.801 0.742 0.770
Threat 0.769 0.132 0.225 0.720 0.277 0.400
Insult 0.757 0.656 0.703 0.713 0.682 0.697
Identity hate 0.634 0.406 0.495 0.634 0.388 0.481

Ashok Kumar J, A. S, Tina Esther Trueman et al. Neurocomputing 441 (2021) 272–278
The result comparison of the existing deep learning model is
shown in Table 6. In [7,27,4,27,20,3,15], the authors used
159;571 toxic comments in their research works. In [18,29,30],
and our proposed work 223;549 comments have been used for
experimental study. Specifically, the Aken et al. [18] has described
in-depth error analysis in this large dataset with two input word
embeddings such as character and n-gram word embeddings.
However, we achieve better training and testing accuracy than
the existing models using only n-gram word embeddings.
6. Conclusion

In this paper, we presented a multichannel convolutional bidi-
rectional gated recurrent unit to categorize multilabel toxicities
in online comments. Especially, the proposed model combines
CNN and BiGRU in each channel to extract local features and
long-term dependencies within comments using many filters and
different kernel sizes. Our results show that the proposed MCBi-
GRU model outperforms the existing results. In the future, we
intend to apply multichannel attention mechanisms in a dis-
tributed environment for multilabel toxic detection.
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