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Abstract

Persona attribute extraction is critical for per-
sonalized human-computer interaction. Dia-
logue is an important medium that communi-
cates and delivers persona information. Al-
though there is a public dataset for triplet-based
persona attribute extraction from conversations,
its automatically generated labels present many
issues, including unspecific relations and incon-
sistent annotations. We fix such issues by lever-
aging more reliable text-label matching crite-
ria to generate high-quality data for persona
attribute extraction. We also propose a con-
trastive learning- and generation-based model
with a novel hard negative sampling strategy
for generalized zero-shot persona attribute ex-
traction. We benchmark our model with state-
of-the-art baselines on our dataset and a public
dataset, showing outstanding accuracy gains.
Our sampling strategy also exceeds others by a
large margin in persona attribute extraction.

1 Introduction

Persona attribute extraction in dialogues (PAED)
is a crucial task for persona-based dialogue sys-
tems (Zheng et al., 2020; Cao et al., 2022). It can
extract persona attribute information from conver-
sations. Then, a dialogue system can use extracted
persona attributes to generate personalized, user-
preference-aware responses to user queries. Previ-
ous works define the task as a sentence-level (Da-
niulaityte et al., 2016) or utterance-level (Gu et al.,
2021) classification task. A model learns to classify
whether a text contains persona information or not.
However, the identified persona-informed texts are
still unstructured, resulting in the lower utility of
the extracted information in downstream dialogue
systems, e.g., irrelevant contexts and different rep-
resentations towards the same persona attribute.
Thus, we define persona attribute extraction as a
triplet extraction task. A model should extract a
subject, an object, and the persona-relevant relation
linking the subject and object from utterances.

The extracted attributes should be in the form
of triplets (s, r, o), where the relation (r) indicates
the persona attribute type of the subject (s) towards
the object (o). Although the existing relation triplet
extraction (RTE) task aims to extract triplets from
documents (Li and Ji, 2014; Chia et al., 2022),
its framework cannot be directly transferred to
PAED task because the sentences in documents de-
scribe the facts or knowledge in the real world and
each pair of entities in triplets can be connected
by very limited relations. For example, entities
‘Eiffel Tower’ and ‘France’ are very likely con-
nected by relation located_in in traditional RTE
datasets (Chen and Li, 2021). But the subject and
object in dialogues can be linked by many rela-
tions, causing hard sample problems, e.g., the rela-
tion between ‘I’ and ‘my father’ may be live_with,
raised_by, get_along, etc. Hence it is essential to
formulate a framework for PAED, which is capable
of processing hard samples.

To the best of our knowledge, Wu et al. (2020)
proposed the largest persona attribute triplet ex-
traction dataset in dialogues based on the triplet
annotation of Dialogue Natural Language Infer-
ence (NLI) dataset (Welleck et al., 2019). However,
we observe that the relation labels were not well-
defined in the Dialogue NLI dataset and the dataset
of Wu et al. (2020) that inherits the same label
set, containing unspecific relation types. For ex-
ample, negative expressions such as never, and
don’t have, are collectively categorized as the
relation type of other in both datasets. Dialogue
NLI missed many triplet labels, resulting in incon-
sistent annotations, while the dataset of Wu et al.
(2020) introduced considerably less reliable labels
because utterances and triplet labels were automat-
ically paired by greedy rules. Motivated by ad-
dressing the unspecific and inconsistent annotation
issues of Dialogue NLI and avoiding the unreliable
label-utterance pairing of Wu et al. (2020), we aim
to deliver a rigorous dataset for PAED.
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We source data from Dialogue NLI and Per-
sonaChat (Zhang et al., 2018) datasets, forming
a new dataset, termed PersonaExt. We manually
correct 1896 triplet labels of the original Dialogue
NLI dataset to improve specificity. We use a more
conservative strategy to assign triplet labels to utter-
ances to improve label reliability and consistency:
Only the triplet selected by both trained classifiers
BERT (Kenton and Toutanova, 2019) and term fre-
quency–inverse document frequency (TF-IDF) is
assigned to the utterances. We conduct a human
evaluation on PersonaExt and the dataset of Wu
et al. (2020). It shows improvements of Person-
aExt in label specificity and annotation accuracy.

We formulate PAED as a generalized zero-shot
learning (GZSL) task because it is common that
the training utterances for a model cannot cover all
the relation types. The hard sample issue becomes
more severe in GZSL setting. Thus, we propose a
generation-based framework with a novel hard neg-
ative sampling (HNS) strategy for zero-shot PAED.
Our HNS strategy consists of a Meta-VAE sampler
and a contrastive structured constraint (CSC).

Meta-VAE sampler uses |R| latent variables
of variational autoencoder (VAE) (Kingma and
Welling, 2014) to represent |R| kinds of utterance
distributions under |R| different relations. It pairs
an utterance under a certain relation with one under
another relation as positive and hard negative sam-
ples, if the distance between their distributions is
the shortest. CSC is designed to disperse the paired
samples in semantic vector space. On average, our
framework surpasses the strongest baseline on our
PersonaExt by 1.06% and on the public FewRel
dataset (Han et al., 2018) by 0.8% (single triplet) &
3.18% (multiple triplets); Our Meta-VAE sampler
exceeds others (Eberts and Ulges, 2020; Yuan et al.,
2021b; Zeng et al., 2021) in PAED by 2.66%.

The main contributions of this work are: (1) We
develop a PAED dataset, PersonaExt, with 1,896
re-annotated triplets and 6,357 corrected utterance-
triplet pairs. (2) We present a generation-based
framework for zero-shot PAED. A novel HNS strat-
egy, Meta-VAE sampler with CSC, is presented to
enhance the performance of our model. (3) Our
model achieves better results than strong baselines
in zero-shot PAED and negative sampling. Our
code and data are publicly available1.

1https://github.com/SenticNet/PAED

2 Related Work

2.1 Persona Extraction

Persona extraction was initially formalized as a
classification task inferring user attributes such
as gender (Ciot et al., 2013), age (Alekseev and
Nikolenko, 2016), opinion (Li et al., 2023), oc-
cupation (Preoţiuc-Pietro et al., 2015) and pref-
erence (Cambria et al., 2022) from social media.
Welleck et al. (2020) formulated persona extraction
as a natural language inference task by learning the
relation between an utterance and a persona descrip-
tion. Recently, Wu et al. (2020) formalized persona
extraction as a generation task extracting structured
and easy-to-use user attributes from human-agent
dialogues through a two-stage extractor. However,
the extractor is not designed for a zero-shot setting.

2.2 Relation Triplet Extraction

RTE was defined as jointly extracting relations (He
et al., 2023) and entities (Li and Ji, 2014). Many
existing models (Gupta et al., 2016; Zhang et al.,
2017; Geng et al., 2021) cannot generalize to un-
seen relations, which is inevitable in PAED. Chia
et al. (2022) proposed a framework RelationPrompt
for RTE in a zero-shot setting. However, the above
models are tailored for documents and cannot be
directly used for PAED as there are more hard sam-
ples in dialogues, e.g., the subject and the object
may have multiple possible relations. We need to
handle the hard samples for zero-shot PAED.

2.3 Hard Negative Sampling

Negative sampling has been proven a key ingredi-
ent for contrastive learning (Robinson et al., 2020;
Du et al., 2021) and deep metric learning (Suh et al.,
2019). Many RTE methods (Qin et al., 2018; Yuan
et al., 2021b; Eberts and Ulges, 2020; Guo et al.,
2022; Chen et al., 2022) also benefit from robust
negative sampling strategies. Hard negative sam-
ples that are close to the positive ones in feature
space have a crucial influence on extraction per-
formance. As opposed to computer vision-related
works (Shrivastava et al., 2016; Liao and Shao,
2022), HNS is rarely studied in RTE and zero-shot
settings. Existing joint RTE samplers (Eberts and
Ulges, 2020; Yuan et al., 2021a; Zeng et al., 2021)
were not designed for hard samples. Therefore, we
develop an HNS strategy employing VAE to select
hard negative samples to improve the representa-
tion ability of the extractor.
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3 PersonaExt Construction

Our PersonaExt dataset is developed for PAED,
constructed from multi-turn chitchat datasets, e.g.,
PersonaChat (Zhang et al., 2018) and Dialogue
NLI (Welleck et al., 2019). We use PersonaChat as
the data source because it is a dialogue corpus with
many personal profiles. PersonaChat was built by
two crowd-workers to chat with each other, con-
ditioned on predefined personas, e.g., food pref-
erence, job status, and education. Each persona
includes 4 to 6 persona sentences. The dataset con-
tains 1,155 personas with over 10,907 dialogues.

Dialogue NLI annotated triplet (s, r, o) for dia-
logue utterances u and persona sentences p in Per-
sonaChat. They generated entailment, neutral, or
contradiction labels for pairs (p, u) and (p, p) based
on annotated triplets. For instance, I adopted a cat
and I have a cat named Alfred are both labeled with
a triplet (I, have_pet, cat). Then, they are consid-
ered as entailment; Sentences with different triplets
are regarded as neutral or contradiction.

However, many utterances in Dialogue NLI do
not have triplet labels, although the utterances con-
tain persona information. Wu et al. (2020) em-
ployed a greedy method to improve the label cov-
erage of Dialogue NLI. A triplet label of persona
sentence p or utterance ui is assigned to another
utterance uj if an entailment relationship of (p, uj)
or (ui, uj) is predicted by either BERT (Kenton
and Toutanova, 2019) or TF-IDF classifiers.

The triplets of Dialogue NLI and the dataset
of Wu et al. (2020) are somewhat unreliable, hav-
ing issues in the unspecific label set definition and
inconsistent utterance-triplet pairing. Thus, in our
PersonaExt construction, an automatic intersection
assignment strategy and manual attribute triplet
label correction are used to improve label qualities.

3.1 Automatic Intersection Assignment

Instead of accepting all the triplet labels given by
the greedy selection method (Wu et al., 2020), we
conservatively assign the triplet label of p or ui to
an utterance uj only if both BERT and TF-IDF in-
dicate that (p, uj) or (ui, uj) are in an entailment re-
lationship. This change largely improves the label
reliability, although there are chances our method
may miss a few labels. We believe that extracting
reliable persona information is more practical in
real-world applications because a dialogue system
should avoid using misinformation, although some
persona information is conservatively ignored.

3.2 Attribute Triplet Label Correction

We re-annotate the relation types and entities of
the attribute triplets in Dialogue NLI, because Dia-
logue NLI has issues in consistency and specificity.
Consistency. Some details in persona sentences
do not appear in utterances, even if they are in
an entailment relationship. For instance, persona
sentence I have 1 cat and I dislike dogs has the
triplets (I, have_pet, 1 cat) and (I, dislike, dogs);
Given an utterance I usually play with my cat and
the persona sentence are predicted as entailment,
the utterance is assigned with the two triplets in
Dialogue NLI. However, (I, dislike, dogs) did not
really appear in the utterance. Thus, the utterance
is over-annotated in Dialogue NLI.
Specificity. A relation type should be specific to
distinguish it from others. Most negations, such as
never, and don’t have are categorized into the re-
lation other in Dialogue NLI. However, we expect
them to be never_do and have_no, so that we can
categorize them into different personas, e.g., the
negation of action and the negation of possession.
Besides, an object should be quantity-specific, thus
dialogue systems can precisely present the nuances
in responses. For example, (I, have_pet, 1 cat) and
(I, dislike_animal, dogs) have more details that can
be used to generate responses than (I, have_pet,
cat) and (I, dislike, dogs).

Therefore, we design a semi-automatic annota-
tion method for triplet label correction. Step 1.
We retrieve persona sentences with negations or
any relation type in [other, have, like, like_general,
<blank>], and manually re-annotate them. In to-
tal, 1,896 sentences are corrected. The detailed
rules and all the relation types in our dataset are
in Appendix D. Step 2. We assign the triplets of
persona sentences to each utterance according to
the method in § 3.1. Step 3. We use SnowballStem-
mer2 to eliminate over-annotations, e.g, redundant
numbers, groundless adverbs, adjectives or nouns,
and incorrect form of verbs, to make the subject and
object consistent with the utterance. The number
of processed sentences adds up to 6,357.

In Step 1, we first invited an expert (a main anno-
tator) to manually annotate triplet labels for 1,896
persona sentences. The expert is a native English
speaker with rich persona-based dialogue system
research experience. We invited a single main an-
notator to annotate data to secure annotation con-
sistency.

2https://www.nltk.org
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Object Relation

Cns. Spec. Cns. Spec.

Wu et al. (2020) 0.70 0.68 0.68 0.54
PersonaExt 0.97 0.95 0.89 0.83

Table 1: Evaluation on utterance triplet annotation.

Next, we invited two side annotators to vote
triplet labels given by the main annotator and Di-
alogue NLI dataset, respectively. The main and
side annotators follow the criteria that the triplet
information should be completely presented in a
persona sentence or an utterance; the relationship
and object of a triplet should be specific for repre-
senting the persona information.

Cohen (1960)’s kappa of the side annotators was
0.72. 82.8% annotations, generated by the main
annotator were supported by both side annotators.
89.4% of newly generated annotations were sup-
ported by at least a side annotator. We use the
newly generated triplet labels that were supported
by at least a side annotator. We use the triplet labels
of Dialogue NLI if no side annotator supports the
re-annotated triplets.

To evaluate the quality of the semi-automatically
generated triplet labels in our PersonaExt dataset,
we invited two English-speaking graduate students
to score 150 randomly selected utterances with
triplets. Both the dataset of Wu et al. (2020) and
our re-annotated triplets were scored in terms of
‘consistency’ (cns.) and ‘specificity’ (spec.) for
relations and objects, respectively. The scale of the
score was {0, 1}. The average scores in Table 1
show that PersonaExt largely advances the dataset
of Wu et al. (2020) in the two evaluation indices.

4 Generalized Zero-Shot PAED

We propose a framework for PAED in general-
ized zero-shot learning (GZSL) setting (Xian et al.,
2018). The framework consists of two parts: a
persona attribute generator (PAG) and a persona
attribute extractor (PAE). PAG is trained to gen-
erate synthetic dialogue utterances containing per-
sona descriptions. PAE is trained on the synthetic
data and extracts attribute triplets of unseen target
data. PAE is a pretrained language model (PLM)
based extractor enhanced by our proposed Meta-
VAE sampler with CSC loss.

4.1 Task Definition
A PAED dataset is denoted as D = (U, Y ), where
U is the input dialogue utterance set and Y is the
persona attribute set. y = (s, r, o) ∈ Y is an at-
tribute triplet, where s, o, and r are a subject, an
object, and a relation type. The goal of general-
ized zero-shot PAED is to train the model on seen
data Ds and generalize to the unseen test data Dt.
During training, Ds and test relation Rt are avail-
able (Verma et al., 2018). At test time, the relation
search space of the trained model contains both
training and test relations (Rs ∪ Rt), and is even
much larger as PAE is generation-based instead of
classification-based. Rs ∩Rt = ∅. A test utterance
can be assigned to either a training rs or test rela-
tion rt, where rs ∈ Rs, rt ∈ Rt (Xian et al., 2018).

4.2 Persona Attribute Generator
Prompt tuning is proven to improve the generaliza-
tion of PLMs in zero-shot learning (Lester et al.,
2021), as it bridges the gap between the pretrain-
ing tasks and the downstream tasks (Mao et al.,
2023). Thus, we prompt-tune the PLM to syn-
thesize samples Dsyn based on relations rt in the
unseen test set Dt, following the research of Verma
et al. (2018). First, PAG is trained on training
data Ds, then prompt-tuned with rt to generate
synthetic data Dsyn. In the testing phase, given a
prompt “RELATION: r”, PAG is trained to generate
a structured output in the form of “CONTEXT: u,
SUBJECT: s, OBJECT: o”. During training, PAG is
trained with the causal language modeling objec-
tive, next word prediction (Bengio et al., 2000).

p(xi|x<i; tp) = PAG(x<i), (1)

where xi is the i-th token in input tokens
“RELATION: r, CONTEXT: u, SUBJECT: s, OBJECT:
o”. We maximize the probability of current to-
ken xi conditioned on previous tokens x<i: Lg =∑n

i=1 logp(xi|x<i; tp). Temperature tp (Hinton
et al., 2015) adjusts the diversity of generation.

4.3 Persona Attribute Extractor
Similarly, we first finetune the PLM-based PAE on
training data Ds, then tune the extractor on syn-
thetic samples Dsyn generated by PAG. PAE is
trained with the seq-to-seq objective (Lewis et al.,
2020). Given the prompt “CONTEXT: u”, the
extractor learns to predict a structured output as
“SUBJECT: s, OBJECT: o, RELATION: r”.
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Figure 1: Meta-VAE sampler with Contrastive Structured Constraint.

However, during testing, it becomes harder for
PAE to distinguish the relation types in unseen data
Dt, as a dialogue utterance may convey a com-
pletely opposite meaning by replacing only one
token, e.g., from ‘like’ to ‘hate’. Hence, we pro-
pose CSC to help to differentiate the relation types
and Meta-VAE sampler for hard negative sampling,
which are introduced in § 4.5 and § 4.4, separately.

4.4 Meta-VAE Sampler

The premise (supported by §4.4.1) of our model
is that, for each relation type, Meta-VAE captures
the distribution of all the utterances with such a
relation. In addition, the utterances ui with relation
ri and uj with relation rj are considered hard neg-
ative samples for each other if ri and rj is close in
terms of distribution distance.

In Fig. 1, an utterance u (I enjoy playing with
cats) with a triplet (s+, r+, o+) (I, like_animal,
cats) is a sentence with relation class like_animal.
And a positive sample of CSC is formulated as
“CONTEXT : I enjoy playing with cats . SUBJECT :
I OBJECT : cats RELATION : like_animal”. Then,
the top-k closest relations (like_music, like_sport,
and have_pet) to relation like_animal are retrieved
by Meta-VAE sampler. For each retrieved relation
r′, e.g., like_sport, an utterance, e.g., I enjoy play-
ing basketball, is randomly selected. Then, the
selected k utterances are assigned with the same
triplet (s+, r+, o+) of u to construct hard negative
samples. For example, one of the hard negative
samples is “CONTEXT : I enjoy playing basket-
ball . SUBJECT : I OBJECT : cats RELATION :
like_animal”. Then the extractor is trained to dis-
perse the positive and negative samples in vector
space with CSC and seq2seq loss. Meta-VAE is
trained with KL divergence and next word predic-
tion loss as Eq. 4.

4.4.1 Meta-VAE
VAE (Kingma and Welling, 2014) can approximate
the prior distribution pθ(z) of latent continuous
random variable z through approximate posterior
qϕ(z|u) for a given dataset. Intuitively, for each
dataset with a certain relation type r, we want
to train a VAE to approximate a different prior
distribution of its latent continuous random vari-
able. Thus, we will obtain |R| different VAEs in
total; |R| is the number of relation classes. How-
ever, this is parameter-inefficient. Therefore, we
propose Meta-VAE to reduce the complexity: We
map each relation class into a relation embedding
Embr(r) through a fully-connected layer with pa-
rameters τ , concatenating each encoded utterance
Embu(u) with the corresponding relation embed-
ding and feeding the concatenated features into
VAE. This is because the concatenation-based con-
ditioning (Sitzmann et al., 2020) equals a special
case of hypernetwork (Ha et al., 2017) which is
an emerging branch of meta-learning (Chang et al.,
2019), and generates the weights of the layers for
different tasks (i.e., relation types).

We use GRUs (Chung et al., 2014) as the encoder
and decoder of Meta-VAE. Considering the struc-
ture of update and reset gates of GRU, we simplify
the concatenation by feeding Embr(r) as an initial
hidden state of a GRU encoder as Eqs. 2 and 3.
It is because additive equals concatenation atten-
tion (Luong et al., 2015; Bahdanau et al., 2015).

aj1 = σ(WaEmbu(x1) + UaEmbr(r))
j (2)

cj1 = σ(WcEmbu(x1) + UcEmbr(r))
j , (3)

where Embu(x1) is the first token embedding in u.
aj1 and cj1 are the update gate and reset gate at time
step 1 for the j-th GRU unit; Wa, Ua,Wc, Uc are
learnable parameters.
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The empirical objective of Meta-VAE with Gaus-
sian latent variables z is as follows:

Lh(u; θ, ϕ, τ) = −DKL(qϕ,τ (z|u)||pθ,τ (z))

+
1

L

L∑

l

logpθ,τ (u|z(l)).
(4)

For each relation r, a set of latent variable z is ob-
tained from the prior distribution pθ,τ (u|z) and the
data u is generated by the generative distribution
pθ,τ (u|z) conditioned on z. z(l) = qϕ,τ (z|u) ∼
N (µτ , σ

2
τI), pθ,τ (z) ∼ N (0, I). qϕ,τ (z|u) is a

probabilistic encoder. θ, ϕ and τ are learnable pa-
rameters. L is the number of samples.

4.4.2 Sampling Criteria
As the latent variable model can express the dis-
tributions of variables in terms of a small amount
of latent variables (Bishop, 1998), the latent vari-
able zr captures the distributions of utterances
with different relations r. Thus, we use KL di-
vergence (Kullback and Leibler, 1951) between the
distributions of latent variables zi and zj to repre-
sent the distances between different utterances with
different relation classes ri and rj .

We assume that the latent variable z of each
relation class obeys a multivariate Gaussian Distri-
bution z ∼ N (z;µ,Σ) and all components of z are
independent, i.e., Σi,j = 0, i ̸= j. Then, for latent
variables zi and zj of relation classes ri and rj , the
KL divergence is:

DKL(Pi||Pj) = EPi [log
Pi

Pj
] =

1

2
{log |Σj |

|Σi|
− n+

tr(Σ−1
j Σi) + (µj − µi)

TΣ−1
j (µj − µi)},

(5)
where Pi, Pj are the probabilities of zi and zj . As
we assume Σ is a diagonal matrix, Eq. 5 can be
simplified as:

DKL(Pi||Pj) =
1

2
{tr(logΣj − logΣi)− n+

tr(Σi./Σj) + (µj − µi)
T ./Σj(µj − µi)}.

(6)
Here, ./ is an element-wise division operation on
Σj through which we obtain 1/σk

j for each diago-
nal element in Σj .

Our sampling strategy is: For each relation class
ri, we randomly select one utterance, feeding it to
the trained Meta-VAE and obtaining zi to represent
the distribution of utterances under relation ri; We
compute the distance between the distributions of

zi and zj as the distance between utterances under
ri and rj , i ̸= j. Then, the top-k closest relations
are selected for each relation ri; For any utterance,
we randomly select one utterance for each top-k
closest relations and get k hard negative samples.
The detailed sampling algorithm is in Appendix C.

4.5 Contrastive Structured Constraint
The existing generation-based triplet extraction
methods seldom focus on the fact that triplets are
supposed to be consistent with the input utterance
u (Ye et al., 2021). Additionally, the similar token
distribution of some dialogue utterances exacer-
bates the problem. For example, we aim to extract
the attribute triplet like (My mom, have_pet, 1 cat)
instead of (My mom, like_animal, 1 cat) for a given
input utterance My mom has a cat named Kitty.
This is because we believe the former explicitly
conveys the fact that the cat belongs to my mother,
while the latter does not convey the property of
ownership.

To this end, we transform the triplet contrastive
learning into a binary classification problem: For
the utterance ut with label (s+, r+, o+), we get
k hard samples (u−t,1, ..., u

−
t,k) from Meta-VAE

sampler; We represent the positive sample as
“CONTEXT: ut, SUBJECT: s+, OBJECT: o+, RE-
LATION: r+” and the j-th negative sample as
“CONTEXT: u−t,j , SUBJECT: s+, OBJECT: o+, RE-
LATION: r+”. We use the hidden state h+i (h−j ) of
the last input token as the i-th positive (j-th neg-
ative) sample semantic representation from PAE
and feed it to a fully-connected layer to compute
classification logits l. Instead of constraining the
samples to converge to a fixed positive or nega-
tive polarity (Zhu et al., 2020), we employ CSC
to relocate the positive and negative samples and
make them diverge from each other. The structural
contrastive loss based on KL divergence is:

Lc = −DKL(l
+||l−)−DKL(l

−||l+)

= −
L∑

i=1

k∑

j=1

1

k
(l+i log

l+i
l−j

+ l−j log
l−j
l+i

).
(7)

Here, l+i is the logits for the i-th positive sample
and l−j is the logits for the j-th negative sample.

5 Experiments

Besides our PersonaExt (PerExt), we experimented
on FewRel to explore the capability of our model
in multiple triplet extraction and the potential to
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Samples Entities Relations Length

FewRel 56,000 72,964 80 24.95
PersonaExt 35,078 3,295 105 13.44

Table 2: Dataset statistics.

generalize on zero-shot RTE. Another reason is we
do not have another triplet-based PAED dataset to
test our model. The statistics are listed in Table 2.
We evaluated the performance in multiple triplet
extraction with a standard metric Micro F1 (Paolini
et al., 2020), precision (P.) and recall (R.). For
single triplet extraction, we used accuracy (Acc.).

5.1 Datasets

FewRel is built through distant supervision where
a set of candidate relations and instances are auto-
matically extracted over Wikipedia and Wikidata,
and then human annotation is employed to filter
low-quality relations (Han et al., 2018). We follow
the same operation as Chia et al. (2022) to make
FewRel suitable for zero-shot RTE.

For the two datasets, we randomly select a fixed
number of seen and unseen labels during training.
The number of unseen label size n is set to three
incremental setups {5, 10, 15}. To obtain consol-
idated experimental results, we use five different
random seeds to repeatedly select five combina-
tions of the seen and unseen labels, yielding five
different data folds. Each data fold consists of
training, validation and test sets. The test set con-
tains sentences with unseen labels. The validation
set contains five labels which are used to select
sentences for hyper-parameter tuning. The remain-
ing sentences comprise the training set. With this
setting, we ensure training, validation and test sen-
tences come from disjoint label sets.

5.2 Baselines

TableSequence (TS) (Wang and Lu, 2020) is pri-
marily designed for joint learning of named entity
recognition and relation extraction.
RelationPrompt (RP) (Chia et al., 2022) is the
first to solve zero-shot RTE by prompting PLMs to
synthesize relation samples given relation labels.
SpERT (Eberts and Ulges, 2020) transfers the
strong negative sampler by concatenating the cur-
rent utterance of which the triplet is (s+, r+, o+)
and any other utterance of which the triplet is
(s−, r−, o−). The negative triplet is (s+, r∗, o−)
or (s−, r∗, o+), where r∗ is a random relation type.

Unseen Model

FewRel PerExt

Multi Single Single

P. R. F1. Acc. Acc.

n=5
TS 15.23 1.91 3.40 11.82 -
RP 20.80 24.32 22.34 22.27 38.95
OURS 25.79 34.54 29.47 24.46 40.01

n=10
TS 28.93 3.60 6.37 12.54 -
RP 21.59 28.68 24.61 23.18 26.29
OURS 23.31 27.42 25.15 22.89 28.09

n=15
TS 19.03 1.99 3.48 11.65 -
RP 17.73 23.20 20.08 18.97 27.25
OURS 20.68 23.39 21.95 19.47 27.57

Table 3: The experimental results of triplet extraction.

RSAN (Yuan et al., 2021b) randomly selects sev-
eral relations different from that of the current sen-
tence.
GenTaxo (Zeng et al., 2021) randomly selects a
triplet (s−, r−, o−), then the negative triplet is gen-
erated as (s+, r+, o−) or (s−, r+, o+).

5.3 Setups

We used the PLM GPT-2 (Radford et al., 2019)
with 124M parameters as PAG and BART (Lewis
et al., 2020) with 140M parameters as PAE. Meta-
VAE sampler has 2.4M parameters. We first fine-
tuned the models on the training set for 5 epochs
and selected the best model parameters based on
the validation loss with AdamW (Loshchilov and
Hutter, 2018) optimizer. We set batch size as 128
for PAG and 32 for PAE, learning rates as 3e-5
for PAG, 6e-5 for PAE and 0.005 for Meta-VAE,
and warm up ratio as 0.2. For each relation, 250
sentences were synthesized by PAG utilizing the
relation labels of validation and test set as prompts.
Then, we finetuned the PAE again on the synthetic
sentences. We employed greedy decoding strategy
for single triplet extraction and triplet search de-
coding (TSD) (Chia et al., 2022) strategy for multi-
triplet extraction. More implementation details are
in Appendix B.

5.4 Experimental Results

We reported the main results for generalized zero-
shot RTE and PAED in Table 3. For each n ∈
{5, 10, 15}, we run 5 different data folds 3 times
and obtained the average with a significance level
of 0.05. We found that OURS surpasses RP (1.06%
on average) in all settings on PersonaExt. On
FewRel dataset, OURS performs better than RP
in most settings.
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n=5 n=10 n=15

OURS 39.91 32.47 23.10
w/o HNS 38.21↓1.70 31.86↓0.61 22.09↓1.01

SpERT 24.38↓15.53 31.79↓0.68 22.47↓0.63
RSAN 37.41↓2.50 30.65↓1.82 21.67↓1.43
GenTaxo 38.66↓1.25 30.55↓1.92 22.15↓0.95
Rand 37.59↓2.32 30.69↓1.78 22.01↓1.09

Table 4: Ablation study. Rand means randomly se-
lecting negative sentences with different relation types.
HNS refers to Meta-VAE sampler & CSC.

We attribute the significant improvement (3.18%
on average) in multi-triplet extraction to our Meta-
VAE sampler with CSC that introduces hard sam-
ples during training. In particular, OURS consis-
tently achieves higher precision (3.22% on aver-
age) than RP. The false positive problem is more
severe than the false negative in PAED as speakers
are more likely to tolerate negligence rather than
confusion. The results also show the generalization
capability of our framework on zero-shot RTE.

5.5 Ablation Study
We conducted an ablation study on PersonaExt
dataset to compare Meta-VAE sampler with sev-
eral benchmark samplers. All the samplers use the
same random seed and CSC loss. We run them
with three unseen label setups and reported the
average accuracy of three runs. In Table 4, Meta-
VAE sampler outperforms the other four samplers
by 2.66% on average and surpasses the strongest
baseline GenTaxo by 1.37%. This indicates our
Meta-VAE sampler yields better negative samples
because of its good approximation to the distribu-
tions of different relations. We also observed a
significant performance drop of w/o HNS, yet it
still exceeds some of the baseline samplers. It sug-
gests a bad sampler may cause a decline instead
of an enhancement. Therefore, it is crucial for a
sampler to accurately identify the hard negative
samples to make the best of contrastive learning.

5.6 Revisiting Meta-VAE Sampler with CSC
The KL divergence between positive and negative
samples gets larger during finetuning on the syn-
thetic dataset (details are in Appendix A). This is
explained by the fact that we utilized KL diver-
gence to formulate our CSC loss. However, to get a
concrete understanding of whether our Meta-VAE
sampler and CSC work as expected in vector space,
we studied the distribution of positive and negative
samples before and after finetuning (Fig. 2).
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Figure 2: Distribution of positive and negative samples
after PCA decomposition. (b), (c), and (d) depict the
sample distribution of 3 contrastive groups after finetun-
ing with our Meta-VAE sampler and CSC.

In each contrastive group, one sample is paired
with three samples under different relation types
retrieved by Meta-VAE. All the scatter points are
obtained by decomposing the sample representa-
tion h from PAE with principal component analysis
(PCA) (Wold et al., 1987). Different groups are in
distinct colors. Fig. 2 (a) shows negative samples in
each group are closely scattered around the positive
sample. This indicates Meta-VAE sampler can find
out the hard negative samples which are semanti-
cally closest to the positive one. Figs. 2 (b), (c) and
(d) suggest fintuning with CSC loss disperses the
positive and negative samples in semantic vector
space. We conclude that Meta-VAE is capable of
retrieving the hard negative samples in terms of
semantic meaning and CSC loss enables the model
to relocate the positive and negative samples in a
sparse manner.

5.7 Case Study

We show three PAED cases in Fig. 3 to reveal the
pros and cons of the extraction methods and annota-
tions. As shown, in cases 1 and 3, the RP-extracted
objects do not fit well with the relations. In addi-
tion, RP extracted incorrect relations which contain
the opposite meanings to the ground truth (Person-
aExt) in cases 1 and 2. In contrast, the strong
performance of our extractor indicates it benefits
from dealing with hard negative samples. The ob-
ject ‘all’ in case 2 is not specific. Wu et al. (2020)’s
annotations of relations and objects in cases 1 and
3 are inconsistent with utterances.
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I hate the beach because it will ruin my blond hair.
RP: I, like_general, blond OURS: I, dislike_general, beach
Wu et al.: I, employed_by_general, arena PersonaExt: I, dislike_general, beach

I love all sorts of cars, so I just travel the us living in cars.
RP: I, dislike_general, cars OURS : I, like_general, cars
Wu et al.: I, dislike, all PersonaExt: I, like_general, cars

I find myself drawn to exotic music which is why I travel to jamaica.
RP: I, like_general, exotic OURS : I, favorite_place, jamaica
Wu et al.: I, like_activity, traveling PersonaExt: I, favorite_place, jamaica

Figure 3: Cases of extracted triplets and annotations.

5.8 Exploration of Experimental Settings

To further explore the robustness of our framework,
we analyzed the effects of PAE’s decoding strat-
egy and the data size of the samples generated
from PAG on PersonaExt dataset. The comparison
in Table 5 was conducted with three unseen label
setups and shows the accuracy change between
a decoding strategy and our default greedy strat-
egy. We observed that top-k random sampling (Fan
et al., 2018) weakened the extraction performance
although it was proved to be more effective than
beam search in various generation tasks.

As discussed in Lu et al. (2022), top-k random
sampling is commonly used in open-ended genera-
tion and, hence, it is not a suitable decoding strat-
egy for PAED. Additionally, TSD improved the
accuracy in single triplet extraction in PAED task,
which was initially proposed to improve the perfor-
mance of RP in multi-triplet extraction. However,
as TSD is a beam search-based decoding strategy,
the slight increase of accuracy came at the cost
of much longer computation time. We conducted
the experiments on RelationExt dataset with 10
unseen labels and report the results in Fig. 4. In
general, the proposed framework is robust with the
synthetic data size changing from 250 to 550. An
obvious improvement of accuracy can be observed
by increasing the synthesized sample number from
1 to 100. The best performance was obtained when
the synthesized samples sums up to 450. However,
the further increase of the synthetic data size led to
gradual reduction in accuracy.

Model ∆ Acc.

n=5 n=10 n=15

OURS w/ top-k sampling -3.66 -2.77 -1.66
OURS w/ TSD 0.54 0.60 0.07

Table 5: Effects of different decoding strategies on sin-
gle triplet extraction in PAED.
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Figure 4: Effects of synthetic data size on PAED.

6 Conclusion

In this work, we studied generalized zero-shot
learning for persona attribute extraction in dia-
logues (PAED). We first built PersonaExt based
on PersonaChat and Dialogue NLI through a semi-
automatic annotation framework, yielding consis-
tent and specific triplet labels. Then we proposed
an effective and interpretable Meta-VAE sampler
with CSC loss to process hard negative samples
and incorporated it into PAE for generalized zero-
shot PAED task. Empirical results demonstrate
that our framework surpasses the strongest base-
line by a large margin. A visualized quantitative
analysis provides a thorough explanation for the
mechanism of our Meta-VAE sampler and CSC in
sample representations.

Limitations

Due to the lack of theoretical support, it is challeng-
ing for us to formalize an annotation scheme for
implicit persona attributes in the current stage, e.g.,
extracting an implicit triplet (I, like_animal, dogs)
from a sentence “every day, I personally take my
dogs out for a walk and lend a hand to my neigh-
bors by occasionally taking their furry friends out
for a stroll as well”, besides (I, have_pet, dogs).
Therefore, our PersonaExt is not compatible with
the implicit or multiple persona attribute triplet ex-
traction tasks. Additionally, our framework did not
exploit complementary information from the con-
text of the current utterance for PAED. For an input
with multiple dialogue utterances, it is hard for our
model to match extracted persona triplets with the
exact speaker because of the existence of pronouns
and more than one speaker in dialogues.
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A Performance of finetuning with
Meta-VAE sampler and CSC

To show the effect of Meta-VAE sampler and CSC
during the finetuning process, we report the trend
of losses in Fig. 5. Under the same training condi-
tions, we finetuned the persona attribute extractor
with or without Meta-VAE sampler and CSC on the
synthetic dataset. The losses from the two experi-
ments are depicted in Fig. 5 (a) and (b), separately.
The results show that the KL divergence between
positive and negative samples selected by Meta-
VAE sampler became larger when finetuning with
the CSC loss.

B Implementation details

We used one Tesla V100 32 GB GPU for training
in our experiments. It took around three minutes
to finetune on training set of PersonaExt in each
epoch. And it took around two hours for one run of
PersonaExt in each setup for each random seed. It
took around 5 hours for each run on FewRel dataset.
Hyperparameters, i.e., the weight of CSC loss and
the learning rate of Meta-VAE are tuned manually
according to the performance on the PersonaExt
validation set with 5 unseen labels. For the weight
of CSC loss, we considered the values 0.5, 0.1,
0.05, 0.01, 0.005; For the learning rate of Meta-
VAE, we tried the values 0.05, 0.01, 0.005. Finally,
the number of negative samples k is set to 3 and the
weight of CSC loss is 0.5. Due to the computational
constraints, the other hyperparameters are fixed
values, which are listed in Table 6.
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Figure 5: Loss trends of finetuning on the synthetic
dataset.

Value

Meta-VAE

Dimension of Hidden State 100
Dimension of Latent Variable 128
Encoder Layers 2
Decoder Layers 2
Bidirectional True

PAG Maximum Sequence Length 128
Sampling Temperature 1.0

PAE Maximum sequence Length 128

Training Dropout Rate 0.1

Table 6: Detailed hyperparameters.

Algorithm 1: Meta-VAE Sampler
Input: Utterance dataset D, vae-based

distance function d; number of
relations n; number of negative
relation sample per relation class k

Output: Iterative sampler of dataset D
Initialization: rel2utt: dictionary
containing all utterance indices of each
relation class;
utt2rel: inverse dictionary of rel2utt;
dist: zero matrix of size n× n.
for i = 1; i ≤ n do

indexi=random.choice(rel2utt[i])
utti = D[indexi]
for j = 1; j ≤ n do

indexj=random.choice(rel2utt[j])
uttj = D[indexj]
dist[i, j]=d(utti, uttj)

end
end
dist[i, i] = Inf
topks = topk(−dist, k)
indices = []
for idx in range(|D|) do

sub_index = []
relation_index=utt2rel[idx]
sub_index.append(idx)
for i in topks[relation_index] do

select_utti=random.choice(rel2utt[i])
sub_index.append(select_utti)

end
indices.append(sub_index)

end
return iterator(indices)

C Meta-VAE Sampling

The pseudo-code of our Meta-VAE sampler is
shown in Algorithm 1.
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D Dataset Annotation

D.1 Statistics of Annotated Sentences

In this subsection, we display the statistical infor-
mation of corrected triplet labels. As shown in Ta-
ble 7, we manually correct three kinds of errors, i.e.,
like, neg.(negation), misc.(miscellaneous). Column
names ‘Like’ corresponds to sentences with rela-
tions like and like_general. ‘Neg.’ corresponds
to sentences with negations or zeros in object o.
‘Misc.’ corresponds to sentences with relations
other, <blank> and have. Within the scope of Au-
tomatic, ‘No.’ and ‘Prn.’ refer to the numbers and
the pronouns automatically processed by Snowball-
Stemmer, respectively.

D.2 Relation Types

We have 105 relation types in PersonaExt
Dataset: live_in_citystatecountry, like_food,
place_origin, employed_by_general, like_goto,
has_profession, has_age, have_pet, has_ability,
never_do, like_music, like_animal, want_do,
favorite_food, has_hobby, favorite, like_read, fa-
vorite_music_artist, own, employed_by_company,
allergy_to, have_vehicle, attend_school,
like_drink, favorite_music, have, misc_attribute,
previous_profession, dislike_food, physi-
cal_attribute, like_sports, school_status,
live_with, other, name, favorite_color, be-
lief, like_movie, scared_of, want, favorite_sport,
have_children, favorite_hobby, gender, diet, teach,
dislike_animal, live_in_general, favorite_animal,
have_family, fall_out, dislike_music, do_not_eat,
favorite_movie, have_no, job_status, fa-
vorite_season, dislike_drink, favorite_activity,
worry_about, member_of, do_not_drink, fa-
vorite_drink, marital_status, has_degree,
favorite_book, do_not_do, dislike_sport,
have_children, weakness, international_exp,
industry, doing, have_no_family, like_sport, dis-
like_subject, relationship, like_character, collect,
pre_employed_by_company, nationality, sex-
ual_orientation, race, pre_employed_by_general,
raised_by, dislike_job, dislike_color, want_no,
work_schedule, like_subject, like_activity,
like_watching, health_status, favorite_show,
dislike_activity, have_no_sibling, used_to,
get_along, like_general, have_sibling, dis-
like_general, like_color, want_job, favorite_place,
have_no_children.

Manual Automatic

Type Like Neg. Misc. No. Prn.
Count 235 1259 402 1447 4910

Table 7: Statistics of annotated sentences.

D.3 Annotation Rules for Selected Relation
Types

The relation types [other, have, like, like_general,
<blank>] are subdivided into the following differ-
ent relation types based on the semantic meaning
of the persona sentence.

• other/ <blank>: {diet, allergy_to, scared_of,
relationship, belief, health_status, job_status,
school_status, attend_school, doing, used_to,
raised_by, work_schedule, get_along,
live_with, worry_about, place_origin, race,
industry, name, collect, sexual_orientation,
misc_attribute, has_ability, have_children,
gender, like_music, like_activity, like_goto,
like_drink, have_family, have_no_family,
live_in_citystatecountry, previous_profession,
pre_employed_by_company, physi-
cal_attribute, pre_employed_by_general,
other}

• have: {collect, relationship, physi-
cal_attribute, live_with, live_in_general,
like_activity, has_profession, allergy_to,
health_status, have_vehicle, interna-
tional_exp, member_of, want_do, weakness,
have_family, has_hobby, marital_status,
employed_by, have}

• like/ like_general: {like_character, like_color,
like_activity, like_movie, like_music,
like_watching, has_hobby, favorite_season,
favorite_music_artist, misc_attribute,
get_along, job_status, has_profession, collect,
have_family, want_job, marital_status,
like_general}

• dislike: {dislike_color, dislike_food, dis-
like_subject, dislike_job, dislike_sport, dis-
like_animal, dislike_activity, dislike_drink,
dislike_read, dislike_music, dislike_general}

Sentences with negations or zeros in o are re-
annotated by the following relation types based on
the context.

• negations/ zeros:{do_not_drink, never_do,
have_no_family, have_no, have_no_children,
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weakness, want_no, have_no_sibling,
fall_out, do_not_eat, do_not_do, dis-
like_job, dislike_food, job_status,
scared_of, allergy_to, dislike_color, dis-
like_sport, dislike_activity, used_to, previ-
ous_profession, pre_employed_by_general,
marital_status, have_no_pet, health_status,
physical_attribute, misc_attribute, sex-
ual_orientation, dislike_general, worry_about,
diet, belief, relationship }

E Discussion of data and code

Our PersonaExt is developed on the basis of Per-
sonaChat (MIT license) and Dialogue NLI (CC-BY
4.0). The pretrained language models we used, i.e.,
GPT-2 and BART, are under MIT license. The
data of our PersonaExt is sufficiently anonymized
as all persona data are pre-defined instead of ex-
tracted information from personal profiles in the
real world.

For our human annotation and human evaluation,
we invited 5 English-speaking participants among
which one is an expert with dialogue system re-
search experience and the other four are graduate
students. The hourly payment is around 80% of
their hourly salary or stipend. It took totally 64
hours for each annotator in the human annotation
task and 5 hours for each in the human evaluation
task. The task is scheduled to be finished in one
month.
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