
Deep Artificial Intelligence for Fantasy Football
Multimodal Media Understanding

Aaron Baughman
 IBM

 Cary NC, USA
 baaron@us.ibm.com

Stephen Hammer
IBM

 Atlanta GA, USA
 hammers@us.ibm.com

Gray Cannon
 IBM

 Miami FL, USA
 gfcannon@us.ibm.com

Micah Forster
 IBM

 Austin TX, USA
 mforste@us.ibm.com

Jeff Powell
 IBM

 Atlanta GA, USA
 jjpowell@us.ibm.com

Chris Jason
Disney ESPN

 Bristol CT, USA
 Chris.Jason@disney.com

Daniel Bohm
Disney ESPN

 Bristol CT, USA
 Daniel.Bohm@disney.com

Sai Gudimetla
 IBM

 New York NY, USA
 sgudime@us.ibm.com

ABSTRACT
Fantasy sports allow fans to manage a team of their favorite
athletes. The manager of the team makes decisions of which players
to roster and trade based on analysis of sports media and statistics.
The sports media industry rabidly produces content to the tune of
trillions of bytes of natural language text and multimedia data
which is not possible for a human to analyze. Our work discusses
the results of a novel machine learning system (in production from
2017) which helps manage a fantasy team. The system analyzes
media content: videos, articles, podcasts for a particular player and
identifies sentiment, keywords, entities and concepts. The system
combines the NLP insights with statistics to come up with 4 player
specific measures: boom (player scoring above a certain threshold),
bust(player scoring below a certain threshold), play with a hidden
injury or play meaningful touches. A fairness postprocessor is
applied to remove the bias in coverage for the particular player or
team. After that, the system produces a score spread of each player.
The keywords, entities and concepts are extracted by trained
statistical entity detectors and document2vector models applied to
over 100,000 news sources crawled each day. We also use
probability density functions to produce a score spread of a players
projected points. The resulting visualizations, projections and
sentiment analysis were compelling to end users (9.1 million users
per month in 2019), as each user spent over 90 seconds (throughout
2019) using the evidence from our novel system.

CCS CONCEPTS
• Computing methodologies → Artificial
Intelligence

KEYWORDS
Multimedia, Unstructured Text, Machine Learning, Deep
Learning, Sports Analytics, Natural Language Processing

1 Introduction
Fantasy sports owners and managers have hundreds of critical
questions to answer before selecting their team. Who will score the
most points this week? What player will be a bust or breakout?
Will any players be a sleeper? Do any players have injuries that are
going to impact their play? When should a player start to counter
my opponent’s team? Are there any available trades to upgrade a
team? The number of possible moves to make is daunting for both
the professional and novice player.
 With over 9.1 million unique fantasy football players per month
on the ESPN platform alone, the demand for content is insatiable.
Every day during the 2018 and 2019 seasons, we sustained 2 billion
edge hits and delivered 250 TB of AI content per day. The large
volume of users bases the majority of their roster decisions on
player rankings and simple statistics. However, unstructured and
multimedia information about sports is the largest data component.
The volume of natural language, video, and podcast content creates
fantasy football content overload that is an epidemic among current
team managers.
 The overwhelming majority of fantasy sports participants filter
content based on personal biases such as reading articles, watching
videos, or listening to podcasts about their favorite team or from
their preferred outlet. On average, fantasy players consume 3.9
sources to base their decisions [22]. Other users rely on ad hoc
tools such as querying statistics databases, excel sheets, or natural
language searches [6,22]. The limited amount of information each
manager can consume has created tremendous knowledge gaps
when making decisions.
 Throughout the 2018 and 2019 NFL football seasons, we
developed a novel system that reads and comprehends natural
language, videos, and podcasts from over 100,000 sources that
were deployed to the ESPN Fantasy Football mobile and desktop
experiences. The semantic relationships between words and topical
understanding through techniques such as doc2vec enabled deep
learning classifiers to make decisions about each football player.
Team managers and coaches now have insight from unstructured
textual, and multimedia data as to which players will be a bust,
breakout, play meaningful touches, or play with a hidden injury.
Statistical data is combined with our system’s comprehension of

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than the author(s) must be honored. Abstracting
with credit is permitted. To copy otherwise, or republish, to post on servers
or to redistribute to lists, requires prior specific permission and/or a fee.

Request permissions from permissions@acm.org.

WISDOM '20, held in conjunction with KDD'20, August 24, 2020, San Diego, CA
USA© 2020 Copyright held by the owner/author(s). Publication rights licensed
to WISDOM’20. See http://sentic.net/wisdom for details.

unstructured information through a deep machine learning pipeline.
A best-fit score distribution from a set of 24 probability density
functions (PDF) based on current and historical score projections
provide an understandable score spread. To answer the question of
“why”, we presented the top 10 articles, podcasts, and videos that
support or refute our machine learning pipeline’s player
assessment. This paper depicts the empirical evaluation of our
ESPN Fantasy Football Insights with Watson system (FFIW).

2 Abbreviated Related Works
Advanced analytics that use structured data such as historical game
statistics are prevalent and widely used by fantasy sports managers.
For example, Rotogrinder provides a service that builds starting
lineups, player projections, Vegas odds, depth charts, and weekly
weather reports. Another tool available for fantasy sports players
is called Dailyfantasynerd. The service highlights favorable
statistics for players, maintains a lineup optimizer, and displays
weather data for each venue. Fantasyfootballanalytics.net exposes
aggregated play statistics for analysis along with custom point
projections and player risk assessments.
 Tools that ingest, consume and utilize a wide range of
unstructured data such as text and multimedia have had limited
utility for direct team management. On rotowire.com, fantasy
sports managers can ask a human expert that has curated both
structured and unstructured data for advice. ESPN has an insider
paid service to access premium content written by featured
columnists as well as roster advisors. SportsQ has a natural
language question and answer system to retrieve passages relevant
to a question. However, none of the prior work distills millions of
articles, videos, and podcasts every hour into AI insights.

2.1 Machine Learning in Fantasy Football
All of the prior work addressing fantasy sports has centered around
statistics and structured data. We are not aware of any previous
works that have analyzed multimedia and text information for the
basis of computational guided fantasy sports play. For example,
Landers and Duperrouzel present several machine learning
approaches for predicting points scored by players as well as
strategies to optimize a team. Other works use statistical predictors
from sports play to optimize teams [25]. Following the general
body of work within fantasy sports, Hermann et al. show how
regression, naïve Bayes, and decision trees can be used to predict
fantasy basketball performance. Other works analyze predicting or
projecting players’ values within fantasy sports [12,18,24]. Seal
addresses any doubt that machine learning with statistics can
improve fantasy play. We further the state of the art and
demonstrate how multimedia and natural language processing can
provide quantitative and qualitative benefits to fantasy football
experiences.

2.2 Deep Learning for Natural Language
Processing

Large-scale text classification has been inspired by the growth of
natural language text over social media and news outlets. Work by
Glorot showed that stacked denoising auto-encoders performed text
sentiment classification better than Support Vector Machines
(SVM), Structural Correspondence Learning (SCL), Multi-label
Consensus Training (MCT), and Spectral Feature Alignment [28].
Other deep learning works used convolutional neural networks and
transfer learning by sharing network levels for auxiliary tasks to
provide Semantic Role Labeling (SRL) [17].
 Seminal work culminated by Tomas Mikolov in 2013 outlined
the beginnings of the application of deep learning to natural
language processing with doc2vec. Billions of words can be added
to a computing system’s vocabulary, which progresses the
traditional n-gram language model [27]. Additional work shows
that distributed word vector representations improve text
classification over Bag of Words (BoW) and Support Vector
Machines (SVM) [12].
 Works began to use doc2vec approaches to expand short text for
improvements in text classification [13]. Other works enriched
short text using tf-idf measures before using a doc2vec approach
for text classification [5]. Text embeddings were combined with
multimedia convolutions within multitask learning to improve
model performance [9]. Word2vec approaches are used within
language translation to emphasize the use of unlabeled data
between monolingual data [23]. Unlike the previous works, we
extend doc2vec by summarizing thousands of documents into
entities, concepts, and keywords before creating average word
embeddings.

2.3 Deep Learning Fairness
A lot of work and research has been focused around ethical and fair
computing. In particular, AI Fairness 360 is an open source Python
library that has dozens of bias identification and mitigation
techniques [15]. Within the prior work, bias mitigation can be
implemented at any stage of a machine learning model such as pre,
post or inline [15]. In Reubenn Binns’s work, fairness is defined
from multiple perspectives that influences computing. Other works
such as Narayana et al. mathematically define fairness. With a
focus on deep learning, M. Dhu et al. provide a survey around fair
neural networks. This is particularly important so that we can
provide fair player states independent of team popularity.

2.4 Text Based Sentiment
Recently, in the field of Natural Language Processing (NLP), there
has been an emergence of several transfer learning methods
[2,4,13]. In transfer learning, data can be leveraged from different
domains or tasks to be adapted for specific domains. For example,
in sequential transfer learning, a model is pretrained on a large
unlabeled text corpus and then adapted to a supervised target task
using labeled data. Vaswani et al. showed that the transformer
architecture based on attention mechanisms has a significant
improvement on a variety of NLP tasks. The work has been further
improved by applying bidirectional training in Bidirectional
Encoder Representations from Transformers (BERT). BERT itself

has been improved upon with a General Pretrained Transformer
Model on training time and accuracy [27].
 The transformer model aims to learn word embeddings that
incorporate both word-level characteristics and contextual
semantics. A well-trained transformer model on a large corpus can
be adapted to a variety of tasks by modifying the architecture or
adapting weights by adding linear layers on top of a pretrained
model. Our system uses a pretrained language model that has an
adapted transformer and classification layers for the fantasy
football domain. The assigned sentiment label to each piece of
evidence helps users to understand the media buzz around each
player.

3 Overall Architecture
The architecture of the system runs on a hybrid cloud that consists
of the IBM Public Cloud, ESPN Cloud and Akamai as shown in
Figure 1. On the IBM Cloud, five core Python applications support

AI insights gathering for fantasy football. Each of the applications
is deployed as a container-based Cloud Foundry application.
Manifest files describe each application that can be deployed with
several cloud foundry directives. Each of the applications was
targeted and deployed to 3 different sites to maintain continuous
availability of services. Monitors were placed on each application
during production work loads. RESTful endpoints were called by
availability monitors that ran within different geographies, look for
HTTP 200 codes. If an error code was retrieved, the monitors send
messages to IBM Alerting services through webhooks. Policies
within IBM Alerting determine when, who, and how to contact
operational support. With millions of users each day, the

monitoring provided an alert system that resulted in no outages
during the 2019 season.
 The AI work was written in Python and distributed across several
IBM Cloud and external services. The following list of applications
support the machine learning pipeline depicted in Figure 2.
• Natural Language Container (NLC) (Python) = The NLC

application wraps the machine learning pipeline around a
scheduler. Several Swagger API are exposed to accept real-
time player run requests.

• Text Container (Python) = Crawls specific sources to find text
articles about each player, enrolls the source into Watson
Discovery (WD) and saves state to a DB2 database.

• Multi-Media Container (Python) = Searches sites for videos
and podcasts about each player. The media is transcribed with
speech to text services and saved into WD for consumption by
the Natural Language Container.

• Projection Crawler (Python) = The crawler finds any players
that have changes in state such as score projections and injury
status. Requests are sent to NLC to process these players.

• Sentiment App (Python) = Runs in Red Hat OpenShift to
determine the player buzz surrounding articles, videos and
podcasts.

• Content Generation Container (Node.js) = Receives messages
through Swagger API’s to pull finished AI insights about each
player from DB2 for publication to Cloud Object Storage.

• Social Sharing Generation (Node.js) = The application
generates HTML index files for each player link to images
stored on the Content Delivery Network (CDN). The files can
be shared on Facebook and Twitter.

• Social Image Generation (Node.js) = Creates snapshots of
player images that are uploaded to the CDN and linked by
sharable HTML files.

 The core machine learning pipeline is written with the Keras and
TensorFlow libraries. Each model is built and evaluated offline.
The training of each model within the machine learning pipeline
takes 6 days of continuous computing. The deep learning offline
training uses a total of 93,136 exemplars with 3-fold cross
validation over 3 seasons. The score projection phase uses 15,969
exemplars to train an ensemble of models based on player position
that predict score projections. All of the training data was derived
from a third-party provider, Webhose, that ran historical queries
against an archive of the Internet. In total, they provided 100 GB of
historical text information while ESPN enabled access to historical
player statistics. Tools such as SPSS and Python libraries such as
pandas and NumPy were used to analyze offline data.
 To ensure that player boom and bust models were fair across all
teams irrespective of popularity, the AI Fairness 360 library was
implemented within as a pipeline post processor. The Calibrated
Equal Odds Postprocessing Python class was trained and tested
with 1,550 exemplars. The offline machine learning training used

an equal distribution of favorable and unfavorable labels based on
team membership.
 During runtime, player queries were federated to IBM Watson
Discovery that is a machine reading engine for over 100,000
sources, Twitter, ESPN statistics and Rotowire for injury data.
Features are extracted from the responses of each query and input
into the appropriate phases of the machine learning pipeline as
discussed in Section 4. The entire system was multithreaded with
20 threads and joined at each dependent machine learning phase to
increase live player throughput. When the initial machine learning
pipeline is loaded, the process downloads all models to disk from
Cloud Object Storage (COS).

 The data produced by the system is stored within a highly
available DB2 data warehouse. Trained models and artifacts are
placed within COS while system configurations are uploaded into
a Cloudant database. The Content Generation Container pulls data
from DB2 and generates JSON files that are also stored within
COS, which acts as the origin for the two Content Delivery
Networks (CDN). To handle the billions of requests for our AI
insights, an ESPN CDN fronted the IBM Cloud CDN. If the time
to live (TTL) for data expired or if data was updated, client requests
populated down to the COS origin to pull and cache the data within
both CDNs for follow-on requests. Only 0.06% of traffic reached
our origin server.

4 Machine Learning Pipeline
The machine learning pipeline is comprised of natural language
understanding of media sources, deep learning networks, debias
algorithms and player performance spreads. The deep learning
models produce player states such as performance boom, play
bust), play with a hidden injury or play meaningful touches. The
debiasing algorithms include a fairness post processor to account
for bias in the media coverage surrounding a player or team. We

then produce score spreads for a player projection by finding the
best fit probability density function. Through sampling over the
PDF, we approximate a mean player performance. The
implementation of the machine learning pipeline is supported by
five applications, dozens of models, several data sources, and many
data science environments. Figure 2 depicts the overall data flow
within our system. Natural Language Understanding of Sports data
First, the system had to be taught to read fantasy football content.
A novel language model was designed with custom entities and
relationships to fit the unique language people use to describe
players and teams in the fantasy football domain. Next, an
annotation tool called Watson Knowledge Studio was used by 3
human annotators to label text within articles as any combination

Figure 2: Machine Learning Architecture

of 13 entity types such as player, team, performance, etc. With this
data, a statistical entity detector was trained and deployed to our
system called Watson Discovery (WD) that continually ingests
sources from over 100,000 sources. Podcasts and videos are
transcribed and ingested into WD. The WD system is able to
discover fantasy football entities, keywords, and concepts from the
continually updating corpora based on our trained statistical entity
model.
 Next, the system used a document to vector model to understand
the natural text from a query. A very specific query was initially
issued to WD such as “Tom Brady and Patriots and NFL and
Football.” If a query did not return at least an experimentally
determined 50 documents, the query was broadened until it only
had “Tom Brady and NFL.” From the query result, a list of entities,
keywords and concepts for each document was converted to
numerical feature vectors. Each of the feature vector groups was
averaged together to represent a semantic summarization. All of
the feature vector groups from each document were averaged
across all documents. The 3 keyword, concept and entity averaged
feature vectors, along with player biographic data were input into
the deep learning portion of the pipeline.

Deep learning
 The deep learning pipeline phase had 4 models that were over 98
layers deep. The models were classifiers for each player to
determine the probability of a boom, bust, play with a hidden injury
or play meaningful minutes. The probability scores provide a
confidence level of player states so that team owners can decide
their own risk tolerance.

Fairness
 At the end of the of the deep learning phase, a fair post processor
ensured equal equity across players on different teams. For
example, players on popular teams such the Rams would unfairly
have more players predicted to boom and less to bust based on the
conversation of the crowd. As a result, each of the players were
split into privileged and unprivileged groups. The output of boom
and bust probabilities was slighted changed based on team
membership.

Spread
 Finally, the outputs of the deep learning layers, along with
structured ESPN data were input into an ensemble of multiple
regression models. This merging of natural language evidence with
traditional statistics produced a score projection for every player.
On average, the combination of structured and unstructured data
produced a better RMSE than each independently. Finally, 24
PDF’s were fit to the score projection and historical score trends to
produce a player score distribution. While defining and refining
these techniques, our team conducted data exploration in Jupyter
notebooks and SPSS. Through experimentation, we selected model
hyperparameters and algorithms.

4.1 Fantasy Football Training Data

Throughout the project, we used historical news articles, blogs, etc.
associated with players from the fantasy football seasons 2015,
2016, and 2017. A third party named Webhose provided the large-
scale content. In total, over 100 GB of data was ingested into WD
using our custom entity model. We correlated the article date with
structured player data from ESPN to generate labeled data. The
ESPN player data contained several statistics that included week
result, projection, actual, percentage owned, etc.
 A week span date from Tuesday to the following Monday was
associated with each player state so that a time ranged query could
be run to retrieve relevant news articles. Equations 1-3 depict the
determination of a boom label. If the actual score of a player was
greater than 1 standard deviation above the projection for a player
𝑝 at a specific position, the weighted average of the differences
between the actual and projected score by the percentage owned,
𝑝𝑒𝑟𝑜𝑤𝑛𝑒𝑑!

".$, is used to determine a boom standard deviation.
However, the player must be owned by at least 10% in all leagues.
𝜇!" =

#
$
∑ (&'()&*!+,-"./'(/0!)

,/-"23/0!".$
$
,45 ; 𝑎𝑐𝑡𝑢𝑎𝑙, > +𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑒𝑑, + 𝜎,4 (1)

𝜎!"# = $
%
∑ $('()*'+!,-."/0()01!)

-0."3401!".$
− 𝜇!"'

#
; 𝑎𝑐𝑡𝑢𝑎𝑙- > /𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑒𝑑- + 𝜎-7%

-56 (2)

The standard deviation for boom, 𝜎%&, is determined by taking the
square root of the boom variance, 𝜎!"# .
The label boom is applied to the player if their actual score,	𝑥, is
greater than 1 boom standard deviation above the boom mean for
the player.

𝑏𝑜𝑜𝑚(𝑥) = 0$:()*78+,78":(-*78+,78
1 (3)

The bust label is calculated by equations 4-6. The average bust
score, 𝜇%. , is determined by weighting the difference between
score actuals and projection by the same player’s projection.
However, only actuals that are 1 standard deviation, 𝜎𝑝, below the
projected scores are used within the sample set.

𝜇%. =
$
0
∑ (234.2596!7&89349:9)

!7&8934<&=9
0
!>" ∗ 5𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑒𝑑!; 𝑎𝑐𝑡𝑢𝑎𝑙! <

>𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑒𝑑! − 𝜎!@ (4)
𝜎!)6 = #

$
∑ 56(&'()&*!+,-"./'(/0!)

,-"./'(7"3!
∗ 8𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑒𝑑,9 − 𝜇!); ; 𝑎𝑐𝑡𝑢𝑎𝑙, <$

,45

+𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑒𝑑, − 𝜎,4 (5)
The square root of the bust variance, 𝜎%.? , provides the standard
deviation threshold to label a player with score 𝑥.

𝑏𝑢𝑠𝑡(𝑥) = 0$:()*7:+,78":(-*7:+,78
1 (6)

 The play with injury label was generated only for players that
scored greater than 15% of their projected points and they were on
the Rotowire injury report as questionable or probable. The play
meaningful minutes label was created when a player scored greater
than 15% of their projected points and was probable or not on the
Rotowire injury report. Each of the four labels was generated for
every week of every player within the fantasy football 2015 and
2016 seasons with a subset from the 2017 season.

4.2 Statistical Entity Detection
The system had to learn how to read fantasy football documents,
blogs, and news articles and listen to videos and podcasts. In order
to read text and transcripts for comprehension, an ontology of 13

entity types were defined that covered player-centric
understanding. The entities include body part, coach, fans, gear,
injury, location, player, player status, treatment, positive tone,
negative tone, team and performance metric. 1,200 documents
created a representative distribution of entities that were
comparable to the 5,568,714 training and test document set.
 A team of 3 human annotators used a tool called Watson
Knowledge Studio to annotate text as 1 of 13 entity types. The
documents were pre-annotated from 10 dictionaries that searched
for words and automatically created an initial annotation. The
annotators corrected pre-annotations while adding others that were
missed. Each day, the team met to discuss their kappa statistic or
agreement score between each other over all entity types. Over a
span of 3 weeks, the team produced a statistical entity model with
a precision of 79%, recall of 73% and an F1 score of 76%. Even
with a 14% entity word density over all documents, the overall
annotator agreement score was at 70% with the majority of
differences being the omission of a few words in a phrase.

4.3 Document2Vector
For each queried document, a summarization of keywords,
concepts and entities from the document is unioned into feature
vector 𝑠< as shown in Equation 7. A doc2vec model was trained on
50 documents for each day of the top 300 players from each of the
previous Fantasy Football seasons. In total, the training set included
94 GB of text. A second precise oriented doc2vec model was
trained on 10 football dictionaries. In total, both models learned
millions of vocabulary words during the training stage. The feature
vector is input into both of the broad word embedding model and
narrow encyclopedia model for a spatial word embedding
summarization of the document. As shown in Equation 8, the full
meaning around a player was the average spatial representation of
all the documents for a particular player from the encyclopedia
embedding, 𝑤9, and the broad embedding, 𝑤%.

𝑠@B =	𝑘:DDD ∪ 𝑐:DDD ∪ 𝑒:DDD (7)
𝑎!DDD = 	

$
0
∑ 𝑤90
5>" (𝑠5) ∪ 𝑤%(𝑠5) (8)

4.4 Deep Player Classification
Every player was probabilistically classified as a weekly boom,
bust, play with hidden injury, or play meaningful touches. Each
player state used an identical neural network topology but different
weights. The topology includes 98 layers where 6 sequential paths
are merged into a series of densely connected neurons. Every
parallel sequence leveraged a dropout layer at the beginning to
prevent overfitting the gradients. With the large number of layers,
batch normalization was used in each parallel path to speed up
training.
 Through experimentation, the play with hidden injury and bust
classifiers used the tanh activation function from Equation 9 while
the play meaningful touches and breakout classifiers implemented
the reLu activation function from Equation 10. The last layer uses
a sigmoid activation function shown in Equation 11 to scale the
output between 0 and 1. The networks used stochastic gradient
decent to minimize the binary cross entropy. For each of the

measurable player states such as boom and bust, a deep neural
network has been designed and trained, 𝑑𝑛𝑛A4249 . Equation 12
shows the union of feature vectors average word embedding, 𝑎!DDD,
player bio vector, 𝑏!DDD, and the social sentiment measures of a player,
𝑠!B , discussed in section 3.6, are fed forward into each deep neural
network for a probabilistic measurement.

 𝑎42=B(𝑧) = 	
$69;<(>)

$+9;<(>)
 (9)

 𝑎795.(𝑧) = 	𝑙𝑜𝑔(1 + 𝑒() (10)
𝑎A<CD&<:(𝑧) = 	

9>

9>+$
 (11)

 𝑑𝑛𝑛8(&(/(𝑎,??? ∪ 𝑏,??? ∪ 𝑠,C) = 	 𝑙9: 5𝑙9; 6𝑙… F𝑙5+𝑎,??? ∪ 𝑏,??? ∪ 𝑠,C 4G9; (12)

 The inputs into the neural network include the player biographic,
word 2 vector outputs, and social sentiment of each entity type in
the document set. The output of each neural network learned the
relationships between the input vectors.

4.5 Sentiment Analysis
Each of the pieces of player focused evidence within text form were
labeled as positive, neutral or negative. However, labeling fantasy
football text is challenging because:
• Sports articles typically talk about multiple players
• Player position impacts text meaning. For example,

touchdown is good for a wide receiver but usually bad for a
defense

• Agreement between human annotators is low in articles that
are neutral.

 Our system used a transformer model with a linear classification
layer to classify the article sentiment. The sentiment model was
trained using a pretrained transformer model based on OpenAI's
Generative Pretrained Transformer Model-2 architecture (GPTM),
which was trained on Wikitext-103 data [8]. We fine-tuned the
model with our own labeled data by training the linear classifier
within the GPTM model and altering hyperparameters.
 Our training corpus included 900 sports articles that were labeled
for players spanning different positions such as quarterback, kicker,
tight end, running back, wide receiver, and defense. A corpus of
domain specific words such as “pick-six” were added to the training
data. During model training and apply, the system isolated the
article text to the window of the player mentions. Articles where
the player was only mentioned only once were excluded to increase
the probability that the article was focused around a specific player.
Individual players and specific teams can become associated with
positive or negative sentiment in the text corpora. To negate this
form of bias, we masked the player and team names during training.
 After the sentiment classifier was trained, the Local Interpretable
Model-Agnostic Explanations (LIME) framework was used to
understand the model’s predictions and behavior [21]. The LIME
method generates a local linear approximation of the model and
perturbs the model to identify features that influence the
classification results the most. LIME was useful to understand the
the relation between a model’s word association and the predicted
label. For example, “turnover” has to be interpreted as negative for

the offense and positive for the defense. LIME shows if “turnover”
is weighted correctly within the context of offense and defense.

4.6 Player Score Probability Distribution
A multiple regression ensemble based on player position provided
a point projection for each player. Equation 13 shows the general
linear regression used for each position.

𝑠(�̅�) = 𝛽" + 𝛽$𝑥$ +⋯+ 𝛽|(|𝑥|(| (13)
 𝑝𝑑𝑓8(ℎ&…ℎ= ∪ 𝑠"…𝑠=) = 𝑚𝑖𝑛5&AA(𝑝𝑑𝑓", 𝑝𝑑𝑓$, … , 𝑝𝑑𝑓?F) (14)

Figure 3: Mobile application player compare experience

Figure 3 shows a mobile user interface within the ESPN ecosystem
that we created for Fantasy Football players. To produce the best
PDF, the end of the machine learning pipeline fit 24 different PDFs
to a player’s historical and predicted performance as shown in
Equation 14. Some example distributions include alpha, anglit,
beta, bradford, chi, wald, vonmises, normal, and Rayleigh. If the
player, such as a rookie, did not have enough historical data, similar
player data was retrieved.
 The distribution that fit the data the best was selected to run 1,000
simulations or random draws. The simulations produced more
likely real-world curves for player performances. We highlighted
the 15th and 85th percentile on the graph so that users could easily
compare players.

5 Results

Overall, the system provided informative and accurate Fantasy
Football insights from text, video, audio, and statistics. The system
projected 88.2% of players to be within 10 points of their projection
and 71% of player scores to be within 7 points of a projection. From
a score distribution perspective, 83% of players are within the high
score range while 71% of players are within the low score range.
Impressively, 90% of players either boomed or were close to boom
when predicted to boom. On the other end, 78% of players either
busted or were close to a bust when predicted to bust.

5.1 Document2Vector Results

The model was tested with two different types of semantic meaning
evaluations. First, an analogy test was provided to the model. If
the relation Travis Kelce is to the Chiefs as Todd Gurley is to the
X is presented to the model, the correct answer for X should be the
Rams. In the player to team analogy testing, the correct answer was
in the top 1% of the data 100% of the time. The team to location
analogy was slightly lower, with a 93.48% accuracy because the
natural queries were not focused around teams. The second test
provided a set of keywords to the model and expected a related
word. For example, if Tom Brady input into the model, we would
expect to see the Patriots as output.

Test Subject Criteria Accuracy
Analogy Players:Team Top 500

(<1% of the
data)

100%

Analogy Team:Location Top 500
(<1% of data)

93.48%

Keyword Players Top 70 80%
Keyword Team &

Location
Top 500 74%

Table 1: Document2Vector Tests and Results

5.2 Deep Learning Results
The bust game classifier had an accuracy of 55% with a modest
class separation, while the boom classifier had an accuracy of 67%.
The bust classifier was optimized on real world player bust
distribution and accuracy because players with high bust
probabilities significantly over scored their projections on average.
The bust players that were missed and marked incorrect were very
close to the binary threshold of 0.5. Further, the negative predictive
value of the bust model is 85.5% accurate and it produces a real-
world percentage of bust players at 12%. As a tradeoff, the over
predicting of busts would be worse than a high accuracy. The
accuracy number is not as meaningful an evaluation metric as the
negative predictive value and percentage of players predicted to be
a bust.
 The play with injury classifier had an accuracy of 77% with a
positive predictive value of 68.1%. The positive predictive value
is very important for this classifier so that we know if a player is
going to play with a hidden injury. The play meaningful minutes
model produced an accuracy of 91.4%. The output of the class and
probability provide valuable predictors for the score projections as
well as insights about each football player.

Figure 4: Deep Learning Results

 From a real-world distribution of players that boom or bust, we
were close to our objectives. Between 12-16% of players generally
boom while 30% can bust week over week. Figure 4 shows our

results. Fantasy football users would quickly lose confidence in our
system if we over predicted boom or bust.

Figure 5: Boom and Bust Player Distribution

 In addition, we ensured that players on more popular teams were
not biased with our deep learning algorithms. We examined the
Generalized False Positive Rate (GFPR) and the Generalized False
Negative Rate (GFNR) for both boom and bust between privileged
and unprivileged values. After post processing, the bias within
boom and bust models were close to zero for GFPR and GFNR
metrics while not impacting model accuracy.

5.3 Sentiment Results

The sentiment classifier had an accuracy of 81%. The classifier
did well on labelling positive and negative articles with accuracies
of 87% and 83%. The neutral sentiment had an accuracy of 61%,
which was harder to predict because of inter-annotator
disagreement. The sentiment labels next to each piece of evidence
provided users with overall estimation of the crowd’s opinion of
each player.

5.4 Score Projection Results
A linear combination of deep learning player states and ESPN
statistical data produced the best RMSE score of 6.78. On average,
each player projected to score significant points over all positions
will have a projection score that is off by 6.78 points when ESPN
and our system is combined.

Model RMSE (Point Error)
ESPN Projection 6.81
Watson Adjusted
Projection

6.92

Combined Projection 6.78
Table 2: Point Projection Performance

 The accumulation of the score projections over the duration of
the football season provide data points for curve fitting as discussed
in section 3.5. The low RMSE validates the probability density
curve fits so that users can compare player shapes to each other as
shown in Figure 3.

6 Deployment on Cloud
After training and evaluating all of the models and mathematical
techniques illustrated in Section 5, we uploaded them to COS. The
binary files were placed into buckets so that the deployed
applications could pull down the models to local disk. The models
were only pulled before each 300-player batch job. In addition, we
could force each phase of the machine learning pipeline to pull
down a new model if it was updated. This approach gave the team

the flexibility to test new model architectures and hyperparameters
throughout the long fantasy football season.
 The use of the double CDN with the JSON content generation
pattern discussed in Section 3, shielded the project from any
backend processing inaccuracies. The diversity of data at different
volumes can cause machine learning resource contention or
unanticipated data states. For example, a few of the probability
density function curve fittings produced asymptotes that confused
users. As a result, we were able to remove a type of curve fit and
rerun a specific player without any down time.
 The flexibility of Cloud Foundry and Docker containers helped
to support the movement of cloud workloads vertically and
horizontally. The team could rapidly deploy changes, hot fixes, or
new features in an agile environment without having to wait for
long build times.

7 Application Impact
Each week throughout 2017, 2018 and 2019, fantasy football team
owners had the option of using our system to set team lineups. This
was presented to fans in a few different forums such as player
screens in the ESPN Fantasy App and segments aired on TV or
broadcasted on national radio. We found that empirical based
decisions supported by the system help to minimize the temptation
to make biased sit and start decisions concerning favored and
unfavored players . In the first month of 2019 alone, over 5.5 billion
insights were produced for the 9.8 million users that accessed the
ESPN Fantasy App for 2.4 billion minutes that month. This
unprecedented level of depth and insight from unstructured data
complimented by ESPN’s traditional player statistics and analysis
provided a comprehensive and detailed story about each player.
 Towards the end of the 2018 ESPN Fantasy Football season,
over a thousand players participated in a survey to measure the
impact of our system. From the active survey respondents, over
80% of the users who utilized the feature said the Watson AI
insights generated from our system helped them to enjoy fantasy
football better. The more a fan followed the NFL, the more likely
they used our system.
 From a marketing perspective, we had 2 celebrity-focused
fantasy football leagues that promoted our system. Former NFL
players, NBA players, ESPN on-air talent, IBM data scientists, and
a movie star were among the competitors in a public ESPN
influencer league. The influencer league and interest around our
system generated 35 million impressions, 10.6 million video views,
and 744 thousand total engagements from over 600 media pieces.
The conversation on social media about ESPN Fantasy Football
grew 24% in positivity from 2017.

Figure 6: 2018 and 2019 Fantasy Football Social Influencer

League

Source Link
Explainer Video https://youtu.be/xCsz

kWFAxmA
IBM Homepage https://www.ibm.com

/sports/fantasy
ESPN Fantasy Show https://youtu.be/4BsDzKvBb3E
Blog Series https://developer.ibm.com/series/watson-

behind-the-code-fantasy-football-2018/
Front of Code
Commercial

https://www.youtube.com/watch?v=1cYr
k67I00E

2019 Podcast https://ibm.co/2Sv5Uud
2018 Podcast https://bit.ly/2BQ3PS6

Table 3: Additional Impact Information

8 Future Work
To further our research and user experience using multimedia data
throughout fantasy football, we are developing a player trade
discoverer. The trade discoverer will find possible trading partners
within a league and suggest a trade. We would like to examine the
tradeoff between the likelihood of a trade being accepted with the
utility gained by the initiating team. Our goals are to increase
successful trades throughout fantasy football that help all teams
involved within a transaction to increase their team’s score ceiling.
The experience will be engaging and insightful across mobile and
desktop applications.
 From a deployment perspective, the fantasy football system will
be deployed on OpenShift for the 2020 season. OpenShift is a
Docker container management system that runs on top of
Kubernetes. With a total of 16 projects, 7 will be wrapped into
Docker images for deployment on an OpenShift cluster. The build
pipeline will automatically handle code changes in GitLab, create
new Docker images, and deploy the applications across Kubernetes
pods in a canary strategy.

ACKNOWLEDGMENTS
We would like to thank ESPN for their support by opening their
television studios to our project. In addition, IBM Marketing,
including Noah Syken, John Kent, Elizabeth O’Brien, and Kristi
Kolski provided feedback and encouragement. We thank Jeffery
Gottwald for his designs. We thank Stephania Bell, Field Yates,
Daniel Dopp, Matthew Berry, Charles Woodson, Bonnie Bernstein,
John Urschel, Baron Davis, Justin Tuck, Mike Greenberg, and Jerry
Ferarra for using our platform within celebrity leagues.

REFERENCES
[1] A. Narayanan, “Translation tutorial: 21 fairness definitions and their politics,”

Conference on Fairness, Accountability, and Transparency, February 2018.

[2] Akbik, A., Blythe, D., & Vollgraf, R. (2018). Contextual String Embeddings
for Sequence Labeling. COLING.

[3] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Proceedings of the 31st International Conference on Neural
Information Processing Systems (NIPS’17). Curran Associates Inc., Red
Hook, NY, USA, 6000–6010.

[4] Baevski, Alexei & Edunov, Sergey & Liu, Yinhan & Zettlemoyer, Luke &
Auli, Michael. (2019). Cloze-driven Pretraining of Self-attention Networks.

[5] D. Yao, J. Bi, J. Huang, and J. Zhu, “A word distributed representation based
framework for large-scale short text classification,” in IEEE IJCNN, 2015, pp.
1-7.

[6] G. Dzodom and F. Shipman, “Data-Driven Web Entertainment: The Data
Collection and Analysis Practices of Fantasy Sports Players,” in Proc. WebSci,
Bloomington, IN, June 23-26, 2014, ACM 978-1-4503-2622-3/14/06.

[7] Hermann, E and N. Adebia, “Machine Learning Applications in Fantasy
Basketball.”, semantic scholar, 2015.

[8] HuggingFace. 2019. NAACL Transfer learning tutorial. (Jun 2019). Retrieved
Dec 21, 2019 from
https://github.com/huggingface/naacl_transfer_learning_tutorial

[9] L. Kaiser, A. Gomez, N. Shazeer, A. Vaswani, N. Parmar, L. Jones, and J.
Uszkoreit, “One Model To Learn Them All,” arXiv:1706.05137v1 June 16,
2017.

[10] Landers, J. and B. Duperrouzel, “Machine Learning Approaches to Competing
in Fantasy Leagues for the NFL.” IEEE Transactions on Games, vol. 11, issue
2, 2019.

[11] M. Du, F. Yang, N. Zou and X. Hu, “Fairness in Deep Learning: A
Computational Perspective,” https://arxiv.org/abs/1908.08843, Aug. 2019.

[12] N. Dunnington, “Fantasy football projection analysis,” Ph.D. dissertation,
Depart. Econ., Univ. Oregon, Eugene, OR, USA, 2015.

[13] P. Wang, B. Xu, J. Xu, G. Tian, C. Liu, H. Hao, “Semantic expansion using
word embedding clustering and convolutional neural network for improving
short text classification,” Neurocomputing, Vol. 174, Part B, 01/22/2016, pp.
806-814.

[14] Peters, Matthew & Neumann, Mark & Iyyer, Mohit & Gardner, Matt & Clark,
Christopher & Lee, Kenton & Zettlemoyer, Luke. (2018). Deep contextualized
word representations.

[15] R. Bellamy, K. Dey, M. Hind, S. Hoffman, S. Houde, K. Kennan, P. Lohia, J.
Martino, S. Mehta, A. Mojsilvoic, S. Nagar, K. Ramamurthy, J. Richards, D.
Saha, P. Sattigeri, M. Singh, K. Varshney and Y. Zhang, “AI Fairness 360: An
Extensible Toolkit for Detecting, Understanding, and Mitigating Unwanted
Algorithmic Bias,” https://arxiv.org/abs/1810.01943

[16] R. Binns, “Fairness in Machine Learning: Lessons from Political Philosophy,”
Conference on Fairness, Accountability, and Transparency, February 2018.

[17] R. Collobert and J. Weston, “A Unified Architecture for Natural Language
Processing: Deep Neural Networks with Multitask Learning,” in Proc 25th
International Conference on Machine Learning, Helsinki, Finland, 2008.

[18] R. Lutz, “Fantasy Football prediction,” arXiv:1505.06918, 2015.

[19] Radford, A.; Wu, J.; Child, R.; Luan, D.; Amodei, D. & Sutskever, I. (2018),
'Language Models are Unsupervised Multitask Learners', .

[20] Rewon Child, Scott Gray, Alec Radford, and Ilya Sutskever. Generating long
sequences with sparsetransformers.arXiv preprint arXiv:1904.10509, 2019.

[21] Ribeiro Marco Tulio Correia, LIME, (2016). GitHub repository, Retrieved Dec
21, 2019 https://github.com/marcotcr/lime

[22] S. Hirsh, C. Anderson, and M. Caselli, “The Reality of Fantasy: Uncovering
Information-Seeking Behaviors and Needs in online Fantasy Sports,” in Proc.
CHI, Austin Texas, May 5-10, 2012, ACM 978-1-4503-1016-1.

[23] S. Jansen, “Word and Phrase Translation with word2vec,” arXiv:1705.03127,
2017.

[24] Seal, C., “Can machine learning help improve your fantasy football draft?”,
https://medium.com/fantasy-outliers/can-machine-learning-can-help-improve-
your-fantasy-football-draft-4ceea1f1b2bd, 07/07/2019.

[25] T. Matthews, S. D. Ramchurn, and G. Chalkiadakis, “Competing with humans
at fantasy football: Team formation in large partially-observable domains,” in
Proc. AAAI, 2012, pp. 1394–1400.

[26] T. Mikolov, I. Sutskever, K. Chen, G. Corrado, J. Dean, “Distributed
Representations of Words and Phrases and their Compositionality,” Advances
in neural information processing systems, pp. 3111-3119, 2013.

[27] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient Estimation of Word
Representations in Vector Space,” arXiv preprint arXiv:1302.3781,
01/16/2013.

[28] X. Glorot, A. Bordes, Y. Bengio, “Domain Adaptation for Large-Scale
Sentiment Classification: A Deep Learning Approach,” in Proc. ACM ICML,
2011, pp. 513-520.

