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A B S T R A C T

Prompt tuning with pre-trained language models (PLM) has exhibited outstanding performance by reducing the
gap between pre-training tasks and various downstream applications, which requires additional labor efforts
in label word mappings and prompt template engineering. However, in a label intensive research domain,
e.g., few-shot relation extraction (RE), manually defining label word mappings is particularly challenging,
because the number of utilized relation label classes with complex relation names can be extremely large.
Besides, the manual prompt development in natural language is subjective to individuals. To tackle these
issues, we propose a virtual prompt pre-training method, projecting the virtual prompt to latent space, then
fusing with PLM parameters. The pre-training is entity-relation-aware for RE, including the tasks of mask entity
prediction, entity typing, distant supervised RE, and contrastive prompt pre-training. The proposed pre-training
method can provide robust initialization for prompt encoding, while maintaining the interaction with the PLM.
Furthermore, the virtual prompt can effectively avoid the labor efforts and the subjectivity issue in label word
mapping and prompt template engineering. Our proposed prompt-based prototype network delivers a novel
learning paradigm to model entities and relations via the probability distribution and Euclidean distance of
the predictions of query instances and prototypes. The results indicate that our model yields an averaged
accuracy gain of 4.21% on two few-shot datasets over strong RE baselines. Based on our proposed framework,
our pre-trained model outperforms the strongest RE-related PLM by 6.52%.
1. Introduction

Relation Extraction (RE) is a fundamental task of data mining
techniques, aiming to populate knowledge with facts from unstruc-
tured text. RE task means to extract the relations between two given
entities. Many downstream applications rely on extracted relations,
such as Information Retrieval (Guo et al., 2020), Question Answering
(QA) (Lan & Jiang, 2021), and Knowledge Graph Construction (He,
Yao, Zhang, Li, Li, et al., 2021). However, most existing supervised
RE models (Wang, Fan, & Rose, 2020; Wang & Lu, 2020) are training
with labeled data and face significant challenges in cross-domain
processing. In contrast, few-shot learning only requires a small set
of handful labeled examples, which has raised increasing attention in
the research community alongside with zero-shot learning (Roy et al.,
2022). For few-shot learning tasks, GPT-3 (Brown et al., 2020) proves
the prominent ability for diverse task predictions by fusing a context
and manual prompts without any further fine-tuning.
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Inspired by this, some following studies (Lester, Al-Rfou, & Con-
stant, 2021; Liu et al., 2021; Vu, Lester, Constant, Al-Rfou, & Cer,
2021) explore different methods to tune neural network models with
prompts and obtain promising results. The main idea of prompt tuning
is to reformulate various downstream applications as mask language
prediction tasks. For example, given ‘‘I like this book. It is [MASK]’’.,
the prompt tuning model learns the probabilities of ‘‘great’’ and ‘‘ter-
rible’’ appearing in the [MASK] position to distinguish positive and
negative sentiment polarities of the text (‘‘I like this book’’.) before
the prompt (‘‘It is [MASK]’’.). Such an approach reduces the gap
between the Pre-training Language Model (PLM) and downstream ap-
plications (Cambria, Liu, Decherchi, Xing, & Kwok, 2022; He, Mao,
Gong, Li, & Cambria, 2022; Lin et al., 2021; Mao, Li, Ge and Cam-
bria, 2022; Mao, Liu, He, Li and Cambria, 2022). Benefiting from the
above advantages, prompt tuning becomes a popular technique in the
low-data-resource research domains.
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Despite the great empirical success, prompt tuning still has two ma-
jor limits: (1) Many prompt tuning works (Schick, Schmid, & Schütze,
020; Schick & Schütze, 2021b) make an effort to manually create
rompts. Handcrafting meaningful prompts is a brain-draining work,
specially in the context of designing coherent prompts for extracting
n abstract relation between two different entities; More importantly,
he nuances in semantically similar natural language prompts may
esult in significant differences in model performance (Liu et al., 2021).
o deal with the above problems, several automatic prompt generation
odels are proposed (Gao, Fisch, & Chen, 2021; Jiang, Xu, Araki,
Neubig, 2020; Shin, Razeghi, Logan IV, Wallace, & Singh, 2020).

owever, these methods generate discrete natural language prompts
hich are sub-optimal, because the generation process inevitably loses

nformation that is learned in latent space. Other studies (Han, Zhao,
ing, Liu, & Sun, 2021; Shin et al., 2020) generated continual prompts
ith separated models.

These works cannot bridge the gap between PLM and downstream
asks, as the utilized PLM does not include the prompt-based train-
ng objects. Also, these work employs randomly initialized vectors as
ontinual prompts. A robust initialization of prompt parameters of an
mployed PLM has not been paid enough attention in the community.
2) The prompt tuning model needs an additional process to map
redicted words to label classes, which is named label word mappings.
oticeably, the selection of label words purely depends on empirical at-

empts. Most existing prompt tuning studies focus on text classification
asks, where label classes are not too many normally, such as positive
r negative in sentiment analysis (Bao et al., 2021; Mao & Li, 2021).
hen the classification task comes to RE, the label space is much larger.

n N-way-K-shot-based RE with FewRel 1.0 (Han et al., 2018) (our
mployed dataset), the number of relation classes reaches one hundred.
laborated label word mappings for this task are manpower-costly and
ime-consuming. Besides, when the RE comes to a biomedical domain,
t is hard to abstract an appropriate label word mapping to represent

specific relation name with a long sequence, such as ‘‘is normal
issue origin of disease’’ and ‘‘biological process involves gene product’’.
hus, such long sequence relation names are particularly challenging
or prompt-tuning.

Motivated by the above limits, we propose a virtual prompt pre-
raining model (VPP) for prototype-based few-shot RE to omit the
abel words mapping and initialize more robust parameters for autom-
tized prompts. There are two novel technical components in VPP:
1) We use a prompt-based prototype network to learn the relations
etween entities with a virtual prompt template. The prompt-based
rototype network regards the probability distributions of label words
n prompts as features, rather than typical hidden states from used
eural models. It allows our model to take advantage of vocabulary-
ized evidences (50,265 dimensions used in this paper) for predictions
ithout introducing extra costs. It also reduces the gap between PLM
nd downstream tasks, and omits the label word mapping by comparing
hich prototype in the support set is the most similar to the instances in

he related query set (N-way-K-shot setting is employed in this work).
ince we use virtual prompts whose contexts are special tokens rather
han natural language, the engineering of conventional prompts can
lso be omitted. (2) We propose an entity-relation-aware pre-training
nd a joint pre-trained prompt encoder for enhancing special tokens in
ur virtual prompts. There are four pre-training tasks, including mask
ntity prediction, entity typing, distant supervised RE, and contrastive
rompt pre-training.

These pre-training tasks allow VPP to initialize effective parameters
or PLM and a prompt encoder in few-shot learning RE. Compared with
anual prompts or random initialized continual prompts by directly

nserting special markers (Chen et al., 2021; Liu et al., 2021), our
irtual prompt is initialized by a pre-trained encoder. Our joint pre-
raining further alleviates the gap between cold-start PLMs and prompt
2

uning, which can significantly boost performance. e
We examine our method on few-shot learning tasks with two pub-
icly available datasets (Gao et al., 2019; Han et al., 2018), demon-
trating that VPP yields at least an average accuracy gain of 4.21%
ver strong external baselines (Gao et al., 2019; Peng et al., 2020; Qu,
ao, Xhonneux, & Tang, 2020; Snell, Swersky, & Zemel, 2017; Wang
t al., 2021). Compared with the SOTA RE-related PLM proposed by
he work (Peng et al., 2020), our model achieves 6.52% average gains,
ased on the same framework and virtual prompt tuning. Finally, our
irtual prompt learning method exceeds manual prompts by at least
.16%. The contribution of this work is summarized as threefold:

• We propose a virtual prompt-based prototype network that allows
our model to omit the prompt template engineering in natural
language and cumbersome label word mappings. It uses very
high-dimension features to gain better discrimination in different
label classes without introducing extra training costs.

• We propose an entity-relation-aware pre-trained model on the
effectiveness of a PLM and a joint pre-trained prompt encoder,
providing robust initialization for our virtual prompts. This ap-
proach further alleviates the gap between cold-start PLMs and
prompt tuning.

• Our proposed model achieves outstanding performance in few-
shot RE tasks. We conduct comprehensive experiments to analysis
the improvements of proposed prompt-based joint pre-training
and prototype network.

. Related work

Few-Shot Relation Extraction. Generally, few-shot RE can be cat-
gorized into two classes. The former one seeks better representations
hrough pre-training. KEPLER (Wang et al., 2021) integrated knowl-
dge embeddings into PLMs by encoding textual entity descriptions and
hen jointly optimized the knowledge embeddings and language mod-
ling objectives. The study (Peng et al., 2020) designed a contrastive
elation pre-training object. The results demonstrated that task-specific
re-training could vastly improve the performance of related few-
hot tasks. Another group explores different learning methods, based
n existing PLMs. The study (Qu et al., 2020) proposed a Bayesian
eta-learning method to learn the posterior distribution of the proto-

ype vectors of relations, and parameterized it with a global relation
raph for RE. MIML (Dong et al., 2020) employed a meta-information
uided meta-learning method, taking advantage of semantic concepts
f classes to enable more effective initialization and faster adaptation.
nlike these methods, our VPP simultaneously injects entity and rela-

ion knowledge by our proposed pre-training tasks, utilizes a different
ramework for few-shot predictions, and integrates the pre-training for
ontinual prompts with PLMs.
Prompt Tuning. Two early studies manually constructed prompts

or text classification (Schick et al., 2020; Schick & Schütze, 2021b).
anually constructed appropriate prompts are cumbersome and sub-

ective. For such a reason, automated prompt creation methods were
roposed. PTR (Han et al., 2021) applied logic rules to construct
rompts, and tried to encode prior knowledge of each class into prompt
uning. However, these logic rules have to use specific entity types and
ely on manual works. AutoPrompt (Shin et al., 2020) combined a set
f trigger tokens according to a template with the original task input
o create prompts, and employed a gradient-based search strategy to
pdate them. BERTese (Haviv, Berant, & Globerson, 2021) adopted
paraphrasing-based approach to generate prompts. It converted an

xisting seed prompt to a collection of candidate prompts, and selected
he ones with the best performance to use. The studies (Lester et al.,
021; Li & Liang, 2021) proposed lightweight alternatives for fine-
uning. They froze the parameters of PLM, and only updated a small
ask-specific vector as prompts. These parameter-freezing methods be-
ame competitive with typical fine-tuning methods, based on very large
LMs, e.g., T5 XXL that has more than 11 billion parameters (Raffel

t al., 2020).
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KnowPrompt (Chen et al., 2021) is similar to our work, which
adapted prompt tuning in RE tasks. The difference is that KnowPrompt
focused on injecting entity and relation information into generated
prompts. Their prompts followed a fixed pattern, namely two entity
type representations, concatenated with an extra [MASK]. However,
their method heavily relies on external entity type information, and
still needs manual mapping of label words to corresponding relations.
Similar with PTR (Han et al., 2021), these methods cannot be employed
in tasks that do not have entity type labels. Compared with the above
studies using continual prompts (Chen et al., 2021; Han et al., 2021;
Lester et al., 2021; Li & Liang, 2021; Shin et al., 2020), VPP focuses
on joint pre-training a prompt encoder with PLM for more robust
initialization in the scenario of few-shot RE tasks. Our method does
not need any extra entity type information and any manual works.

3. Methodology

This section firstly introduces two technical components, namely the
prompt-based prototype network and our joint pre-training method in
general. Then, the corresponding details are described in Sections 3.1
and 3.2. A typical prompt tuning model predicts the most likely label
word that appears in the [MASK] position, yielding relation labels
with manually developed label word mapping rules. Alternatively, the
prompt-based prototype network of VPP directly employs the proba-
bility distributions of [MASK] as features for calculating the spatial
distances between query input and prototypes. The prototypes are
calculated from the corresponding support set, where a prototype
corresponds to a relation label that needs to be predicted. The final
prediction is the relation label whose prototype is the most similar to
the query instance. By such a comparison, VPP can avoid the arduous
label word mappings. Additionally, the proposed prompt-based proto-
type network utilizes vocabulary-sized features (50,265 dimensions) to
differentiate relation labels without any extra training costs. We argue
these very high-dimension features inherently fit prompt-tuning, which
allocate each word a probability to represent a weighted semantic
meaning and offer great discrimination for classifying. Such features
can be easily used in any prompt-tuning-based tasks, and our following
experiments demonstrate their effectiveness.

Our virtual prompts used in the prompt-based prototype network
are given by a template with special tokens, instead of a conventional
prompt template in natural language. We believe that such a modi-
fication can avoid the semantic biases in prompt-tuning. Further, we
pre-train the language model together with an additional prompt en-
coder to enhance these virtual prompts. The joint pre-training contains
the tasks of Mask Entity prediction (ME), Entity Typing (ET), Distant
supervised RE (DRE), and Contrastive Prompt pre-training (CP). The
joint pre-training has two advantages: First, we can inject knowledge to
obtain an entity-relation-aware PLM to better support our downstream
tasks. Second, our pre-trained prompt encoder provides robust initial-
ization for our virtual prompts and keeps the representations of input
sentences and the prompts in the same semantic space. Basically, we
use a pre-trained neural component to automatically generate context-
aware prompts for different sentences, instead of previous works (Lester
et al., 2021; Li & Liang, 2021; Liu et al., 2021) which use fixed and
randomly initialized vectors.

3.1. A prompt-based prototype network

VPP defines each N-way-K-shot sample as a meta-task , which
consists of a support set and a query set. In the support set, there are 𝑁
elations, where each relation associates 𝐾 sentences (see Section 4.1
or more details about N-way-K-shot, support and query sets). Thus,
here are 𝑁 ∗ 𝐾 sentences with gold labels in the support set. In the
uery set, all sentences are with the same relation. The prompt-based
rototype network should identify the relations between given entities
f the query set within 𝑁 relations from the support set.
3

The input instance 𝑖𝑛𝑠𝑡 of the prototype network is given by

𝑛𝑠𝑡 = 𝑆𝑒𝑛𝑡 ⊕ 𝑝𝑟𝑜𝑚𝑝𝑡, (1)

here ⊕ indicates concatenation. An original sentence 𝑆𝑒𝑛𝑡 with spe-
ial token insertions before and after each entity follows

𝑒𝑛𝑡 =𝑤1,… , 𝑤𝑎−2, [𝐸𝑛𝑡𝑖𝑡𝑦]𝑎−1, 𝑒1𝑎∶𝑏, [∕𝐸𝑛𝑡𝑖𝑡𝑦]𝑏+1, 𝑤𝑏+2,… ,

𝑤𝑐−2, [𝐸𝑛𝑡𝑖𝑡𝑦]𝑐−1, 𝑒2𝑐∶𝑑 , [∕𝐸𝑛𝑡𝑖𝑡𝑦]𝑑+1, 𝑤𝑑+2,… , 𝑤𝑡,
(2)

here [Entity] and [/Entity] denotes the start and end of entity tokens
𝑒1 and 𝑒2), respectively. The subscript denotes the position of a token.
𝑟𝑜𝑚𝑝𝑡 in Eq. (1) is a prompt template, containing several special
arkers [𝑃𝑟], two entities (𝑒1 and 𝑒2) and a 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 that 𝑒1 and 𝑒2 may

e related.
𝑟𝑜𝑚𝑝𝑡 = [𝑃𝑟]×𝑛1 ⊕ 𝑒1 ⊕ [𝑃𝑟]×𝑛2 ⊕ 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛

⊕ [𝑃𝑟]×𝑛3 ⊕ 𝑒2 ⊕ [𝑃𝑟]×𝑛4⊕?⊕ [𝑀𝐴𝑆𝐾],
(3)

here the hyper-parameters 𝑛1, 𝑛2 and 𝑛3 are the numbers of the
nserted special markers [𝑃𝑟] in different positions. 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 is the
escription of the relation label that needs to be predicted, such as

‘owned by’’ and ‘‘powered by’’. We introduce the symbol ‘‘?’’ in the
rompt as a hint, aiming to indicate that the sequence before [MASK]
f a prompt is a question. The prediction of [MASK] will be regarded
s an answer. Thus, the whole process of prompt tuning simulates a
asking language modeling task to reduce the gap between PLM and
ownstream tasks.

The traditional prompt is manually generated with natural language
n discrete symbolic space (Schick et al., 2020; Schick & Schütze,
021a). Some studies utilize the same vector with random initialization
s a prompt for predicting all labels (Liu et al., 2021). In contrast,
ur utilized prompt is generated by the pre-trained prompt encoder.
he benefit of using the prompt encoder is that generated prompts
re continual and context-aware. The model can learn their features
ithout biases in the choices of words of manually developed prompts.
his idea is inspired by ELMo (Peters et al., 2018a) that uses a pre-
rained neural component to obtain contextualized embeddings, rather
han using fixed context-independent pre-trained vectors. The details of
re-training the prompt encoder are described in Section 3.2.

The process of predicting relations with the proposed prompt-based
rototype network is illustrated as following. Given a sample , the
nput for each training step consists of 𝑁 instances (𝑖𝑛𝑠𝑡𝑞) from a query
et and 𝑁 ∗ 𝐾 ∗ 𝑁 instances (𝑖𝑛𝑠𝑡𝑠) from a support set. For the query
nput, an original query sentence (𝑆𝑒𝑛𝑡𝑞) concatenates with a prompt
ith one of 𝑁 different 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠, forming 𝑖𝑛𝑠𝑡𝑞𝑗 , where 𝑗 ∈ {1,… , 𝑁}

see the pink box in Fig. 1). For the support input, 𝑁 ∗ 𝐾 original
upport sentences (𝑆𝑒𝑛𝑡𝑠𝑘, where 𝑘 ∈ {1,… , 𝑁 ∗ 𝐾}) respectively
oncatenate 𝑁 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛, yielding 𝑁 ∗ 𝐾 ∗ 𝑁 instances (𝑖𝑛𝑠𝑡𝑠𝑘,𝑙) (see the
ight blue boxes in Fig. 1).

In each training step, we feed the cluster of 𝑖𝑛𝑠𝑡𝑞 and 𝑖𝑛𝑠𝑡𝑠 into our
roposed prompt-based prototype network to obtain the vocabulary-
ized features for comparing. The vocabulary-sized features are repre-
ented by the probability distributions of [MASK], where the intuition
s that we compare the responses of different relations with different
rompts to get the final predictions. This method takes advantage
f inherently generated probability distributions from the pre-training
ask of masking language modeling and provides larger discrimination
ithout any extra training costs. In particular, we use the second-
hase pre-trained PLM 𝐵𝑎𝑟𝑡(⋅) that consists of original Bart and an
xtra prompt encoder to obtain the presentations of a query cluster
𝑛𝑠𝑡𝑞 . Given a query input instance 𝑖𝑛𝑠𝑡𝑞𝑗 , the original Bart embedding
ayer and prompt encoder encode the sentence part and prompt part,
espectively (see Fig. 2). The encoded presentations are concatenated
nd feed to the Bart, yielding the hidden state matrix for 𝑖𝑛𝑠𝑡𝑞𝑗 . The
ubscript of 𝐵𝑎𝑟𝑡(⋅)𝑀𝐴𝑆𝐾 is introduced to denote the hidden state at
he [MASK] position.
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Fig. 1. The architecture of VPP. The gray box (Avg. ℎ[𝑀𝐴𝑆𝐾]) denotes the averaged hidden states of the [MASK] tokens in prompts over 𝐼𝑛𝑠𝑡𝑞𝑖 , 𝐼𝑛𝑠𝑡
𝑠
1 ,… , 𝐼𝑛𝑠𝑡𝑠𝑗 ,… , 𝐼𝑛𝑠𝑡𝑠𝑁 . ⊕ denotes

concatenation. Our prompt encoder (the green box) consists of two Transformer layers. 𝑠 and 𝑞 denotes a support set and query set.
We average the [MASK] hidden states of the query sentence over 𝑁
input instances, yielding the query representation ℎ𝑞 as:

ℎ𝑞 = 1
𝑁

𝑁
∑

𝑗=1
𝐵𝑎𝑟𝑡(𝑖𝑛𝑠𝑡𝑞𝑗 )[𝑀𝐴𝑆𝐾]. (4)

Then, a query masked word probability distribution vector 𝑝𝑟𝑜𝑏𝑞

over the vocabulary of Bart is computed by

𝑝𝑟𝑜𝑏𝑞 = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝜔 ∗ ℎ𝑞 + 𝜖), (5)

where 𝑤 and 𝜖 are pre-trained parameters in Bart. 𝑝𝑟𝑜𝑏𝑞 is a vocabulary-
sized feature of a relation for given entities in the query 𝑆𝑒𝑛𝑡. Different
from using typical hidden states as features, each dimension of our
features has a clear semantic meaning, which corresponds to a word
in the vocabulary of Bart with chosen probability weighted. We do
not have to use additional trainable parameters to learn the feature
representations, thus, saving the costs of training.

Next, we feed the cluster of support instances 𝑖𝑛𝑠𝑡𝑠 to the Bart
model. The support representation of a prototype with 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑙 is

ℎ𝑠𝑙 =
1

𝑁 ∗ 𝐾

𝑁∗𝐾
∑

𝑘=1
𝐵𝑎𝑟𝑡(𝑖𝑛𝑠𝑡𝑠𝑘,𝑙)[𝑀𝐴𝑆𝐾]. (6)

A prototype masked word probability distribution vector 𝑝𝑟𝑜𝑡𝑜𝑠𝑙 is

𝑝𝑟𝑜𝑡𝑜𝑠𝑙 = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝜔 ∗ ℎ𝑠𝑙 + 𝜖). (7)

𝑝𝑟𝑜𝑡𝑜𝑠𝑙 represents the answer feature of a 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑙 in . Each 
contains 𝑁 𝑝𝑟𝑜𝑡𝑜𝑠, corresponding 𝑁 relations for predictions.

We compute the probability 𝑃 (�̂�𝑙) of the entities with 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑙 in
the sentence 𝑆𝑒𝑛𝑡𝑞 of 𝑖𝑛𝑠𝑡𝑞 by normalized Euclidean distance that is
denoted as 𝑑(⋅).

𝑃 (�̂�𝑙) =
𝑒𝑥𝑝(−𝑑(𝑝𝑟𝑜𝑏𝑞 , 𝑝𝑟𝑜𝑡𝑜𝑠𝑙 ))

∑𝑁
𝑙=1 𝑒𝑥𝑝(−𝑑(𝑝𝑟𝑜𝑏

𝑞
𝑖 , 𝑝𝑟𝑜𝑡𝑜

𝑠
𝑙 ))

. (8)

Finally, the parameters of VPP are trained with cross-entropy loss.
The predicted relation �̂� for entity query 𝑖𝑛𝑠𝑡 is

�̂� = 𝑎𝑟𝑔 max 𝑃 (�̂�𝑙). (9)
4

𝑙∈{1,…,𝑁}
The method for computing prototype and query representations is
sightly different. In Eq. (4), we average the [MASK] vectors of 𝑖𝑛𝑠𝑡𝑞

with the same 𝑆𝑒𝑛𝑡 and different 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑗 (𝑗 ∈ {1,… , 𝑁}), yielding ℎ𝑞 .
Alternately, in Eq. (6), we average the [MASK] vectors of 𝑖𝑛𝑠𝑡𝑠𝑙 with
the same 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑙 over different 𝑆𝑒𝑛𝑡𝑘(𝑘 ∈ {1,… , 𝑁 ∗ 𝐾}), yielding
ℎ𝑠𝑙 as the representation of each prototype. We argue that Eq. (6)-
based prototypes are more relation-centered to represent each class for
support instances. It performs better than calculating sentence-centered
representations by Eq. (4) in our experiments.

To sum up, we combine prompt tuning with a prototype network
for few-shot relation extraction. The proposed model uses the repre-
sentations of the clusters of 𝑖𝑛𝑠𝑡𝑞 and 𝑖𝑛𝑠𝑡𝑠𝑙 for calculating probability
distributions of [MASK] markers over PLM’s vocabulary, and com-
pares these probability distributions to obtain the final predictions. It
is significantly different from utilizing typical hidden states of input
instances for gaining predictions of the most likely labels. Our method
can alleviate the instability of presentations of 𝑖𝑛𝑠𝑡𝑠𝑙 and 𝑖𝑛𝑠𝑡𝑞 , caused
by insufficient training data in few-shot learning.

3.2. Joint pre-training for prompt encoder and entity-relation-aware PLM

Learning the qualified representations of entities and relations is im-
portant for RE. We design four pre-training tasks to improve entity and
relation understanding of PLM. We also integrate a prompt encoder into
the pre-training process for a more robust prompt tuning. Fig. 2 shows
the framework of the pre-training model, input and output of each task.
We first collect open-domain data from a Wikipedia dump,1 labeling
the entity type with NER tools (spaCy) automatically. The utilized
biomedical data with entity information are token from the work (Xu
et al., 2020). Its data resource comes from PubMed (Canese & Weis,
2013). Next, we employ distant supervision (Ji, Liu, He, & Zhao, 2017;
Ren et al., 2017) to generate relation annotations by aligning with the
knowledge base wiki-5M (Wang et al., 2021) and UMLS (Wheeler et al.,
2007). We exclude sentences without any relations. All wiki-5M data
are used for FewRel 1.0 pre-training.

1 https://dumps.wikimedia.org/.

https://dumps.wikimedia.org/


Expert Systems With Applications 213 (2023) 118927K. He et al.
Fig. 2. The pre-training model and tasks. The subscript denotes a position. The colored boxes are in line with Fig. 1. The blue texts correspond to a sentence and its representations.
The green texts correspond to a prompt and its representations. The red denotes [MASK] in the prompt and its corresponding representation. 𝑐 denotes a masked word position
in a context. 𝑢 denotes the position of an unmasked entity (𝑒). 𝑚 denotes the position of a masked entity. 𝑒𝑇 𝑦𝑝𝑒 denotes the entity type of 𝑒. 𝑒1 and 𝑒2 are two random entities.
Half of wiki-5M combined with all UMLS are used for FewRel 2.0
pre-training. We have filtered out the overlap of the RE triples of the
pre-training datasets from our evaluated FewRel 1.0 and FewRel 2.0
datasets. Thus, the pre-training data set is unbiased to the downstream
RE evaluation tasks. Summarily, utilized pre-training data contains 19.5
million sentences, 166.63 million entities, and 230.77 million triples.
More details about pre-training data can be found in our published
data. The first pre-training task is a Masked Entity (ME) prediction task.
The task means to predict masked tokens in the context of a sentence
and masked entities. Given an input sentence, 10% single tokens in a
context and 50% entities are randomly replaced with [MASK]. Thus, we
use the following 𝑆𝑒𝑛𝑡 for pre-training to replace the 𝑆𝑒𝑛𝑡 in Eq. (2).

𝑆𝑒𝑛𝑡 = 𝑤1,… , [𝑀𝐴𝑆𝐾]𝑐 ,… , [𝐸𝑛𝑡𝑖𝑡𝑦]𝑢−1, 𝑒𝑢, [∕𝐸𝑛𝑡𝑖𝑡𝑦]𝑢+1,

..., [𝐸𝑛𝑡𝑖𝑡𝑦]𝑚−1, [𝑀𝐴𝑆𝐾]𝑚, [∕𝐸𝑛𝑡𝑖𝑡𝑦]𝑚+1,… , 𝑤𝑡,
(10)

where 𝑐 denotes the position of a masked word in a context, 𝑢 denotes
the position of an unmasked entity (𝑒𝑢), and 𝑚 denotes the position of
a masked entity. It is possible that more than two targets (tokens or
entities) are masked out, if the sentence is very long. Given input 𝑆𝑒𝑛𝑡
and a prompt, our pre-training model tries to decode a single token or
an entity at position 𝑟 (𝑟 ∈ 𝑅, where 𝑅 = {𝑐, 𝑚,…}) by

𝑝(�̂�𝑟𝑀𝐸 ) ∝ 𝐸𝑥𝑝(𝜔𝑀𝐸 ⋅ ℎ𝑟 + 𝜖𝑀𝐸 ), (11)

where �̂�𝑟𝑀𝐸 is the sequence of decoded tokens, corresponding the
[MASK] marker at position 𝑟 of an input sentence. The ME pre-training
loss is given by

𝑀𝐸 = −
∑

𝑟∈𝑅
log

∏

𝑤𝑜∈𝑤𝑜𝑟𝑑𝑠
𝑝(�̂�𝑟𝑀𝐸 |𝑤{𝑜≤𝑟−1}). (12)

The second pre-training task is Entity Typing (ET) with prompts.
The task means to identify if an entity type is correct or incorrect for
an entity in a prompt. The inputs of ET are a 𝑆𝑒𝑛𝑡 and a prompt. At
first, a randomly initialized prompt encoder takes a predefined prompt
template 𝑝𝑟𝑜𝑚𝑝𝑡𝐸𝑇 with an entity mention 𝑒 and a sampled entity type
𝑒𝑇 𝑦𝑝𝑒 as input:

𝑝𝑟𝑜𝑚𝑝𝑡𝐸𝑇 =[𝑃𝑟]×𝑛1 ⊕ [𝐸𝑛𝑡𝑖𝑡𝑦]⊕ 𝑒 ⊕ [∕𝐸𝑛𝑡𝑖𝑡𝑦]⊕ [𝑃𝑟]×𝑛2
⊕ 𝑒𝑇𝑦𝑝𝑒 ⊕ [𝑃𝑟]×𝑛3 ⊕ ‘‘?’’ ⊕ [𝑀𝐴𝑆𝐾].

(13)

Next, we randomly sample equal numbers of positive and negative
𝑝𝑟𝑜𝑚𝑝𝑡𝐸𝑇 , following the original sentence that contains the entity 𝑒 as
input. We denote a positive 𝑝𝑟𝑜𝑚𝑝𝑡𝐸𝑇 , if the sampled 𝑒𝑇 𝑦𝑝𝑒 is correct
for the entity mention 𝑒 in the prompt, otherwise negative.
5

Finally, after Bart decoding the sentence and prompt, the represen-
tations (ℎ[𝐸𝑛𝑡𝑖𝑡𝑦] and ℎ[𝑀𝐴𝑆𝐾]) of [𝐸𝑛𝑡𝑖𝑡𝑦], and [MASK] are summed up
for predicting yes or no labels in the ET task.

𝑝(�̂�𝑒𝐸𝑇 ) ∝ 𝐸𝑥𝑝(𝜔𝐸𝑇 ⋅ (ℎ[𝐸𝑛𝑡𝑖𝑡𝑦] + ℎ[𝑀𝐴𝑆𝐾]) + 𝜖𝐸𝑇 ), (14)

where the learnable parameters 𝜔𝐸𝑇 and 𝜖𝐸𝑇 are optimized with cross
entropy loss 𝐸𝑇 in the ET task.

Distant supervised RE (DRE) is the third pre-training task. The
task means to identify if a relation name in the prompt is correct
or incorrect for two entities in a sentence. Given a set of labeled
entities in a sentence, VPP combines any two entities as a pair for
RE. We automatically annotate the relation between an entity pair
in a distant supervised way by using wiki-5 m and UMLS knowledge
base. We define positive and negative DRE prompts (𝑝𝑟𝑜𝑚𝑝𝑡+, 𝑝𝑟𝑜𝑚𝑝𝑡−)
by inserting correct and incorrect relations in the prompt template in
Eq. (3). The output is yes or no labels. The prediction �̂�𝑒1 ,𝑒2𝐷𝑅𝐸 of an entity
pair (𝑒1, 𝑒2) is given by

𝑝(�̂�𝑒1,𝑒2𝐷𝑅𝐸 ) ∝𝐸𝑥𝑝(𝜔𝐷𝑅𝐸 ⋅ (ℎ𝑒1[𝐸𝑛𝑡𝑖𝑡𝑦] + ℎ𝑒2[𝐸𝑛𝑡𝑖𝑡𝑦]

+ ℎ𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 + ℎ[𝑀𝐴𝑆𝐾]) + 𝜖𝐷𝑅𝐸 ),
(15)

where ℎ𝑒1[𝐸𝑛𝑡𝑖𝑡𝑦], ℎ
𝑒2
[𝐸𝑛𝑡𝑖𝑡𝑦], and ℎ𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 are the representations of [𝐸𝑛𝑡𝑖𝑡𝑦]

for 𝑒1, [𝐸𝑛𝑡𝑖𝑡𝑦] for 𝑒2, and 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛. [𝐸𝑛𝑡𝑖𝑡𝑦] tokens are in the sentence
part, while 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 is in the prompt part. We employ cross entropy loss
𝐷𝑅𝐸 for learning DRE.

The last pre-training task is Contrastive Prompt pre-training (CP).
We employ a contrastive triplet loss (Balntas, Riba, Ponsa, & Mikola-
jczyk, 2016), aiming at learning representations by pulling instances
with similar meanings together and pushing instances with different
meanings apart in latent space. CP task has three input sequences: (1)
a masked sentence (Eq. (10)), (2) the masked sentence and a positive
prompt, (3) the masked sentence and a negative prompt. The prompt
template (Eq. (3) or Eq. (13)) is defined by a switching function (see
Eq. (18) later) between ET and DRE. We first encode the masked
sentence alone to obtain the representation ℎ𝑆𝑒𝑛𝑡. Next, the masked
sentence and a positive prompt are fed to VPP, yielding ℎ𝑝𝑟𝑜𝑚𝑝𝑡+. Then,
we feed the masked sentence and a negative prompt to obtain ℎ𝑝𝑟𝑜𝑚𝑝𝑡−.
These representations are used for computing the CP loss 𝐶𝑃

𝐶𝑃 =𝑚𝑎𝑥{‖ℎ𝑆𝑒𝑛𝑡 − ℎ𝑝𝑟𝑜𝑚𝑝𝑡+‖2−
𝑆𝑒𝑛𝑡𝑒𝑛𝑐𝑒 𝑝𝑟𝑜𝑚𝑝𝑡− (16)
‖ℎ − ℎ ‖2 + 𝜇, 0},
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Table 1
An example for a 2-way 1-shot scenario. Bold text denotes entities. For DA challenge of FewRel 2.0, samples in the training and testing sets
come from different domains.

Relation class Training set (Wiki data)

Support set (A) locate in The airline’s hub is Maya Airport in Brazzaville.
(B) founded by Steve Jobs was the chairman, and co-founder of Apple Inc.

Query set (A) or (B) Nearest airport is Kazi Nazrul Islam Airport, Durgapur.

Relation class Test set (Biomedicine data)

Support set (A) ingredient of ... effects of oxybutynin chloride with cellulose (modified oxybutynin).
(B) gene in organism ... an anatomical map of the human a syn distribution in aso mice.

Query set (A) or (B) ... mir-k12-11, an ortholog of the human tumor gene hsa-mir-15.
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where 𝜇 is a hyper-parameter as a set margin. Finally, the total loss
𝑡𝑜𝑡𝑎𝑙 is formulated as:

𝑡𝑜𝑡𝑎𝑙 =𝜆𝑀𝐸𝑀𝐸 + 𝜆𝐶𝑃𝐶𝑃 + 𝜆𝐸𝑇𝐸𝑇 ⋅ 𝐼(𝛾)+

𝜆𝐷𝑅𝐸𝐷𝑅𝐸 ⋅ (1 − 𝐼(𝛾))
(17)

here 𝜆𝑀𝐸 , 𝜆𝐸𝑇 , 𝜆𝐶𝑃 , 𝜆𝐷𝑅𝐸 are the weights of losses for allocating the
ignificance of each tasks. 𝛾 is a random number between 0 and 1. 𝐼(⋅)
s a switching function for learning RE and ET, given by:

(𝛾) =

{

1, 𝑖𝑓 𝛾 ≤ 𝛽
0, 𝑖𝑓 𝛾 > 𝛽

(18)

here 𝛽 is a hyper-parameter for controlling the ratio of pre-training
T and DRE tasks.

The pipeline of the pre-training is: (1) we select ET or DRE pre-
raining task according to Eq. (18); (2) positive and negative 𝑝𝑟𝑜𝑚𝑝𝑡𝑠
re concatenated with 𝑆𝑒𝑛𝑡; (3) ME receives 𝑆𝑒𝑛𝑡 as inputs; DRE or ET
egards (𝑆𝑒𝑛𝑡, 𝑝𝑟𝑜𝑚𝑝𝑡𝑠+) and (𝑆𝑒𝑛𝑡, 𝑝𝑟𝑜𝑚𝑝𝑡𝑠−) as inputs; CP learns from
he triplet (𝑆𝑒𝑛𝑡, 𝑝𝑟𝑜𝑚𝑝𝑡𝑠+, 𝑝𝑟𝑜𝑚𝑝𝑡𝑠−).

The intuition of introducing the proposed joint pre-training tasks
an be summarized as follows: First, it can be regarded as a second
hase pre-trained for injecting knowledge to the original Bart. Inspired
y previous studies (Sun et al., 2021, 2020), we design ME, ET, and
RE tasks to achieve an entity-relation-aware PLM with more under-

tanding of entities, entity types, and relations. These understandings
re also helpful for downstream RE learnings. Second, the last pre-
raining task CP provides prompt tuning with a prompt encoder. This
rompt encoder generates initialized and context-aware prompts for
rompt tuning, instead of manual or random parameter-initialized
rompts. This pre-training task ensures the employed prompts in the
ame semantic space and further alleviates the requirement of anno-
ated data. The following experiments demonstrate that prompt tuning
s significantly benefited from our joint pre-training for the prompt
ncoder and the entity-relation-aware PLM.

. Experiments

.1. Experiment settings

Formulation of N-way-K-shot. In this work, we focus on N-
ay-K-shot RE tasks. We first divide the whole dataset into training,
alidation, and testing sets. There are no overlapped relation types
mong them. The training, validation, and testing sets are divided into
he pairs of support sets and query sets. A support set contains 𝑁
elation name classes, randomly sampled from all corpus. Each class
as K instances. A query set contains arbitrary instances for predictions.
he included relation name classes of instances in a query set should be
he subset of its corresponding support set. 5-way-1-shot, 5-way-5-shot,
0-way-1-shot, and 10-way-5-shot are four setups in our experiments.
Dataset. Following baseline works (Gao et al., 2019; Peng et al.,

020; Qu et al., 2020; Wang et al., 2021), we evaluate VPP on the
ewRel 1.0 (Han et al., 2018) and FewRel 2.0 (Gao et al., 2019), which
ollowing the N-way-K-shot setups. FewRel 1.0 only focuses on few-shot
E. Its training, validation, and testing sets are sourced from wiki data.
6

ewRel 2.0 proposed a few-shot Domain Adaptation (DA) challenge,
hich aims to evaluate across-domain abilities of few-shot learning
odels. Its validation and testing set data come from a medical domain,
hile the train set data are in a general domain. The example of 2-way-
-shot for the DA task is shown in Table 1. The detailed dataset statistics
re shown in Table 2.
Baselines. (1) Prototype network (Snell et al., 2017) utilizes all

elated instances in the support set to calculate a prototype for each
elation class. It compares the distance between instances in a query
et with these prototypes for predictions. (2) Pair network is based
n the sequence classification model, which is proposed in FewRel
.0 (Gao et al., 2019). It pairs and concatenates each query sentence
ith all supporting sentences, then employs a sequence classifica-

ion model to predict if the two instances express the same relation.
3) REGRAB (Qu et al., 2020) is a novel Bayesian meta-learning
ethod to effectively learn the posterior distribution of the prototype

ectors of relations, where the initial prior of the prototype vectors
re parameterized with a graph neural network on the global rela-
ion graph. (4) KEPLER (Wang et al., 2021) is a unified frame for
nowledge embedding and pre-trained language representations, which
ointly optimizes the knowledge embedding and language modeling
bjectives. (5) Proto-CP (Peng et al., 2020) focuses on studying the
ffects of textual contexts and entity mentions in relation extraction,
ased on conventional prototype network. It uses an entity-masked
ontrastive pre-training framework for RE to gain a deeper under-
tanding of the above two factors. (6) TPN (Wen, Liu, Ouyang, Lin, &
hung, 2021) integrates the transformer model into a prototypical net-
ork for more powerful relation-level feature extraction, and focuses
n sequence learning without catastrophic forgetting. (7) Concept-
ERE (Yang, Zhang, Niu, Zhao, & Pu, 2021) designs an attentive model
o measure each word for a specific class and introduces the inherent
oncepts of entities to provide clues for relation prediction. (8) Prefix-
uning (Li & Liang, 2021) is a prompt-based method, which keeps

anguage model parameters frozen, while tunes small continuous em-
eddings for downstream tasks. (9) KnowPrompt (Chen et al., 2021)
s another prompt-based method. This method jointly tunes continuous
rompt and label words to inject entity type information into used
rompts. These prompts and label words are randomly initialized. (10)
RT (Han et al., 2021) applies logic rules to construct prompts and also
ry to inject prior knowledge into constructed prompts. This method
s also influenced by label word mapping. We cannot compare with
utoPrompt (Shin et al., 2020), this study needs lots of relation-specific
nnotated data to train prompts, so it also cannot be used in the few-
hot RE tasks. All the above prompt-based methods need label words
apping, while proposed VPP takes advantage of the comparison of

oncatenated prompts to take place label word mapping.
Evaluation and Hyper-parameters. By using the official eval-

ation website2 for FewRel 1.0 and FewRel 2.0, we report perfor-
ances measured by averaged accuracy over 10,000 testing instances

n each N-way-K-shot setup. VPP utilizes base-BART with 768 hidden
imensions. The maximum length of input sentences is 128. Adam

2 https://thunlp.github.io/fewrel.html.

https://thunlp.github.io/fewrel.html
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Table 2
Statistics of FewRel 1.0 and FewRel 2.0 benchmark. 𝑡𝑒𝑠𝑡 means the number of
N-way-k-shot instance combinations for reporting performances.

Corpus # Relation # Entity # Instance # 𝑡𝑒𝑠𝑡

Common Training 64 89,600 44,800 –

1.0 Validation 16 22,400 11,200 –
Test 20 28,000 14,000 10,000

2.0 Validation 10 2000 1000 –
Test 15 3000 1500 10,000

optimizer (Kingma & Ba, 2017) is employed with the initial learning
rate of 2e-5. 𝜆𝑀𝐸 , 𝜆𝐶𝑃 , 𝜆𝐸𝑇 , 𝜆𝐷𝑅𝐸 in Eq. (17) are 1, 1, and 2, 2,
espectively. The more details of hyper-parameters can be found in
eleased codes.

.2. Main results

We consider the averaged accuracy over different N-way-K-shot
etups as the main measure for benchmarking. We manually create
wo baseline prompts (-M1 and -M2) in natural language with different
tyles for each relation in FewRel 1.0 and FewRel 2.0 datasets to
ompare with the proposed continual prompts. Taking the relation
‘located next to’’ as an example, manual Prompt 1 (-M1) is designed as
question style ‘‘Does Entity_1 located next to Entity_2? [MASK]’’, and
anual Prompt 2 (-M2) is following a declarative pattern as ‘‘Entity_1

adjoin Entity_2 [MASK]’’. FewRel 2.0 task is more difficult than FewRel
1.0, because it poses DA challenges. Proto and Pair are conventional
prototype network (Snell et al., 2017) and pair network (Gao et al.,
2019) baselines in the result tables. Compared with external baselines,
our proposed VPP-JP-C (JP denotes our joint pre-training, C denotes our
continual prompt) exceeds the strongest baseline (Proto-CP) by 4.21%
accuracy on average. Noticeably, in the DA challenge, the advantage
of our model over Proto-CP significantly raises accuracy to 8.12%. It
shows that our method is more effective in cross-domain few-shot RE.
Additionally, our model achieves the best performance on 7 out of 8
N-way-K-shot evaluation tasks. It also shows the utility of our model in
few-shot learning.

Next, we compare our proposed Joint Pre-trained (JP) model with
different PLMs (-Bert, -Bart, -KEPLER, -CP) in the same prompt-based
prototype network (VPP-) and different prompts (-M1 and -M2). For the
manual prompt-based models (VPP-M1), VPP-JP-M1 outperforms the
second best PLM (VPP-CP-M1) by 2.56%. For the continual prompt-
based models (VPP-C), VPP-JP-C outperforms the second best PLM
(VPP-CP-C) by 6.52%. Thus, our proposed JP model is more support-
ive in our prompt-based prototype network. We do not embed JP in
Pair- and Proto-frameworks for benchmarking, because they are not
prompt tuning-based methods. Compared with existing prompt-based
method (Chen et al., 2021; Han et al., 2021; Li & Liang, 2021), our VPP-
JP-C outperform than these methods significantly. Prefix-Tuning (Li &
Liang, 2021) freezes used PLM and only fine-tunes a few new param-
eters introduced by using continuous prompts. The results show that
this method cannot handle the DA task very well in FewRel 2.0 dataset.
PTRd (Han et al., 2021) and Knowprompt (Chen et al., 2021) are two
similar methods, which use randomly initialized vectors as prompts and
fine-tune all their parameters. Compared with other methods which
use specific PLMs enhanced by entity and relation information, such
methods have no advantages.

We also evaluate the improvements of our prompt tuning method
(VPP-) by controlling PLMs. In Bert based models, VPP-Bert with
a manual prompt (VPP-Bert-M1) significantly outperforms Proto-Bert
by 7.55% and 31.65% in FewRel 1.0 and 2.0 datasets. With contin-
ual prompts, VPP-Bert-C surpasses Proto-Bert by 22.26% overall. Our
prompt-based method presents improvements when we utilize another
secondary PLM, e.g., KEPLER. VPP-KEPLE-M1 yields a general gain of
3.64% over Proto-KEPLER.
7

Noticeably, the joint pre-training significantly boosts model perfor-
ance compared with the random initialization of the prompt encoder.
e randomly initialize the green box (prompt encoder) in Figs. 1 and
(VPP-JP-C𝑅𝐼 ) and keeping the rest same as VPP-JP-C. We observe

that the overall averaged accuracy of VPP-JP-C𝑅𝐼 is 3.13% lower than
VPP-JP-C, which signifies the importance of the joint pre-training.

Finally, we compare our continual prompt (-C) with manual
prompts (-M1 and -M2) in the same framework (VPP-JP-). The two
manual prompt-based models yield different performance with a gap of
1.96% with -JP. It supports the finding of the research (Liu et al., 2021)
that the nuance in manual prompts may result in sharp differences in
accuracy. However, our proposed virtual continual prompt can mitigate
the variations of prompts, because the context of the virtual continual
prompt is based on the same special token ([Pr]), rather than natural
language. The only hyper-parameters in the virtual prompt is the
number of special tokens, which is tested later. Such a prompt-tuning
paradigm (VPP-JP-C) brings extra gains of 3.16% in average accuracy
over the best manual prompt (VPP-JP-M1).

5. Discussion

Why does our continuous prompt outperform discrete prompts
and existing continuous prompts?

First, we discuss why continuous prompt outperform discrete
prompts. It should notice that the proposed prompt encoder contains
a certain amount of pre-training parameters. These parameters enable
VPP to output different prompts for different contexts accordingly, even
with the same relations. In particular, both a triple (entity1, relation,
entity2) and its different context decide the prompt representation
after PLM encoding. It is significantly different from typical prompt
tuning studies, which usually utilize an unchanged prompt for each
class. Besides, all generated continual prompts of VPP take virtual
markers [Pr] as parts of inputs. These virtual markers do not have any
specific semantics. Then, the representations of the virtual markers that
are trained with the associated contexts are unbiased representations.
Noticeably, prompt generation in natural language may lose latent
information. PLM usually carries out a LogSoftMax operation on the
continual representations and yields the most likely lexical sequences
(discrete prompts). These tokens will be then encoded again in latent
space for downstream task learning, yielding new representations that
are different from the representations in the previous step. To this
end, the discrete prompts experience separated decoding and encoding
processes towards the same lexical sequences, while our continual
prompts can optimize the prompt representations globally from end to
end to achieve accurate predictions.

Second, we discuss the difference between VPP and existing contin-
uous prompts studies. The two core differences are our virtual prompts
are pre-trained and we do not need label words mapping to achieve
classifications. Specifically, studies (Lester et al., 2021; Li & Liang,
2021) freeze the parameters of employed PLM to tune continuous
prompts, which means they aim to train a small number of parameters
from scratch to adapt downstream tasks. The benefit of such methods
is they are training vastly fewer parameters than fine-tuning based
methods, to perform well in few-shot learning. The limit is that the
frozen PLM parameters cannot adapt to downstream task domains,
e.g., biomedical domains, during fine-tuning. Only a few parameters
of their model (the parameters that do not belong to a PLM) are fine-
tuned on downstream tasks. Thus, the overall framework is not well
fine-tuned. The studies (Chen et al., 2021; Han et al., 2021)are similar
to our VPP, which employ continuous vectors as prompts and fine-tune
all parameters of a PLM. The difference is that our continuous prompts
are from a prompt encoder, which is jointly pre-trained with the used
PLM, while randomly initialized embedding is used in these compared
baselines.
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Table 3
Accuracy (%) on the testing sets of FewRel 1.0 and FewRel 2.0 Domain adaption (DA) challenge. Proto, Pair, and VPP mean using conventional prototype network (Snell et al.,
2017), pair network (Gao et al., 2019) and our proposed model; -Bert, -Bart, -KEPLER, and -JP mean using Bert, Bart, KEPLER, and our PLM as the backbone, respectively; -M1
and -M2 mean using two sets of manual prompts; -C and -C𝑅𝐼 mean continual prompts generated by joint-pre-trained or randomly initialized prompt encoder. To fair comparison,
we use Bart-base for these baselines.

Model FewRel 1.0 FewRel 2.0 (DA) Avg. (All)

5-1 5-5 10-1 10-5 Avg. (1.0) 5-1 5-5 10-1 10-5 Avg. (2.0)

Proto-Bert 80.68 89.60 71.48 82.89 81.16 40.12 51.50 26.45 36.93 38.75 59.96
Pair-Bert 88.32 93.22 80.63 87.02 87.30 67.41 78.57 54.89 66.85 66.93 77.12
TPN 80.14 93.60 72.67 89.83 84.06 60.35 81.60 38.12 76.91 64.25 74.16
ConceptFERE 89.21 93.98 75.72 86.21 86.28 – – – – – –
REGRAB 90.30 94.25 84.09 88.20 89.21 – – – – – –
Prefix-Tuninga 82.18 91.46 75.67 88.11 84.36 57.14 67.12 52.00 58.93 58.80 71.58
PTRa 89.42 92.03 84.00 88.51 88.49 63.55 83.12 54.05 71.45 68.04 78.70
Knowprompta 90.12 94.23 85.97 89.62 89.99 61.22 82.01 55.45 72.01 67.67 78.83
Proto-KEPLER 88.30 95.94 81.10 92.67 89.50 66.41 84.02 51.85 73.60 68.97 79.24
Pair-KEPLER 90.31 94.28 85.48 90.51 90.14 67.23 82.09 54.32 71.01 68.66 79.40
Proto-CP 95.10 97.10 91.20 94.70 94.50 79.70 84.90 68.10 79.80 78.12 86.31

VPP-Bert-M1 87.83 95.10 82.81 89.11 88.71 68.74 85.03 55.71 72.11 70.40 79.56
VPP-Bert-C 87.34 94.48 82.91 88.17 88.22 70.29 89.99 58.84 85.71 76.21 82.22
VPP-Bart-M1 89.26 94.42 82.50 88.12 88.58 68.48 84.67 56.50 73.55 70.80 79.69
VPP-Bart-C 89.17 93.32 81.85 85.31 87.42 64.49 76.20 50.09 67.70 64.62 76.02
VPP-KEPLER-M1 91.02 96.06 84.15 90.03 90.32 73.84 89.88 59.52 78.81 75.51 82.92
VPP-KEPLER-C 88.90 95.37 84.59 88.64 89.38 71.68 88.50 59.85 78.02 74.51 81.95
VPP-CP-M1 92.74 96.89 88.80 90.01 92.11 75.97 89.59 63.32 81.05 77.48 84.80
VPP-CP-C 91.58 95.42 88.82 89.64 91.37 75.21 88.51 61.99 80.86 76.64 84.00
VPP-JP-M1 92.82 96.70 88.39 92.45 92.59 81.49 91.11 70.03 85.89 82.13 87.36
VPP-JP-M2 90.57 94.67 86.15 90.26 90.41 79.45 90.02 68.84 83.21 80.38 85.40
VPP-JP-C𝑅𝐼 91.01 95.45 88.01 90.88 91.34 83.15 91.04 74.30 85.28 83.44 87.39
VPP-JP-C 95.32 97.84 90.08 95.96 94.80 86.78 93.04 77.41 87.71 86.24 90.52

aMeans the results are from our repetition.
.

Table 4
The proposed VPP-JP-C model performance, given by different patterns (𝑃𝑎𝑡1 , 𝑃 𝑎𝑡2 and
𝑃𝑎𝑡3) of prompts and different hyper-parameters of 𝑛1 , 𝑛2 , 𝑛3 , 𝑛4 in Eq. (3). The reported
performance is measured by accuracy on the 5-way-1-shot validation set of FewRel 2.0

5–1 [𝑛1, 𝑛2, 𝑛3, 𝑛4] 𝑃𝑎𝑡1 𝑃𝑎𝑡2 𝑃𝑎𝑡3 𝐴𝑣𝑔.

VPP-JP-C

[1, 1, 1, 1] 85.40 83.92 85.30 84.87
[2, 2, 2, 2] 86.03 82.80 85.40 84.74
[1, 3, 3, 1] 88.00 84.24 88.05 86.76
[1, 5, 5, 1] 87.62 84.11 86.91 86.21
[3, 3, 3, 3] 87.58 83.95 87.52 86.35
[5, 5, 5, 5] 87.40 84.30 87.60 86.43

VPP-Bart-M – M1 M2 –

– 69.75 62.13 – 65.94

This improvement is inspired by ELMo (Peters et al., 2018b), which
first proposes that we can employ a pre-trained neural structure to gen-
erate contextualized word representations, rather than using fixed word
embedding like word2vector (Mikolov, Chen, Corrado, & Dean, 2013).
With such a pre-trained prompt encoder, our continuous prompts can
be contextualized. Also, we can update all parameters of used PLM to
adopt a new domain, and meaningful continuous prompt initialization
intuitively helps the model achieve better performance, specifically
under the few-shot setting. By comparing VPP-Bart-C and VPP-JP-C in
Table 3, our pre-trained prompt is much better than random initialized
continuous prompts with 7.38% F1 improvements. We conclude that
not only pre-training can benefit language models, but also benefit
methods that need automatically generated prompts.

Does the pattern of prompts matter model performance? The
work (Liu et al., 2021) demonstrated that using different manual
prompts on the same instance results in a 19.79% P@1 measure
gap. Thus, we explore the impact of a prompt with different patterns
(namely different numbers and positions for the inserted [Pr] markers).
We use different hyper-parameters for [𝑛1, 𝑛2, 𝑛3, 𝑛4] of Eq. (3), such as
[1,1,1,1], [2,2,2,2], [1,3,3,1], [1,5,5,1], [3,3,3,3] and [5,5,5,5].
8

Fig. 3. The comparison of continual prompts, manual prompts, original BART and our
joint pre-training, and baseline models with different numbers of training instances
(K-shot). The reported accuracy is on the validation set of 5-way-K-shot of FewRel 2.0.

We also examine different prompt patterns (𝑃𝑎𝑡1 and 𝑃𝑎𝑡2), apart
from the recommended pattern (𝑃𝑎𝑡3) that is defined in Eq. (3).

𝑃𝑎𝑡1 = [𝑃𝑟]×𝑛1 ⊕ 𝑒1 ⊕ [𝑃𝑟]×𝑛2 ⊕ 𝑒2 ⊕ [𝑃𝑟]×𝑛3
⊕ 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛_𝑛𝑎𝑚𝑒 ⊕ [𝑃𝑟]×𝑛4⊕?⊕ [𝑀𝐴𝑆𝐾],

𝑃 𝑎𝑡2 = [𝑃𝑟]×𝑛1 ⊕ 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛_𝑛𝑎𝑚𝑒 ⊕ [𝑃𝑟]×𝑛2 ⊕ 𝑒1

⊕ [𝑃𝑟]×𝑛3 ⊕ 𝑒2 ⊕ [𝑃𝑟]×𝑛4⊕?⊕ [𝑀𝐴𝑆𝐾].

Finally, our continual prompt performance (VPP-JP-C) with different
setups in parameters and patterns benchmarks with manual prompts
(VPP-Ba-M1 and VPP-Ba-M2). As shown in Table 4, the recommended
setup of [𝑛1, 𝑛2, 𝑛3, 𝑛4] = [1,3,3,1] and 𝑃𝑎𝑡3 yields the highest accuracy
(88.05%) on the FewRel 2.0 validation set. Generally, a longer prompt
with more [Pr] special token insertions likely yields better performance
than the short ones.



Expert Systems With Applications 213 (2023) 118927K. He et al.
Fig. 4. The comparison between the classes of the query set and the most similar (-min) and different (-max) classes in the support set in Euclidean distance space, given by
different models. The Euclidean distance is given by 10-way-1-shot of FewRel 2.0 validation set.
We also observe that although different patterns and different
hyper-parameters in 𝑛 result in different performance, the gap between
different setups of the continual prompt-based model in the same
column or the same row is much smaller than the gap (7.62%) between
two manual prompt-based models (M1 and M2). VPP-JP-C also outper-
forms VPP-Bart-M on average with different setups. This shows that our
proposed model yields robust performance with limited variations.

How does the number of training data effect prompt tuning?
Considering the advantages of prompt tuning for few-shot learning
tasks, we compared different methods against VPP by increasing the
number of training data (K shot). As shown in Fig. 3, all methods
benefit from learning more shots on FewRel 2.0. Apart from the Pair
network with Bart (Pair-Bart), other few-shot learning models achieve
apparent performance improvements when the shot number rises from
1 to 5, and the improvements become slower when the number of
shots keeps increasing. The biggest advantage of VPP-JP-C against other
baseline models appears in 5-way-1-shot and 5-way-5-shot. This clearly
demonstrates the strength of our proposed method. Additionally, in the
5-way-20-shot evaluation task, our proposed model also achieves the
best performance, although the improvement of our method is not ex-
citing after 5-shot. It shows that the model still has strong performance
on many-shot learning. In contrast, prototype and pair networks (Proto-
Bart and Pair-Bart) have sharper slop than VPP-JP-C after 5-shot. The
last but not the least, our entity-relation-aware joint pre-training (JP)
also alleviates the annotation dependence for downstream RE tasks to
some extent, when we compare the gaps between VPP-JP and VPP-Bart
models.

Why does VPP outperform typical prototype network? The most
significant difference between VPP and a typical prototype network
is the inputs for calculating distances between query instances and
the prototypes of different classes. In VPP, we employ the predicted
probability distribution of the [MASK] token, instead of PLM hidden
states that are employed by a conventional prototype network for RE
classification. Since the vocabulary size of a PLM is very big (the vocab-
ulary size of Bart-base is 50,265), VPP can achieve more distinguishable
features for decision. As shown in Fig. 4, such a method can differ-
entiate the classes of  better than a conventional prototype-based
method with a large margin by comparing VPP- with Proto-. Without
our proposed joint pre-training (JP), the euclidean distances of the
VPP model, calculated from VPP-Bart- still yield better discrimination,
compared with VPP-JP-.

Usability and Limitations. The proposed VPP contains two main
components, i.e. the prompt-based prototype network and our joint pre-
training PLM. Because these two components are jointly pre-trained,
9

they can compatibly work together. Further, the prompt-based proto-
type network can be separately used as a prompt-based method. The
advantage of this component is that it has no manual prompt construc-
tion and label words mapping. The limitation of this prototype network
is that we need to match each sentence with N virtual prompts, which
means we need N times batch sizes or N times costs. For the second
component, our joint pre-training PLM can be separately employed
with the first component. The prompt encoder can separately utilized
for generating prompts as well. Our PLM can support many downstream
tasks which need to understand entities and relations, such as intention
recognition in question answering and dialog system. In addition, the
prompt encoder, which was jointly pre-trained with BART, is regarded
as a small pre-trained model. It can support other studies which need
automatically generated prompts.

There are another two limitations in VPP. First, in order to achieve
better domain adaptation in downstream tasks, VPP fine-tunes all
its parameters, rather than typical prompt tuning methods that sim-
ply fine-tune a small portion of parameters, e.g., the parameters for
learning prompts (Lester et al., 2021; Li & Liang, 2021). Thus, the
computational cost of VPP is higher than that of those typical prompt
tuning methods. The size of the proposed VPP is almost equal to
BART-base, while the only extra parameters come from the prompted
encoder (two Transformer layers). In our experiments, GPU memory
consumption for fine-tuning all the parameters is about 2.21 times that
of just fine-tuning parameters for the used prompts. However, time
costs are not very different in fine-tuning all or partial parameters,
because neural models have to back propagate through all weights to
compute gradients. In our experiments, the time cost of VPP is about
1.13 times that of typical prompt tuning. Another limitation of VPP is
that our prompt encoder was jointly pre-trained with BART. It is hard to
ensure the learned semantic space is compatible with other PLMs. Thus,
using a different PLM instead of BART may cause a drop in accuracy.

6. Conclusion

This paper proposes a virtual prompt pre-training model, which ex-
pands prompt tuning to few-shot RE tasks. The proposed model utilizes
continual prompts that are automatically generated from a pre-trained
prompt encoder, which provides robust initialization for used prompts
to replace random vectors. By using a virtual prompt template, our
model eliminates the labor-intensive label word mappings in tasks with
a large label space. It is also a practical method for the prompt-tuning-
based classification that cannot manually generate coherent label word
mappings for long label sequences with rich semantics.



Expert Systems With Applications 213 (2023) 118927K. He et al.

Y

W

D

i
i

D

A

o
S
K
A
o
v
C
(

R

B

B

C

C

Finally, our proposed pre-training tasks deliver sufficient prior-
knowledge for jointly initializing the prompt encoder and Bart. We
demonstrate that our query-prototype modeling method which utilizes
the probability distribution of [MASK] token can better distinguish the
relations between queries and prototypes in meta-learning. In future
work, we will expand our method to other tasks, such as few-shot NER
and few-shot NER-RE joint extraction.
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