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ABSTRACT

In this paper, we propose to use contexts of superpixels as a
prior to improve semantic segmentation by the CRF frame-
work. A graphical model is constructed on over-segmented
images. Our main contribution is to take the concept of “su-
perpixel embedding” into consideration, which is formalized
as a potential item for optimizing the energy of the whole
graph. We also introduce two ways of calculating this embed-
ding potential. Experiments on several popular datasets, e.g.,
MRSC-21 and PASCAL VOC, illustrate that our approach en-
hances the performance of a previously proposed segmenta-
tion model without embedding. The accuracy results are com-
parable to some fully supervised methods.

Index Terms— Superpixel embedding, Image semantic
parsing, Unary potential, Context feature

1. INTRODUCTION

We address the problem of semantic segmentation, which
is a heavily studied, while challenging topic in computer
vision research. The problem also lays the foundations for
many high-level tasks, such as multimodal content analysis
[1], scene recognition [2], vehicle tracking [3], image under-
standing [4], and more. One of the difficulties in the data
collection stage of semantic segmentation is that pixel-level
manually annotated training images are expensive and not
always accessible. Therefore, weakly supervised methods
that only employ labels presented at image level and other
prior knowledge are gaining increasing attention.

A number of priors have been discussed to represent mid-
level or high-level contextual cues. Co-occurrence relations
and spatial layout relations introduced in [5] are effective im-
plementations. Image Level Prior (ILP) [6] is proposed to
re-weight the probability of presence of different semantic
classes according to global features, such as semantic tex-
tons. Nowadays ILP becomes a popular prior in many weakly
supervised semantic segmentation frameworks. Objectness
is calculated from classes contained in sample windows to
counter the effect of “background flooding”, a phenomenon
that background semantic classes tend to invade into the edge
of foreground objects [7, 8].

These priors are integrated to graph-based models to add
constraints for connections between superpixels [9]. While
these priors have provided significant cues for segmentation,
there is still much room for improvement. For instance, previ-
ous literature seldom discuss the semantic relations between
classes, which is common in natural language processing
[10], but overlooked in image processing. Some prior mod-
els the spatial layout relation of object classes as four parts
division (upper, lower, side and center) [5], this could be ex-
tended by allowing rich information from a smaller scale of
an image. Following from these former studies, we hope to
look at the contextual cues from a finer scale and formalize a
more balanced distributed prior.

In this paper, we attempt to improve the segmentation per-
formance by employing an innovative prior, which is termed
superpixel embedding. We report on two main contributions:
1) Application of this prior conducts to a better segmentation
accuracy from the previous work. 2) This method can gen-
erate faster and more compressed contextual cues than some
state-of-the-art methods, e.g., graphlet and manifold method
described in [11].

The rest of the paper is organized as follows: Section 2
describes the overall framework of segmentation, explains the
concept of embedding, provides two different ways of imple-
menting and how we formulate this prior into an unary poten-
tial; Section 3 provides a schematic description of the hier-
archical segmentation approach and label predicting process,
inspired by [12]; experiments and comparison are reported in
Section 4; finally, Section 5 summarizes the contributions of
the paper.

2. SUPERPIXEL EMBEDDING

2.1. Method Overview

A synoptic illustration of our segmentation method is shown
in Fig. 1. Firstly, images are segmented into superpixels with
SLIC [13]. Then, a graph of superpixels is constructed and
other features are extracted as priors. Next, we build connec-
tions between similar superpixels of the original image and
the graph so that the labels can propagate. Finally, the em-
bedding prior is employed to repeatedly adjust the labeling to
complete the segmentation.



Fig. 1. Segmentation Method Overview.

2.2. Representation of superpixel context

We use the term “superpixel context” to denote the semantic
classes and their spatial relations surrounding a given super-
pixel. It is obvious that the importance of a semantic class is
inversely proportional to the distance from the given super-
pixel. It is not necessary to take into account superpixels in a
long distance since the number of superpixels can be manip-
ulated through tuning parameters of generation algorithm.

Therefore, we define the context of a certain superpixel
as a sequence of semantic classes of its adjacent superpixels.
The context sequence starts from y-axis direction and goes
clockwise. If there is no superpixel in this direction, we de-
note it with a dummy class “boundary”.

Unlike previous efforts made to investigate graph struc-
ture or edge weights, for instance in [14], we recognize the
surrounding semantic classes as a variable feature to a certain
superpixel.

We propose two versions of representation. The first
records superpixel classes from eight main directions. For
example, the context in Fig. 2 is c8 = (6, 6, 6, 6, 5, 4, 4, 4).
The centroid is defined as the arithmetic mean of each inner
pixel coordinates, context determined by simple search. The
second records both classes and their spanning angle, which
indicates the context in Fig. 2 can be represented as a matrix.

c∞ =

 6 −0.083π 0.375π
5 0.375π 0.625π
4 0.625π 0.917π


2.3. Potential of embedding

To employ superpixel context in the viewpoint of semantic
segmentation as an overall energy minimization problem, we
propose a new potential, which gives each embedded super-
pixel a penalty cost value.

If xji denotes the i-th superpixel in image j, yji denotes
the class of the i-th superpixel in image j, let E be the overall
energy of the graph G = (Vxj

i
, E

xj
i

(′)), then in a classic CRF

model:

E(yji ) =
∑(

ψ(yji , x
j
i ) + π(yji )

)
+
∑

φ(yji , x
j
i )

(′) (1)

where the first unary potential ψ measures how much the fea-
ture of xji is consistent with the class feature of yji . Potential
π constraints the class label in a possible pool in the training
stage, and represents ILP in the test stage in [8]. Pairwise po-
tential φ encourages superpixels with similar features to take
the same label. Feature similarity is measured by distance of
semantic texton histograms:
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It is difficult to optimize a high order potential, e.g., sec-
ond order potential φ. Hence we propose the item η as an
unary potential and embed adjacent contexts in each super-
pixel:

η(yi, xi) = − log
(
P (yi|cxi

)
)

(3)

where P is the probability of superpixel xi taking label yi
condition on context cxi . Therefore, η can be reckoned as a
penalty for labeling of a superpixel that conflicts with its con-
text. Parameter P is trained by a forward propagation neural
network with the contextual data described in Section 2.2 and
stored in the first output layer. Fig. 3 illustrates the training
steps of a superpixel embedding network.

For test images, we initialize the inference with labelings
generated by eq. (1) and iterate the process of predicting yti
for xti until convergence of:
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where t stands for “training”. Potential ψ and π are up-
dated in each iteration. The energy is fast converging after 2
or 3 iterations according to our experiments.

Fig. 2. Superpixel embedding representation of the central
superpixel. Numbers denote different classes.



Fig. 3. The architecture of penalty training with superpixel
embedding.

3. GRAPH-BASED SEGMENTATION

3.1. Construction of hierarchical superpixel graph

We empirically use SLIC [13] algorithm to generate super-
pixels of different scale from the same image. Scales are set
as zs = {20, 50, 100, 200}, as in [12]. Four scales interact
with two mechanisms — transfer and recover. In top-down
procedures, transfer mechanism assigns the semantic label of
coarse superpixels to its finer counterparts in an upper scale.
In bottom-up procedures, the fine scale superpixels vote for
the label of its coarser counterparts in a lower scale. Recover
mechanism rolls back to the previous labeling if the change
increases the energy in each scale.

Superpixel features and image-level features are calcu-
lated for corresponding potential items, respectively. We use
Semantic Texton Forests (STF) [6] as feature representation
for both unary and pairwise potentials because of its outstand-
ing performance. STF feature joints shape-texture, color and
location cues as a whole. Therefore, no more features are
required for superpixel level. Similarity of superpixels is de-
fined as the χ2 distance of STF features.

Furthermore, we use four image-level features: GIST
[15], SIFT [16], HSOG (Histograms of the Second-Order
Gradients) [17] and color histogram which is defined as
H(i) = # (pixel value = i), i = 0, 1, ..., 255 in one chan-
nel. We use a 512-dimensional GIST descriptor and color
histogram distance is calculated as below.

dχ2(H1, H2) =
∑
I

(H1(I)−H2(I))
2

H1(I) +H2(I)
(5)

The same learning method is employed as in [8] to form a
linear combination of these image-level features. Thus differ-
ent classes will have different combination of weights of each
feature, which is believed beneficial for achieving a higher
accuracy.

3.2. Semantic labels inference

In this section, we elaborate the algorithm of labels inference
in the same scale. In the training stage, the probability of lo-
cation distribution of each semantic class is learned as a prior.
Labels with the highest probability is assigned to the super-
pixel. This initial mapping serves as the data for minimiza-
tion.

In the test stage, the task is supervised with the aforemen-
tioned assigning result. For intra-scale labeling, eq. (4) is used
in each procedure. Since the particular semantic class “void”
has been taken into consideration in representation of super-
pixel context, the labeling result for eq. (3) includes some
“void” class. In each iteration we transfer the corresponding
labels from eq. (1) to substitute those “void” class. Optimiz-
ing uses graph-cut energy minimization algorithm introduced
in [18].

4. EXPERIMENTS

4.1. Dataset and Analysis

We conduct our experiments on MSRC-21, which contains
591 images with 21 semantic classes. This is the most popu-
lar dataset for image semantic segmentation. PASCAL VOC
2007 and 2011 are employed for testing as well. We use
the same training/testing split and parameter setting for graph
construction as in [8] to make our results comparable to this
method. The main difference is our use of additional priors,
e.g., η(yi, xi).

Since the probability of location distribution and super-
pixel embedding can be calculated before the label inference
stage, our average time consumption for segmentation is not
significantly different from the method described in [8].

Fig. 4 maps the relations of semantic classes to a lower
dimensional space. Theoretically, closer classes tend to share
more homogeneous surrounding context. Some semantic par-
allels are still preserved, for example, “road” is to “car” what
“water” is to “boat”.

4.2. Comparisons

We compare the proposed method with some state-of-the-art
methods introduced in [8], [19] and [20]. Superpixel embed-
ding is calculated using both context representations c8 and
c∞. Segmentation performance is evaluated by three indica-
tors.

Node Accuracy (Node Acc) is the most intuitive mea-
sure, which stands for the percent of superpixels correctly la-
beled in the testing stage. Pixel-level Accuracy (Pixel Acc)
represents the percent of pixels correctly labeled and Aver-
age per Class Accuracy (AClass Acc) is the arithmetic mean
for Pixel Acc of 21 semantic classes. As shown in Table 1,
our method achieves a circa 2% improvement on [8] for both
Node Acc and Pixel Acc using c8 and 3% using c∞.



Table 1. Performance comparison on MRSC-21

Method AClass Acc Node Acc Pixel Acc

MIM [8] 0.671 0.657 0.656
SIM[19] 0.697 – –
Ours(using c8) 0.675 0.678 0.678
Ours(using c∞) 0.694 0.686 0.687
WSDC [20] 0.714 0.529 –

A circa 2% improvement is made for AClass Acc so that
this indicator is comparable to some fully supervised method,
e.g., Support Instance Machines in [19]. It is important to
notice that our framework is the same with [8], which means
the improvement is mainly the contribution of our additional
embedding prior. This observation proves that η(yi, xi) is
a powerful potential. Some methods with different frame-
work, for example, Dual Clustering [20], achieves a higher
AClass Acc, while other indicator, such as Node Acc, is sig-
nificantly lower.

Fig. 5 provides some segmentation results for comparison.
We observe that the segmentation method with embedding
potential usually produces a more smooth and well-shaped
semantic class contour. Note that the class “sheep” in the sec-
ond row has more accurate “feet” contour and the class “face”
in the fourth row is more coherent. This character signifi-
cantly improves the segmentation of object-centered classes
like “sheep”, “cow”, “boat”, etc. There are two type of errors
that systematically appear in the results of segmentation with
embedding. First, on the contrary to what is observed without
embedding, object classes tend to flood into the background,
though in most cases the background is just “void” class.

Fig. 4. A 2-dimentional mapping of semantic classes of
MSRC-21 from higher dimensional space, including special
classes “BOUNDRY” and “void”.

Original Image Without Embedding With Embedding

Fig. 5. Segmentation results on MSRC-21. The first column
illustrates original images with ground truth laid on the right
bottom corner. The second and the third columns illustrate
segmentation results with and without superpixel embedding.

This phenomenon would not affect indicators because
void class regions are excluded when calculating these accu-
racy, however, the de facto performance human perceived is
seriously influenced. Second, regions tend to be labeled with
a non-existent semantic class because of its shape and posi-
tion. For example, the shadow below “boat” is incorrectly
labeled as “airplane”. This type of error, which we can term
“semantic shift”, is not only a counter-effect of the embed-
ding, but also ubiquitous in human recognition, if attention
only paid to a local part. To this end, as a future work we plan
to exploit analogical reasoning [10] and common-sense rea-
soning [21] to filter out adjacent labels that are semantically
irrelevant or implausible.

5. CONCLUSION

We present a better and competitive approach to represent
mid-level contextual cues for images and semantic classes.
A neural network is employed to transform these cues to the
probability distribution of semantic class given the context.
The distribution is used to form a unary potential that can be
used in a graph-based model to improve semantic segmenta-
tion. Experimental results show that our superpixel embed-
ding approach brings on a significant improvement from pre-
vious work. Further work will focus on finding faster and
robust algorithm to train the prior. We also intend to reduce
semantic shift through the ensemble use of common-sense
knowledge and analogical reasoning.
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