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Abstract—Online social networks have become one of the
primary ways of communication to individuals. It rapidly gen-
erates a large volume of textual and non-textual data such as
images, audio, and videos. In particular, textual data plays a vital
role in detecting mental health-related problems such as stress,
depression, anxiety, and emotional and behavioral disorders. In
this paper, we identify the mental stress of online users in social
networks using a transformers-based RoBERTa model and an
autoregressive model, also called XLNet. We implement this
model in both a constrained system and an unconstrained system.
The constrained system maintains the gold standard datasets
such as training, validation, and testing. On the other hand, the
unconstrained system divides the given dataset into user-specific
training, validation, and test sets. Our results indicate that the
proposed transformers-based RoBERTa model achieves a better
result in both constrained and unconstrained systems than the
state-of-the-art models.

Index Terms—Stress detection, Mental health, Transformers

I. INTRODUCTION

Nowadays, online social media has transformed the way of
communication or interaction between people. They share their
factual information, day-to-day activities, feelings, opinions,
experiences, desires, hopes, and emotions in the form of tweets,
posts, and messages [1]. This textual information can be used
to identify mental illness in individuals [2]–[6]. Psychological
stress is an emotional feeling or a physical tension of an
individual. In real life, everyone experiences psychological
stress from time to time due to any thought or event that
makes them feel angry, nervous, or frustrated [7].

Stress is broadly studied into two types, namely, acute stress
and chronic stress [8]. Firstly, acute stress is a short-term or
temporary condition of an individual that goes away quickly.
For instance, doing something new, fight with a partner, loss of
a loved one, the threat of death, natural disasters, sexual assault,
or motor vehicle accidents. Sometimes, it helps an individual to
manage dangerous situations like meeting a deadline or learning
a skill. Secondly, chronic stress is a long-lasting feeling of an
individual that severely damages human body reactions such
as irritability, difficulty sleeping, digestive problems, feeling
helpless, nervousness, headaches, difficulty concentrating, high
blood pressure, diabetes, heart disease, and skin problems.

Chronic stress can come from various thoughts such as an
unhappy married life, high-pressure jobs, money problems, or
trouble at work [9]. Therefore, stress detection has become
an important research field in online social networks such as
Facebook, Twitter, and Reddit.

For instance, here is an example of how a social media
user expresses stress: “Hi, I am a 19-year-old kid dealing with
Agoraphobia over the past year. Very boldly said, Agoraphobia
is the fear of going to public places, sometimes even leave
the house. The past week, some very unpleasant things have
happened in my household. I told my parents about what
I have been dealing with a while back" [10]. Traditionally,
researchers studied the psychological stress of individuals
using a questionnaire, face-to-face interview, and wearable
sensors. However, these traditional methods are time-costing,
labor-consuming, and hysteric [11]. Recently, researchers
developed automatic stress detection in online social networks
using machine learning and deep learning architectures. The
machine learning architectures or models use hand-crafted
feature engineering techniques to identify stress. Similarly, deep
learning architectures use semantic context vectors to identify
stress in online social networks. More recently, transformers-
based [12] approaches such as encoder architecture (BERT,
RoBERTa) [13], [14] and decoder architecture (XLNet) [15]
gained popularity among researchers in the field of natural
language inference, sentiment analysis, question answering,
and recommendation systems [16]–[18].

In this paper, we use a RoBERTa and an XLNet-based
classifier for stress detection in users post. The RoBERTa is
defined with the encoder architecture of the transformer with an
architecture similar to BERT. Similarly, the XLNet is defined
with the decoder architecture of the transformer with a similar
architecture of BERT. Particularly, these pre-trained models
outperform well than BERT-based classifiers. It is also very
effective to deal with unstructured data and to learn long-textual
contextual information. The rest of this paper is organized
as follows: Section 2 illustrates existing research works in
stress detection; Section 3 explains transformer-based stress
identification in online social networks; Section 4 presents the
results and discussion; finally, Section 5 proposes concluding
remarks.

II. RELATED WORKS

In the last decade, online social media has become one of
the most important platforms for people to share their mental
health issues. Researchers use this information and develop
new techniques using natural language processing (NLP) and
machine learning to assist people. In this section, we briefly
describe the existing works in stress detection.



Murarka et al. [3] applied RoBERTa architecture to detect
and classify online mental health illness posts into ADHD,
anxiety, bipolar disorder, depression, and PTSD. Their results
indicated that the proposed RoBERTa model achieves 86%,
72%, and 89% F1-scores for posts, titles, and posts and titles,
respectively. Lin et al. [11] proposed a hybrid model that
combines a graph model with convolutional neural networks
(CNN) for the psychological stress detection task using users’
social interactions. The authors used textual, visual, and
social features for stress detection. They improved the model
performance by a 6-9% F1-score.

Iranfar et al. [19] detected stress from multimodal signals
using a machine learning framework, which includes feature
identification, outlier detection, imputation, and classification.
The authors effectively addressed missing data and outliers.
Their study indicated that the eXtreme Gradient Boosting
(XGB) algorithm achieves a higher cross-validation score.
Hosseini et al. [20] provided a biometric stress detection dataset
that is collected from nurses during the COVID-19 pandemic.
It contains stress events, survey responses, and signals. The
authors have captured the psychological data and its associated
events. Also, they performed ANOVA and Tukey’s test to
identify the differences between stress groups.

Li [21] developed a stress detection system with an early
warning using wireless network transmission. The authors
implemented this system in a real-time hardware and software
setup. They used a predefined psychological stress index
threshold to measure the early warning. Dacunhasilva et
al. [22] detected stress with pressure sensors using instrumented
peripherals such as keyboards and mice. They validated this
system design in the laboratory environment by comparing
conventional features (mouse trajectories, keystroke dynamics)
and augmented features from pressure sensors.

Gonzalez-Carabarin et al. [23] proposed a multi-sensing
system to evaluate personalized stress levels based on EEG-
ECG markers. The authors used 24 individuals between the age
of 18-23. They used semisupervised machine learning models to
process acquired signals and five supervised machine learning
models (KNN, SVM, RT, FT, and ANN) to categorize the
obtained clusters. Their study indicated that SVM achieves
79.91% test accuracy. Mou et al. [24] developed a framework
to detect driver stress using multimodal fusion. They employed
an attention-based CNN-LSTM model to fuse vehicle data,
eye data, and environmental data. The authors achieved 95.5%
accuracy on driver stress detection.

Also, Bara et al. [25] used the GRU model for multimodal
stress detection. The authors evaluated this task using different
signals. Their study indicated that a 1.3% improvement in
close-up video and 2.4% in physiological sensors. Delmastro
et al. [26] detected stress using wearable sensors and machine
learning from mild cognitive impairment frail older adults.
The authors were applied correlation, information gain, and
principal component analysis features for the psychological
stress input data. Then, they employed machine learning
algorithms. Their study indicated that the Random Forest and
AdaBoost algorithms outperform the other algorithms.

Dham et al. [27] automated the mental stress detection
based on stacking classifier and RBF (radial basis function).
They used wearable sensor data that is collected from stressed
individuals. Li et al. [28] proposed an algorithm based on
correlation learning and clinical patient questionnaire-based
lexicon to detect stress symptoms related to COVID-19 at a
spatiotemporal scale. This algorithm addresses the limitation
of topic modeling and ambiguity minimization. Their study
suggested a strong relationship between increased COVID-19
cases and stress symptoms in the major cities of the United
States.

Albertetti et al. [29] proposed deep learning approaches
to detect stress using psychological signals in a laboratory
condition. The authors used a decision tree (DT), recurrent
neural networks (RNN), and Convolutional RNN for the binary-
level stress detection tasks. They achieved the highest accuracy
of 71% using RNN. Gopalakrishna Pillai et al. [30] developed
a lexicon-based TensiStrength algorithm to detect stress and
relaxation by incorporating word sense disambiguation (WSD).
Their study indicated that the proposed TensiStrength algorithm
with WSD achieves better results than machine learning
algorithms. In summary, the existing researchers used hand-
crafted features, context-independent features, and lexicon-
based features to identify stress in a given text. Thus, we
present a generalized autoregressive model (XLNet) with long-
context-dependent features to detect stress in online social
networks.

III. STRESS IDENTIFICATION

We present a transformers-based stress identification model
in online social networks. Specifically, we use the RoBERTa
model and the generalized autoregressive model, also called
XLNet for the task of stress identification as in Fig. 1. We
explain the proposed model in detail in the following steps.

A. Dataset

We use a Reddit dataset for stress identification in online
social networks [10]. This dataset contains users’ posts in five
domains with ten subreddits, namely, abuse: domestic violence
and survivors of abuse, anxiety: anxiety and stress, financial:
almost homeless, assistance, food pantry, and homeless, Post-
Traumatic Stress Disorder: PTSD and relationships, and social:
relationships. Overall, the dataset contains 3553 labeled posts
(stress or non-stress) and their LIWC (Linguistic Inquiry and
Word Count) features, syntactic features, and social media
features. It is further divided into a training set and a test set.
They contain 2838 and 715 users’ posts with LIWC features,
respectively.

B. Preprocessing

We apply mainly three preprocessing techniques to the given
training and test sets. Firstly, we fix the broken Unicode
in the given training sets and test sets using FTFY (fixes
text for you) library [31]. Secondly, we apply a contraction
map technique to expand the shortened English tokens like
“im" into “I am”, “imma" into “I am going to" and so on.
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Fig. 1. The proposed stress detection model

Thirdly, we use Sentic Parser [32] to perform other syntactic
and semantic preprocessing tasks such as negation handling,
microtext normalization, and compound word processing. The
parser removes inflections, such as -ing, -ful, and -able,
and neutral prefixes, such as en-, re-, and co- (Fig. 2),
so that words like ‘entrust’, ‘entrusts’, ‘entrusted’, ‘entrust-
ing’, ‘entrustment’, ‘entrustments’, ‘trustable’, ‘trustability’,
‘trusts’, ‘trusted’, ‘trustful’, ‘trustfully’, ‘trustfulness’, ‘trustily’,
‘trustiness’, ‘trusting’, ‘trustingly’, ‘trustingness’, ‘trustworthy’,
‘trustworthily’, ‘trustworthiness’, etc. are all normalized to
trust. The same mechanism applies to other non-canonical
suffixes such as -like, -hood, -dom, and -ship so that words
like ‘saintlike’, ‘sainthood’, ‘saintdom’, and ‘saintship’ are all
normalized as saint.

Sentic Parser also handles negative prefixes such as mis-,
dis-, and un- so that words like ‘distrust’ and ‘mistrust’ can
be normalized as NOT trust. Such negative prefix handling
happens concomitantly with inflection removal so that also
words like ‘distrusts’, ‘distrusted’, ‘distrustable’, ‘distrustful’,
‘distrustfully’, ‘distrustfulness’, ‘distrusting’, ‘distrustingly’,
‘mistrusts’, ‘mistrusted’, ‘mistrustable’, ‘mistrustful’, ‘mistrust-
fully’, ‘mistrustfulness’, ‘mistrusting’, ‘mistrustingly’, ‘trust-
less’, ‘untrustworthy’, ‘untrusty’, ‘untrusting’, and more, are
all normalized as NOT trust.

Thanks to such a mechanism, which leverages both in-
flectional and derivational morphology, Sentic Parser is also
able to decode wrong English expressions such as ‘stucked’,
‘accessable’, or ‘inglamorous’, which can be rather common
in social media text. The same rule of checking whether
a concept is present in SenticNet still applies here so that
concepts like defraud, distress, and disclose are not
wrongly normalized as NOT fraud, NOT stress, and NOT
close, respectively. Finally, Sentic Parser also performs mi-
crotext normalization [33] so that words like ‘gooooooood’ and
‘horrrible’ are normalized as ‘good’ and ‘horrible’, respectively.

C. Text representation

We first represent the preprocessed text with special tokens
in the format of [CLS] S1 [SEP ] S2 [SEP ], where [CLS]
and [SEP ] indicate special tokens at the beginning of the
sequence and end of the sequence, and S1 and S2 indicate
multiple input sequences [12], [13], [15].

Second, the input sequences are tokenized into subwords
and characters. It is then represented into token, segment, and
attention embeddings. Finally, we apply these embeddings into
the pre-trained RoBERTa and XLNet models, two language
models similar to BERT but with different training corpus
and language modeling objective. These models provide long-
context-dependent information of the given input tokens and
have been proven very effective for affective computing and
sentiment analysis [34]–[37].

D. XLNet-Based Classifier

XLNet is one of the latest techniques in the field of
natural language processing [15], [38]. It performs better than
BERT [13] and overcomes the limitations of BERT. It is used
in various tasks such as sentiment analysis, question-answering,
text classification, etc. The BERT model tries to discover the
masked words in a sentence, but XLNet works differently. It is
built on the previous state-of-the-art methods. XLNet uses the
best of both auto-encoder language models as used in BERT
and auto-regressive language models as used in GPT-2.

Fig. 2. A sample parse graph for word inflections.



Methods Class Validation Testing
NS S NS S

Text NS 114 21 274 72
S 27 122 54 315

Text + Domain NS 91 44 239 107
S 11 138 35 334

Text + Features NS 104 31 255 91
S 12 137 41 328

TABLE I
CONFUSION MATRIX FOR THE CONSTRAINED SYSTEM USING XLNET

Methods Class Validation Testing
NS S NS S

Text NS 127 26 135 35
S 17 150 23 163

Text + Domain NS 125 28 140 30
S 28 139 37 149

Text + Features NS 117 36 122 48
S 14 153 18 168

TABLE II
CONFUSION MATRIX FOR THE UNCONSTRAINED SYSTEM USING XLNET

The auto-encoder language model can work in both direc-
tions, whereas the auto-regressive language model can works
either in forward or reverse directions. Auto-regressive language
models are good at the text generation tasks, whereas auto-
encoder language models are good at seeing the context in both
directions. Therefore, XLNet uses the auto-regressive language
model with a bidirectional context via factorization order.
This model is developed based on the decoder-architecture
of the transformer model [12]. In particular, XLNet takes a
list of tokens, where each token is some word and outputs
the probability of occurrence of some word in the list. The
model has enough information that it can predict what comes
next from the input sequence words via factorization order. Let
T = {He, likes, this, shirt} be the given input text. XLNet
uses the permutation order of this given input sequence is 4!
For instance, we consider two input sequence order [this →
he → likes → shirt] and [He → likes → shirt → this].

We then predict the word ‘this’ in both sequences. The
first sequence returns the probability of this word as P (this),
whereas the input sequence does not have preceding words
to consider. Similarly, the second sequence considers both
preceding and succeeding words as P (this | He, likes, shirt).
More specifically, the XLNet model is trained on a corpus of 30
billion words with two variants, namely, the XLNet-Base model
and the XLNet-Large model. These pre-trained models use
permutations, attention masks, and two-stream self-attentions,
namely, content stream and query stream self-attentions. These
greatly help to achieve better performance. In this work, we
detect stress in online social networks using the XLNet-Large
fine-tuning model. This fine-tuning model is designed with
340M parameters based on 24 decoder layers, 16 attention
heads, and 1024 hidden representations.

E. RoBERTa-Based Classifier

RoBERTa is also one of the latest techniques in the
field of natural language processing [14]. It is the modified
version of the BERT model for improving the performance

Methods Class Validation Testing
NS S NS S

Text NS 110 25 278 68
S 23 126 52 317

Text + Domain NS 102 33 255 91
S 17 132 39 330

Text + Features NS 113 22 280 66
S 19 130 50 319

TABLE III
CONFUSION MATRIX FOR THE CONSTRAINED SYSTEM USING ROBERTA

Methods Class Validation Testing
NS S NS S

Text NS 129 24 136 34
S 30 137 23 163

Text + Domain NS 119 34 126 44
S 15 152 17 169

Text + Features NS 113 40 119 51
S 10 157 14 172

TABLE IV
CONFUSION MATRIX FOR THE UNCONSTRAINED SYSTEM USING ROBERTA

of downstream tasks. Specifically, RoBERTa addresses four
training procedures; dynamic masking, model input format
and NSP (next sentence prediction), training with large mini-
batches, and text encoding. Firstly, the BERT model uses only
a single static masking pattern during data preprocessing and
training. In contrast, RoBERTa uses a dynamic masking pattern
for an input sequence when it feeds to the model every time.
Secondly, the BERT model observes concatenated document
segments either from the same document or distinct documents
through the NSP loss. It trains the model with the input
format of SEGMENT-PAIR+NSP loss. The RoBERTa model
uses FULL-SENTENCES without NSP loss for improving
the performance of downstream tasks. Thirdly, the original
BERT model trains 256 input sequences in a batch. In contrast,
RoBERTa uses increased batch sizes (2K and 8K) for training
the model. Finally, the RoBERTa model uses character-level
Byte-Pair Encoding (BPE) with increased vocabulary size
(50K). The BERT model uses only a vocabulary size of 30K.

These modified training procedures improve the performance
of downstream tasks than the original BERT. More specifically,
RoBERTa has trained on five corpora over 160GB texts
with two variants, namely, the RoBERTa-Base model and
the RoBERTa-Large model. These pre-trained models use
self-attentions (A) and FNN (feed-forward neural network).
These greatly help the transformer models to achieve better
performance in downstream tasks. In this work, we detect
stress in online social networks using the RoBERTa-Large fine-
tuning model. This fine-tuning model is designed with 355M
parameters based on 24 encoder layers, 16 attention heads, and
1024 hidden representations.

IV. RESULTS AND DISCUSSION

We implement the stress identification task in online social
networks in a constrained system and unconstrained systems
using the RoBERTa-Large and XLNet-Large model. The
constrained system uses the given training set and testing
set without any modifications or changes.



Methods Class Validation Testing
Precision Recall F1-score Precision Recall F1-score

Text Non Stress 0.8085 0.8444 0.8261 0.8354 0.7919 0.8131
Stress 0.8531 0.8188 0.8356 0.8140 0.8537 0.8333
MacF1 0.8308 0.8316 0.8309 0.8247 0.8228 0.8232
MicF1 0.8310 0.8310 0.8310 0.8238 0.8238 0.8238

Text + Domain Non Stress 0.8922 0.6741 0.7679 0.8723 0.6908 0.7710
Stress 0.7582 0.9262 0.8338 0.7574 0.9051 0.8247
MacF1 0.8252 0.8001 0.8009 0.8148 0.7980 0.7978
MicF1 0.8063 0.8063 0.8063 0.8014 0.8014 0.8014

Text + Features Non Stress 0.8966 0.7704 0.8287 0.8615 0.7370 0.7944
Stress 0.8155 0.9195 0.8644 0.7828 0.8889 0.8325
MacF1 0.8560 0.8449 0.8465 0.8222 0.8129 0.8134
MicF1 0.8486 0.8486 0.8486 0.8154 0.8154 0.8154

TABLE V
PERFORMANCE OF THE CONSTRAINED SYSTEM USING XLNET-LARGE

Methods Class Validation Testing
Precision Recall F1-score Precision Recall F1-score

Text Non Stress 0.8819 0.8301 0.8552 0.8544 0.7941 0.8232
Stress 0.8523 0.8982 0.8746 0.8232 0.8763 0.8490
MacF1 0.8671 0.8641 0.8649 0.8388 0.8352 0.8361
MicF1 0.8656 0.8656 0.8656 0.8371 0.8371 0.8371

Text + Domain Non Stress 0.8170 0.8170 0.8170 0.7910 0.8235 0.8069
Stress 0.8323 0.8323 0.8323 0.8324 0.8011 0.8164
MacF1 0.8247 0.8247 0.8247 0.8117 0.8123 0.8117
MicF1 0.8250 0.8250 0.8250 0.8118 0.8118 0.8118

Text + Features Non Stress 0.8931 0.7647 0.8239 0.8714 0.7176 0.7871
Stress 0.8095 0.9162 0.8596 0.7778 0.9032 0.8358
MacF1 0.8513 0.8404 0.8417 0.8246 0.8104 0.8115
MicF1 0.8438 0.8438 0.8438 0.8146 0.8146 0.8146

TABLE VI
PERFORMANCE OF THE UNCONSTRAINED SYSTEM USING XLNET-LARGE

Methods Class Validation Testing
Precision Recall F1-score Precision Recall F1-score

Text Non Stress 0.8271 0.8148 0.8209 0.8424 0.8035 0.8225
Stress 0.8344 0.8456 0.8400 0.8234 0.8591 0.8408
MacF1 0.8308 0.8302 0.8304 0.8329 0.8313 0.8317
MicF1 0.8310 0.8310 0.8310 0.8322 0.8322 0.8322

Text + Domain Non Stress 0.8571 0.7556 0.8031 0.8673 0.7370 0.7969
Stress 0.8000 0.8859 0.8408 0.7838 0.8943 0.8354
MacF1 0.8286 0.8207 0.8220 0.8256 0.8157 0.8162
MicF1 0.8239 0.8239 0.8239 0.8182 0.8182 0.8182

Text + Features Non Stress 0.8561 0.8370 0.8464 0.8485 0.8092 0.8284
Stress 0.8553 0.8725 0.8638 0.8286 0.8645 0.8462
MacF1 0.8557 0.8548 0.8551 0.8385 0.8369 0.8373
MicF1 0.8556 0.8556 0.8556 0.8378 0.8378 0.8378

TABLE VII
PERFORMANCE OF THE CONSTRAINED SYSTEM USING ROBERTA-LARGE

In the unconstrained system, we combine both training and
testing sets. We then randomly split the entire dataset into 80%
for the training set, 10% for the validation set, and 10% for
the testing set. Specifically, we use the Reddit stress detection
dataset that contains a training set of 2838 posts and their
related LIWC, syntactic, and social media features, and a test
set of 715 posts and their related LIWC, syntactic, and social
media features. We use the following baselines models for
online users stress detection, namely, Logistic Regression (LR)
with Word2Vec, LR with BERT, CNN, and CNN with attention,
Gated RNN (GRNN), GRNN with attention, and BERT. For
the constrained system, 10% percent of user posts were taken
for validation from the original training set.

Now, the training set contains 2554 user posts, and the vali-
dation set contains 284 user posts. Similarly, the unconstrained
system divides the entire dataset into 2877 user posts for the
training set, 320 user posts for the validation set, and 356 user
posts for the test set. In this work, we represented three types of
features, namely, text features, text and domain features which
include all subreddits, and text and their related features such as
LIWC, syntactic, and social media features. We then performed
XLNet large model on these feature representations in both
constrained and unconstrained systems using Google Colab Pro.
The constrained system uses the following hyperparameters:
310 sequence length (310), batch sizes (6), learning rate (2e-5),
and epochs (3).



Methods Class Validation Testing
Precision Recall F1-score Precision Recall F1-score

Text Non Stress 0.8113 0.8431 0.8269 0.8553 0.8000 0.8267
Stress 0.8509 0.8204 0.8354 0.8274 0.8763 0.8512
MacF1 0.8311 0.8317 0.8311 0.8414 0.8382 0.8390
MicF1 0.8313 0.8313 0.8313 0.8399 0.8399 0.8399

Text + Domain Non Stress 0.8881 0.7778 0.8293 0.8811 0.7412 0.8051
Stress 0.8172 0.9102 0.8612 0.7934 0.9086 0.8471
MacF1 0.8526 0.8440 0.8452 0.8373 0.8249 0.8261
MicF1 0.8469 0.8469 0.8469 0.8287 0.8287 0.8287

Text + Features Non Stress 0.9187 0.7386 0.8188 0.8947 0.7000 0.7855
Stress 0.7970 0.9401 0.8626 0.7713 0.9247 0.8411
MacF1 0.8578 0.8393 0.8407 0.8330 0.8124 0.8133
MicF1 0.8438 0.8438 0.8438 0.8174 0.8174 0.8174

TABLE VIII
PERFORMANCE OF THE UNCONSTRAINED SYSTEM USING ROBERTA-LARGE

Methods Accuracy
Majority baseline 68.08
CNN 71.82
CNN + Features 70.35
GRNN_Attn 73.55
GRNN_Attn + Features 72.86
N-gram baseline 74.41
N-gram + Features 77.00
Logreg_Word2Vec + Features 77.06
Logreg_BERT + Features 79.37
Logreg_Domain Word2Vec + Features 79.80
BERT-base 80.65
Proposed XLNet + Text (C) 82.38
Proposed RoBERTa + Text (C) 83.22
Proposed XLNet + Text (U) 83.71
Proposed RoBERTa + Text (U) 83.99
Proposed XLNet + Text + Domain (C) 80.14
Proposed RoBERTa + Text + Domain (C) 81.82
Proposed XLNet + Text + Domain (U) 81.18
Proposed RoBERTa + Text + Domain (U) 82.87
Proposed XLNet + Text + Features (C) 81.54
Proposed RoBERTa + Text + Features (C) 83.78
Proposed XLNet + Text + Features (U) 81.46
Proposed RoBERTa + Text + Features (U) 81.74

TABLE IX
RESULT COMPARISON

Similarly, the unconstrained system uses the following hy-
perparameters: sequence length (310), batch sizes (4), learning
rate (2e-5), epochs (6), and steps (4320). Table I and Table II
show the validation and testing confusion matrix for text,
text with domain, and text with features (LIWC, syntactic,
and social media) for the XLNet model with constrained
and unconstrained systems. Table III and Table IV show the
validation and testing confusion matrix for the RoBERTa model
with constrained and unconstrained systems.

Table V and Table VI show the XLNet-based constrained
and unconstrained systems’ performance with precision, recall,
and F1-score and their micro and macro scores [39] for all
feature representations. These tables indicate that the XLNet
large model achieves the micro F1-score of 83.10% and
86.56% for the validation set and 82.38% and 83.71% for
the test set with text feature representation. Also, the model
achieves an 80.63% and 82.50% micro F1-score for the
validation set and 80.14% and 81.18% micro F1-scores for the
validation set with text and domain feature representations.

As for the text and feature representations, the model
achieves 84.86% and 84.38% micro F1-scores for the validation
set and 81.54% and 81.46% for the test set. Moreover, Table VII
and Table VIII show the RoBERTa-based constrained and
unconstrained systems’ performance with precision, recall, and
F1-score and their micro and macro scores for all feature
representations. These tables indicate that the RoBERTa large
model achieves the micro F1-score of 83.10% and 83.13% for
the validation set and 83.22% and 83.99% for the test set with
the text feature representation.

Also, the model achieves an 82.39% and 84.69% micro
F1-score for the validation set and 81.82% and 82.87%
micro F1-scores for the test set with text and domain
feature representations. Similarly, for the text and feature
representations, the model achieves 85.56% and 84.38% micro
F1-scores for the validation set and 83.78% and 81.74% for
the test set. These results are visualized in Fig. 2. Result
comparison of the proposed RoBERTa and XLNet large model
with baseline models is shown in Table IX.



Fig. 3. Visualization of the validation and test scores

This table indicates that the proposed model achieves higher
accuracy for text feature representation and text with LIWC,
syntactic, and social media features in the constrained and
unconstrained systems. Furthermore, the unconstrained system
performs well than the constrained system for text feature
representation and text and features representations. Overall,
the RoBERTa model performs well both constrained and
unconstrained systems.

V. CONCLUSION

In this paper, we presented stress identification in online
social networks using a transformers-based XLNet model. The
proposed XLNet model is implemented in the constrained
system and unconstrained systems. Specifically, we represented
three types of features such as text features, text and domain
features, and text and their related features such as LIWC,
syntactic, and social media features. Our results reveal that
the proposed transformers-based XLNet model achieves better
results in both constrained and unconstrained systems than
the existing state-of-the-art models. As future work, we also
plan to detect stressed users based on gender and age group in
online social networks as we have done in our previous work
on sentiment detection [40].
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