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Abstract Not unlike the concern over diminishing fossil
fuel, information technology is bringing its own share of
future worries. We chose to look closely into one concern in
this paper, namely the limited amount of data storage. By a
simple extrapolatory analysis, it is shown that we are on the
way to exhaust our storage capacity in less than two cen-
turies with current technology and no recycling. This can
be taken as a note of caution to expand research initiative
in several directions: firstly, bringing forth innovative data
analysis techniques to represent, learn, and aggregate use-
ful knowledge while filtering out noise from data; secondly,
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tap onto the interplay between storage and computing to
minimize storage allocation; thirdly, explore ingenious solu-
tions to expand storage capacity. Throughout this paper, we
delve deeper into the state-of-the-art research and also put
forth novel propositions in all of the abovementioned direc-
tions, including space- and time-efficient data representa-
tion, intelligent data aggregation, in-memory computing,
extra-terrestrial storage, and data curation. The main aim of
this paper is to raise awareness on the storage limitation we
are about to face if current technology is adopted and the
storage utilization growth rate persists. In the manuscript,
we propose some storage solutions and a better utilization
of storage capacity through a global DIKW hierarchy.

Keywords Information technology · Big Data analysis ·
Data storage · Data representation · Data learning · Data
aggregation

Introduction

The huge consumption of storage is a fact that is getting
due attention within the umbrella term Big Data. While Big
Data and their analysis bring in new research as well as com-
mercial opportunities, the plain and simple fact behind this
growth is that it is not there to last forever. A survey [1]
shows that global consumption of storage in 2012 is 369 GB
per capita, with top 4 countries contributing above 2 TB per
capita. Digital universe is not only populated by individuals,
for whom, one may argue that, the data is dispensable and
hence, the storage crisis simply a storage recycling issue.
This is partially true. In 2013, it was reported that over the
course of diverse scientific experiments, CERN data cen-
ter recorded over 100 PB (105 TB) data during previous
20 years [2].
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The Panoramic Survey Telescope and Rapid Response
System (Pan-STARRS) [3] generates 1.4 TB raw image data
every night, which is used for impact risk assessment by
NASA [4], apart from other scientific analysis, for detect-
ing and avoiding collisions with near-Earth objects. The
time horizon of such events, which is probed continuously,
is 100 years. Large online companies regularly report data
clusters in the orders of PB [5]. This data deluge is likely to
continue with the emergence of new sensor-rich platforms.

These numbers, when put together in the context of the
growth rate of storage consumption, lead to the capacity
exhaustion scenario. To determine the limit of worldwide
storage capacity, we begin with a set of available data about
storage consumption as well as realistic assumptions as
following.

Digital Storage Consumption Data

These are the data about digital storage consumption we
leverage our analysis on:

– Worldwide storage size (s): 4.4 ZB (1021) bytes [6].
– Worldwide storage growth rate (r): 40% per year [6].
– Atomic-scale storage is possible with magnetic mem-

ory [7]. With optimistic assumption, all atoms can be
used. Total number of atoms (a): 1050 [8].

Digital Storage Assumptions

These are the following assumptions about digital storage
we leverage our analysis on:

– Error correction techniques for recovering sensitive data
will approach Shannon limit, though the increase in the
data volumedue to that is ignored for the present analysis.

– We are not recycling any storage at all. Admittedly, this
is a strong assumption, which will be revisited later
in section “In-memory Computing Technology” while
considering in-memory computing.

– Data compression techniques are ignored for the first
set of analyses provided in this section since it is inher-
ently application-specific. We discuss that aspect in
detail in section “Space-Efficient Data Representation.”

– The current growth rate for the data usage will persist.

Storage Capacity Exhaustion

Based on the assumptions and available data, we deduce the
time limit for storage capacity exhaustion.

Total number of bytes that can be stored considering all
available atoms and using 12 atoms per bit [7] is

B = a

12 × 8
= 1050

96
= 1.04 × 1048.

Assuming we have n number of years to exhaust this capac-
ity, growing at a compound annual growth rate of r , we have
the following relation.

(1 + r)n = 1.04 × 1048

s

=⇒ 1.4n = 1.04 × 1048

4.4 × 1021
= 2.36 × 1026.

Therefore,

n = log1.4{2.36 × 1026} = 180.47

Hence, we have roughly 181 years to exhaust all of the
Earth’s atomic storage capacity growing at the current rate
of storage occupation.

Searching for Solutions

The rapid exhaustion of storage needs to be countered with
scientific and technological innovations. In fact, there are
various research directions that are being followed right
now, which does not necessarily pay attention to this central
issue.

The core motivation of this manuscript is to draw atten-
tion the fact that diminishing global storage capacity is a
reality that needs focused research plan and visionary ideas.

Our contributions are primarily in relating the state-of-
the-art research topics to the storage awareness. Further, we
outline novel and futuristic research directions to address
this concern. To discuss these in a systematic manner, in the
following, we categorize the solution space into different
segments with associated discussions.

Space-efficient data representation This stems from
aggressive compression schemes and stretches towards
statistical techniques to store the data in the most com-
pact form, without incurring any loss of information.
This is discussed in section “Space-Efficient Data
Representation.”

Time-efficient data interpretation This research addresses
real-time learning paradigm, which, by the virtue of
proper interpretation, can do away with any storage
needs. We discuss this in section “Time-Efficient Data
Learning.”

Intelligent data aggregation The data, when acquired
from an intelligent source, can be directly aggregated
in a minimum necessary form that suffices the subse-
quent processing need. This approach is discussed in
section “Structure-Efficient Data Aggregation.”

In-memory computing architecture Emergence of recent
non-volatile memory technologies, which can double up
as computing devices, have opened up the scope of non-
Von Neumann architectures. It can be also an extremely
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viable architecture for addressing the storage crisis as dis-
cussed in section “In-memory Computing Technology.”

Deep future storage We discuss the futuristic possibilities
of storage capacity enhancement in section “The Future
of Storage.”

The above progression also represents the research focus
from algorithm, software architecture, application model,
and architecture model towards technology.

Space-Efficient Data Representation

When addressing volume in Big Data analytics, researchers
in the data analytics community have largely taken a one-
sided study of volume, which is the “Big Instance Size”
factor of the data. The flip side of volume which is the
dimensionality factor of Big Data, on the other hand, has
received much less attention. The term “Big Dimensional-
ity” [9] has been coined to put attention on the need for
new ways in coping with the unprecedented number of fea-
tures (dimensions) that are scaling to levels that now render
existing approaches inadequate.

Dimensionality Reduction Techniques

Popular dimensionality reduction techniques include the
following:

– Missing values ratio: Data columns with too many
missing values are unlikely to carry much useful infor-
mation. Thus, data columns with number of missing
values greater than a given threshold can be removed.
The higher the threshold, the more aggressive the
reduction.

– Low variance filter: Similarly to the previous technique,
data columns with little changes in the data carry little
information. Thus, all data columns with variance lower
than a given threshold are removed.

– High correlation filter: Data columns with very similar
trends are also likely to carry very similar informa-
tion. In this case, only one of them will suffice to feed
the machine learning model. The correlation coeffi-
cient between numerical columns and between nominal
columns can be calculated as the Pearson’s product
moment coefficient and the Pearson’s chi-square value,
respectively.

– Random forests: Decision tree ensembles, also referred
to as random forests, are useful for feature selection in
addition to being effective classifiers. One approach to
dimensionality reduction is to generate a large and care-
fully constructed set of trees against a target attribute
and then use each attribute’s usage statistics to find the
most informative subset of features.

– Backward feature elimination: In this technique, at a
given iteration, the selected classification algorithm is
trained on n input features. Then, one input feature is
removed at a time and the same model is trained on
n − 1 input features n times. The input feature whose
removal has produced the smallest increase in the error
rate is removed, leaving us with n − 1 input features.
The classification is then repeated using n − 2 features,
and so on. Each iteration k produces a model trained
on n − k features and an error rate e(k). Selecting the
maximum tolerable error rate, we define the smallest
number of features necessary to reach that classification
performance with the selected machine learning algo-
rithm. Similar feature extraction algorithms for image
classification are proposed in the literature [10].

– Linear and non-linear component analysis: In statisti-
cal analysis, for all supervised (labeled data) or unsu-
pervised (unlabeled data) or semi-supervised (partially
labeled data) methods, both linear and non-linear com-
ponent analyses play a very big role for dimensionality
reductions. Principal component analysis (PCA) [11] is
a linear unsupervised statistical procedure that orthogo-
nally transforms the original n coordinates of a data set
into a new set of n coordinates called principal compo-
nents. As a result of the transformation, the first prin-
cipal component has the largest possible variance; each
succeeding component has the highest possible variance
under the constraint that it is orthogonal to (i.e., uncor-
related with) the preceding components. Keeping only
the first m < n components reduces the data dimen-
sionality while retaining most of the data information,
i.e., the variation in the data. While keeping the dimen-
sions with largest energy (variance) certainly improves
the density estimation, they are suboptimal for classi-
fication purposes. Linear discriminant analysis (LDA)
is the most commonly used algorithm for both clas-
sification and dimensionality reduction. It attempts to
minimize the Bayes error by selecting those feature
vectors that maximize the ratio (Fisher criteria [11])
between the variance measure from the between class
and variance measure from the within class. When our
data can be modeled using a single Gaussian, although
the underlying distributions of each class are not, PCA
is preferred over LDA. Whereas when the classes cor-
respond to linearly separable Gaussian distributions,
LDA is generally preferred over PCA [12]. For very
big data analysis, especially for their processing time
and time of their availability, both PCA and LDA
have their own limitations. To alleviate their limita-
tions, researchers have proposed incremental PCA [13],
incremental LDA [14], and many of their variants [15].
Their incremental procedures have improved the over-
all capability of handling large voluminous data but at
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the expense of increased computational time. We take
up a specific example to illustrate this discussion in the
next section “Learn from Big Data and Then Delete It.”
In recent years, a significant amount of work is done
in non-linear component analysis for dimensionality
reduction. As PCA and LDA are popular approaches,
they have been used as kernel or non-linear PCA [16]
and kernel LDA [17]. The idea is to transform the
data from original plane (in which the data is not lin-
early separable) to some other non-linear plane (very
high-dimensional feature space), where the researchers
envisage that the data could be linearly separable. Gen-
erally, polynomial, Gaussian, and radial basis functions
are used for such transformation. In our opinion, on
case-by-case basis, such transformation can be benefi-
cial but not always. Moreover, such transformations are
computationally expensive and involve a large number
of free parameters. Comparisons on same databases and
protocols using various component analyses, linear and
non-linear, can be found in [18, 19].

PCA is possibly the most popular paradigm for dimen-
sionality reduction. It needs to be noted that data compres-
sion is highly application driven, even making room for
lossy and approximate value retention possibilities. Below,
we describe one of the examples in details.

Learn from Big Data and Then Delete It

Large amount of data, e.g., video data, are predominantly
applied for specific application purposes such as data recon-
structions in communications or discriminant analysis for
recognition. Once the knowledge is extracted from this
vast amount of data, the original data are not required to
enable or deploy these machine-driven applications. For
example, Facebook’s [20] DeepFace [21] used 4.4 million
labeled faces from 4030 individuals (persons) of diverse
face images to develop a deep learning architecture that
helps in recognizing individuals. They have demonstrated
the discriminative capability of such deep learning network
by reducing the error of the current state-of-the-art by more
than 25% on large unconstrained face and images (labeled
faced in the wild) [22] and (YouTube) videos [23]. After all
the learning, once they have the transformation basis feed-
forward neural network (knowledge for distinguishing each
individuals), they would no longer be required to keep the
original data. Thereby, allowing us to perform specific task
application without having the original enormous amount of
data.

To further demonstrate this, we have collected 2388
images comprising of 1194 persons (two images FA/FB per
person) selected from the FERET database [24]. Images
are preprocessed following the CSU Face Identification

Evaluation System [25]. Images are cropped into the size
of 130 × 150. In this experiment, images of 250 people are
randomly selected for training, and the remaining images
of 944 people are used for testing, similar to [18]. There
is no overlap in person between the training and testing
sets. We test the popular PCA [26], fisher faces (Fish-
erFace) [27], and eigenfeature regularization methodology
(EigReg) proposed in [18, 28]. Cosine distance measure
and the first nearest neighborhood classifier (1-NN) are
applied to test all the machine learning approaches. At
first, using the normalized face images of dimensionality
130 × 150 = 19,500 pixels (positive real numbers) and
reducing the dimensions in the steps of 650 (randomly sam-
pled) for 30 times, we compute the recognition rate as
the percentage of the correct top 1 match on the testing
set.

Figure 1 shows the recognition rate on the testing set
against the number of features used in the matching. After
applying various machine leaning techniques, the recogni-
tion rates against the number of features, varying each time
in the steps of 10 for 24 times used in the matching process,
are shown in Fig. 2. Figure 1 shows that using large num-
ber of features in the matching process, which inevitably
also requires large storage space, the recognition rate is not
as good as using very low number of features (for all the
machine learning techniques), as shown in Fig. 2.

For a single point comparison, 10,000 positive real num-
bers are required to achieve an accuracy of around 87%, as
shown in Fig. 1. To obtain similar accuracy using machine
learning techniques, only 15 real numbers are required using
EigReg method, as shown in Fig. 2. So there is a clear
99.85% improvement in the storage requirement for per-
forming this face identification task. The above illustration
shows that moving forward, we would need to develop crit-
ical learning mechanism so as to learn or extract knowledge
(may be for specific purpose or a unified framework for gen-
eral purpose) out of the enormous amount of data and then
forget about the big data.

Fig. 1 Recognition rate with normalized images (without any
training)
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Fig. 2 Recognition rate after applying machine learning algorithms

Limitations and Roadmap

The problem with standard data compression is that it is
not scalable: when the number of features and data points
increases, the representation matrix becomes too high in
dimensionality and too sparse for PCA to be calculated [29].
Some works have proposed fast approximations but they are
only at most five times faster than standard PCA [30].

Lee et al. [31] conjectured that there might be simple but
powerful meta-algorithms underlying neuronal learning that

are fast, scalable, effective, and biologically plausible [29].
Optimizing all the ≈ 1015connections through the last few
million years’ evolution is very unlikely [29].

Instead, nature probably only optimizes the global con-
nectivity, but leaves the other details to randomness [29].
In order to cope with the growing amount of data, we
replace PCA with random projection (RP) [32], a method
that maps the original dataset into a lower-dimensional
subspace by using a Gaussian N(0, 1)matrix, while preserv-
ing the pair-wise distances with high probability (Fig. 3).
This is possible thanks to the Johnson-Lindenstrauss (JL)
Lemma [29], which states that with high probability, for all
pairs of points x, y ∈ X simultaneously,

√
m

d
‖ x − y ‖2 (1 − ε) ≤‖ �x − �y ‖2≤ (1)

≤
√

m

d
‖ x − y ‖2 (1 + ε), (2)

where X is a set of vectors in the Euclidean space, d is the
original dimension of the space, m is the dimension of the
smaller space, ε is a tolerance parameter measuring to what
extent is the maximum distortion rate of the metric space,
and � is a random matrix.

Structured RP for making matrix multiplication much
faster was introduced in [33]. Achlioptas [34] proposed

Fig. 3 Reduced (but equivalent) data representation
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sparse RP to replace the Gaussian matrix with i.i.d. entries
in

φji = √
s

⎧⎨
⎩
1 with prob. 1

2s
0 with prob.1 − 1

s

−1 with prob. 12s

, (3)

where one can achieve a ×3 speedup by setting s = 3, since
only one third of the data need to be computed.

In applications where the data matrix is already quite
sparse, however, it is not recommendable to use sparse
RP. Instead, we propose to use subsampled randomized
Hadamard transform (SRHT), as it behaves very much like
Gaussian random matrices but accelerates the process from
O(n d) to O(n log d) time [35].

Following [35, 36], for d = 2p where p is any positive
integer, a SRHT can be defined as follows:

� =
√

d

m
RHD (4)

where, • m is the number we want to subsample from d

features randomly.

• R is a random m × d matrix. The rows of R are m

uniform samples from the standard basis of Rd .
• H∈ R

d×d is a normalized Walsh-Hadamard matrix,

defined recursively Hd =
[

Hd/2 Hd/2

Hd/2 Hd/2

]
with H2 =[ +1 +1

+1 −1

]
.

• D is a d × d diagonal matrix and the diagonal elements
are i.i.d. Rademacher random variables.

Since the data analysis in this space only relies on the dis-
tances between vectors, it is possible to perform tasks such
as categorical or analogical reasoning in a much reduced
space with the same accuracy as the one of the original
space.

Time-Efficient Data Learning

Randomness may not only be a possible solution for data
representation but also for learning. Although fundamen-
tal in many areas of science, randomness is really native
to computer science [37]. In the 1960s, its computational
nature was clarified by Kolmogorov et al. [38] who pro-
posed the first successful theory of random objects, defined
roughly as those that cannot be computed from short
descriptions.

Kolmogorov also suggested that randomness may have
an important relationship with nondeterminism, namely,
that the task of finding a “nonrandomness” witness (i.e.,
short fast program generating a given string) may be a good

candidate to prove that exhaustive search cannot be avoided.
An interesting proposition of learning automata is put for-
ward by Kumpati et al. [39], which is an early representative
of the large body of research in machine learning.

In the context of Big Data, randomness can be key to
address emerging needs such as fast learning speed and
big dimensionality reduction. When dealing with highly
dynamic and highly dimensional data, minimal human
intervention and efficient data representation are impor-
tant factors for making sense of Big Data streams. Because
of Big Data’s volume, velocity, and variety, in fact, stan-
dard data representation techniques and learning methods
are bound to fail. To this end, we propose the adoption
of extreme learning machine (ELM) [40–42] (Fig. 4), an
emerging technique that provides efficient unified solutions
to generalized feedforward networks and, hence, has strong
potential as a viable alternative technique for large-scale
computing and machine learning in many different appli-
cation fields, including big social data analysis [43] and
commonsense reasoning [44]. ELM theory shows that the
hidden neurons of generalized feedforward networks do not
need to be tuned but instead just randomly generated, as
their parameters are independent from the target functions
or the training datasets.

ELM theories conjecture that this randomness may be
true to biological learning in animal brains [45]. The ELM
approach was introduced to overcome some issues in back-
propagation network [46] training, specifically, potentially
slow convergence rates, the critical tuning of optimization
parameters [47], and the presence of local minima that call
for multi-start and re-training strategies. The ELM learn-
ing problem settings require a training set, X, of N labeled
pairs, where (xi , yi), where xi ∈ Rm is the ith input vector
and yi ∈ R is the associate expected “target” value; using
a scalar output implies that the network has one output unit,
without loss of generality.

The input layer has m neurons and connects to the “hid-
den” layer (having Nh neurons) through a set of weights
{ŵj ∈ Rm; j = 1, ..., Nh}. The j th hidden neuron embeds

Fig. 4 Internal structure of an extreme learning machine (ELM)
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a bias term, b̂j , and a nonlinear “activation” function, ϕ(·);
thus, the neuron’s response to an input stimulus, x, is:

aj (x) = ϕ(ŵj · x + b̂j ) (5)

Note that (5) can be further generalized to a wider class
of functions [48] but for the subsequent analysis, this aspect
is not relevant. A vector of weighted links, w̄j ∈ RNh , con-
nects hidden neurons to the output neuron without any bias
[45]. The overall output function, f (x), of the network is

f (x) =
Nh∑
j=1

w̄j aj (x) (6)

It is convenient to define an “activation matrix,” H, such
that the entry {hij ∈ H; i = 1, ..., N; j = 1, ..., Nh} is the
activation value of the j th hidden neuron for the ith input
pattern. The H matrix is

H ≡
⎡
⎢⎣

ϕ(ŵ1 · x1 + b̂1) · · · ϕ(ŵNh
· x1 + b̂Nh

)
...

. . .
...

ϕ(ŵ1 · xN + b̂1) · · · ϕ(ŵNh
· xN + b̂Nh

)

⎤
⎥⎦ (7)

In the ELM model, the quantities {ŵj , b̂j } in Eq. 5 are
set randomly and are not subject to any adjustment, and the
quantities {w̄j , b̄} in Eq. 6 are the only degrees of freedom.

The training problem reduces to the minimization of the
convex cost:

min
{w̄,b̄}

||Hw̄ − y||2 (8)

A matrix pseudo-inversion yields the unique L2 solution,
as proven in [49]:

w̄ = H+y (9)

The simple, efficient procedure to train an ELM therefore
involves the following steps:

1. Randomly set the input weights ŵi and bias b̂i for each
hidden neuron.

2. Compute the activation matrix, H, as per (7).
3. Compute the output weights by solving a pseudo-

inverse problem as per (9).

Despite the apparent simplicity of the ELM approach,
the crucial result is that even random weights in the hidden
layer endow a network with a notable representation ability
[49]. Moreover, the theory derived in [50] proves that reg-
ularization strategies can further improve its generalization
performance. As a result, the cost function (8) is augmented
by an L2 regularization factor as follows:

min
w̄

{||Hw̄ − y||2 + λ||w̄||2} (10)

Popular learning techniques, e.g., neural networks and
support vector machines, face some challenging issues such
as intensive human intervene, slow learning speed, and poor
learning scalability. It is clear that the learning speed of

feedforward neural networks including deep learning is in
general far slower than required and it has been a major
bottleneck in their applications for past decades.

Two key reasons behind may be (1) the slow gradient-
based learning algorithms are extensively used to train
neural networks and (2) all the parameters of the networks
are tuned iteratively by using such learning algorithms.
ELM overcomes such issues by offering fast learning speed,
ease of implementation, and minimal human intervention
and, hence, represents a great solution for time-efficient data
learning in Big Data environments.

Structure-Efficient Data Aggregation

Most important and unavoidable consequence of storage
capacity exhaustion is the ability to analyze data and infer
knowledge, which is expected to occupy smaller area com-
pared to raw data. This is key especially in the context of
the Social Web. Before 2003, there were just a few dozen
exabytes of information on theWorldWideWeb. Today, that
same amount of information is created weekly. The Web 2.0
has provided people with new services that allow them to
create and share contents, ideas, and opinions, with virtually
millions of other people connected to the Internet.

This huge amount of information, however, is specif-
ically produced for human consumption and hence not
directly processable by machines, as these are still very far
from a minimum level of natural language understanding
(NLU). So far, information retrieval has mainly been based
on the textual representation of webpages and never really
managed to fully to grasp the semantics of such text in an
automatic way.

NLU, in fact, requires high-level symbolic capabili-
ties, e.g., creation and propagation of dynamic bindings
and manipulation of recursive constituent structures [51–
53], which are necessary to shift from limited information
retrieval techniques, e.g., counting word co-occurrence fre-
quencies, to real NLU. Most of the current approaches
to natural language processing are limited by the fact
that they can only process the information that they can
“see.” The human brain, instead, can go far beyond that
as every word encountered activates a cascade of seman-
tically related concepts, relevant episodes, and sensory
experiences.

Bridging the gap between the blind processing of text
as bags of words and the human-like way to under-
stand the meaning conveyed by natural language con-
cepts will enable the transition from unstructured natural
language data to structured machine-processable informa-
tion and, hence, facilitate the transition to a global data-
information-knowledge-wisdom (DIKW) hierarchy [54]
(Fig. 5).
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Fig. 5 Data-information-
knowledge-wisdom (DIKW)
hierarchy

In the context of big social data analysis [55], in par-
ticular, such a transition is enabled by sentic computing
[56], a multidisciplinary approach to NLU that exploits an
ensemble of machine learning [53], linguistics [57], and
commonsense reasoning [58] to interpret and aggregate
big social data. Sentic computing attempts to understand
the underlying meaning of words and multiword expres-
sions by means of commonsense knowledge and conceptual
primitives (instead of counting word co-occurrence fre-
quencies) and gives high importance to sentence structure
(instead of treating text as bags of words).

An example of how sentic computing enables the tran-
sition from unstructured natural language data to struc-
tured machine-processable information is given by crowd
validation [59], a process for comparing unstructured
patient data with the structured healthcare ratings available
for each hospital in the UK.

In particular, crowd validation deconstructs patients’ sto-
ries into specific aspects or opinion targets (e.g., service,
staff, timeliness) and polarity values associated with these
(e.g., positive, negative, and neutral) in order for such sto-
ries to be more easily aggregated and compared with the
official hospital ratings provided by the UK National Health
Service (NHS).

In-memory Computing Technology

In the 1940s, John von Neumann introduced the stored-
program computer where program and instruction data are
stored in the same electronic memory. The basic princi-
ple is still valid for today’s computer systems, but there
is now a whole memory hierarchy: magnetic hard disc

(magnetic), SSDs (Flash), working memory (DRAM), and
L3 to L1 cache (SRAM). The main reason is that none of
the available types of memory fulfills all the requirements:

– Non-volatile storage (good retention)
– Fast read/write access
– High cycle endurance
– Small size
– Small energy consumption
– Back-end of line (BEOL) compatibility
– Ultra dense array/3D stackability

A so-called universal memory would combine all the
benefits from today’s available memories. When having a
look to the ITRS emerging research device (ERD) roadmap
[60], there are listed several emerging memory technolo-
gies which could fulfill the abovementioned requirements.
The best projected feature size there is in the range of 5 nm
and the smallest cell area is 4F 2 for resistively switching
memories (ReRAM) [61].

For the conductive bridge-type ReRAM [62], a minimum
feature size of 4 nm was calculated [63]. Those ReRAMs
offer multi-levels, up to eight levels by now [64], i.e.,N = 3
Bit, and enable 3D stacking of n layers in passive cross-
bar arrays [65]. If we assume F = 5 nm, N = 3 Bit

and an 4F 2

n
3D array architecture, a theoretical storage den-

sity of 6 · 1024Bit/m3 is feasible. If we limit the available
storage per person to 1m3 and assume 10 · 109 people in
2100, up to 6 · 1033 Bit (7.51032 byte) will be available
in total.

According to the previous calculation, we will face this
limit already in 77 years, i.e., 2092. Note, if we assume
enormous achievements in science, close-to-the-physical-
limit kind of memories might be feasible at some point
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Fig. 6 In-memory computing
architecture

in the future. The maximum possible storage density limit
is 2.6 · 1033Bit/m3 [66]. Hence, another nine orders of
magnitude in storage increase might be realizable. This
would shift reaching the limit by about 60 years.

Interestingly, a universal memory will enable new ways
to perform computing which might help to mitigate this
problem. For example, ReRAMs or memristive devices [67,
68] have the ability to perform primitive Boolean logic
[69, 70] as well as ternary arithmetic [71]. This raises the
possibility of in-memory computing architectures, such the
one shown in Fig. 6. Such a computing architecture with
arrays of ReRAM and a control logic can switch between
storage and computing mode. For example, the CRS logic
approach [72] enables a highly efficient in-memory imple-
mentations of different arithmetic blocks [73–75] as well
as other applications [76, 77]. Ultimately, also a so-called
universal memcomputing machine [78] is envisioned, but
practical realization using real memristsive devices is lack-
ing up to now.

Memristive devices may induce a paradigm shift in com-
puter architectures, dissolving the discrimination between
logic gates and memory cells. The bad news is that a stor-
age crisis will be equivalent to an information processing
crisis in the future [79]. On the other hand, since the univer-
sal memory would cancel the separation of processing unit
and storage, future architectures will eliminate the storage
overhead in terms of storing the same piece of informa-
tion at different memory hierarchy levels. Moreover, in such
an architecture, even big amounts of data can be processed
in real time, making temporary storage of incoming data
unnecessary.

By filtering the interesting data out of the available
data instantaneously, useless data will be directly discarded.
Such an approach will hopefully help to reduce the storage
growth rate drastically by storing only required and useful

data in an intelligent way. Here, the analogy to the brain is
helpful: we obtain a lot of data through our many sensors,
but, we directly process these data and only store relevant
data in our long-term memory.

Future machines with a certain degree of intelligence
may be able to filter sensor data directly in the future,
too. Thus, realizing more intelligent machines might help.
Another point is the biological mechanism of forgetting
which could find its way into future storage: Information
of minor value which is not accessed for certain amount
of time will automatically vanish and corresponding stor-
age will be recycled. For example, some sorts of memristive
devices offer a meta-stable behavior which could fulfill this
property.

The Future of Storage

By revisiting the prediction of exhausting global storage,
we can see that the scenario is a bit more optimistic, if
we assume data recycling, peer-to-peer data sharing,1 and
the hope that extra-terrestrial storage capacity building is
possible. Let us limit the study to the galactic storage.

From the observations based on luminosity and distribu-
tion of stellar mass, it is estimated that Milky Way galaxy
has roughly 100 billion, i.e., 1011, stars [80]. Assuming
average stellar mass to be equivalent to the solar mass of
1.98×1033 g [81], we have a total stellar mass in our galaxy
to be 1.98× 1044 g. Each gram of matter contains an equiv-
alent of 1024 hydrogen atoms, leading to the total galac-
tic atom count to be 1.98 × 1068. By repeating the above

1https://storj.io/

https://storj.io/
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calculations with this count, we obtain the number of years
for galactic storage to exhaust as following (denoted by ng).

(1 + r)ng = 1.98 × 1068

96 × s

=⇒ 1.4ng = 2.06 × 1066

4.4 × 1021
= 4.69 × 1044.

Therefore,

ng = log1.4{4.69 × 1044} = 305.7.

By undertaking the impossibly hard scientific and tech-
nical challenge of converting every atom in the galaxy to a
storage medium would extend the storage exhaustion dead-
line by 125 years. Taking fundamental physical principles
into consideration, a universal form of entropy bound was
proposed in [82], also known as the Bekenstein bound.
An approximation of Bekenstein bound using mass-energy
equivalence is

I = 2.577 × 1043mR, (11)

where I is the information expressed in bits, m is the mass
of the sphere expressed in kilograms, and R is the radius of
the sphere in meters. Taking the mean radius of Earth and
the mass, we obtain the information that can be contained in
the entire Earth to be

I = 2.577 × 1043 × 5.972 × 1024 × 6.371 × 103

= 9.81 × 1071bits

It indicates that the situation does not improve in terms of
digital real estate, even if we lead to the absolute physical
bounds of the storage.

Further and more importantly, even though one can move
towards dense data storage, the information processing
capacity does not scale arbitrarily either. This scaling is lim-
ited by energy, explored in [79] for quantum scale. Hence,
though we focus on the individualistic goal of squeezing
memory capacity, it challenges the corresponding computa-
tion rates as well, and hence, the limits are also affected by
the operations that can be or need to be performed on the
stored data.

Novel Storage Media: Extra-terrestrial Storage

It might be argued that the search of novel and denser stor-
age can regain the balance in favor of everlasting, unlimited
storage, which is, unfortunately, not the case. Though it is
argued with practical demonstrations that biological stor-
ages fare better in terms of information density [83], it is
also reported that 4.5 × 1020 bytes per gram is the theo-
retical maximum that can be achieved with single-stranded
DNA [83]. This is not far from our optimistic assump-
tions of atomic storage. While the capacities after practical

realization may differ significantly, it does not change the
scenario for storage exhaustion.

In the quest to achieve interplanetary data communi-
cations, InterPlanetary Networking Special Interest Group
(IPNSIG) is working towards a delay- and disruption-
tolerant network (DTN) model that takes into account
long/variable delay and high error rates, among others, to
cope with the interplanetary communication issues. The
underlying technology uses a principle based on store-and-
forward message switching [84]. Since the communicat-
ing nodes often demonstrate intermittent connectivity, the
store-and-forward technique allows treating delays and dis-
ruptions in isolation. A key feature of this protocol is that
the intermediate storage places can hold messages indefi-
nitely, i.e., the storage is permanent unlike the buffers in the
internet routing protocol.

The dearth of terrestrial storage can be addressed by
exploiting extra-terrestrial storage and connecting those
with InterPlaNetary (IPN) internet via the aforementioned
DTN protocol. The preliminary requirement is, naturally, to
be able to harvest a storage medium outside Earth and effec-
tively converting it into a reliable storage via intelligent and
controllable manufacturing technique. The steps of such a
manufacturing is envisioned as the following.

1. Locate and identify a material for storage capacity.
2. Process and convert the material to a fully capable

storage device.
3. Connect the storage device to a processing node.
4. Transfer and store the data.

Digital Curation

Related to the discussions of this manuscript, a related dis-
cipline that stemmed out of traditional archiving of library
and museum is digital curation.

Current models of digital curation focuses more on long-
term preservation of data, ease of access, format migration,
and disposal [85]. Surprisingly, despite the influx of rich
sensing platforms and Big Data, there is a lack of syn-
ergy between personal/enterprise-scale storage and digital
curation. The research challenges outlined in the previous
sections clearly show that by getting in close contact with
the information aggregation, information processing, and
even computing, digital curation can benefit. Indeed, there
is a significant gap in storage management that can be
addressed by immersive and intelligent digital curation. The
goal of such curation practice could be the following:

– To perform real-time immersive curation by leveraging
non-volatile on-chip memory

– To put the space-time-efficient data analytics and aggre-
gation algorithms into practice and, thereby, strictly
impose the DIKW hierarchy in digital curation
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Conclusion

The world continues to generate quintillion bytes of data
daily, leading to the pressing needs for new efforts in deal-
ing with the grand challenges brought by Big Data. Today,
there is a growing consensus that data volume presents an
immediate challenge pertaining to the scalability issue.

In this manuscript, we discussed the eventual shortage of
storage that is bound tohappenunder reasonable assumptions.
Depending on the sets of assumptions, the storage capacity
of the Earth may exhaust within merely two centuries. This
can be a wake-up call to search for novel storage solutions,
e.g., extra-terrestrial storage. In parallel, the representation,
learning, and aggregation of data will have to be performed
in a space-, time-, and structure-efficient manner, as well as
considering human-like perceptions for knowledge discov-
ery [86], in order to implement a global DIKW hierarchy
that allows storage capacity to be better utilized.
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