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Abstract—Transformer models like BERT have significantly
improved performance on many NLP tasks, e.g., sentiment
analysis. However, their large number of parameters makes real-
world applications difficult because of computational costs and
latency. Many compression methods have been proposed to solve
this problem using quantization, weight pruning, and knowledge
distillation. In this work, we explore some of these task-specific
and task-agnostic methods by comparing their effectiveness and
quality on the MultiEmo sentiment analysis dataset. Additionally,
we analyze their ability to generalize and capture sentiment fea-
tures by conducting domain-sentiment experiments. The results
show that the compression methods reduce the model size by
8.6 times and the inference time by 6.9 times compared to the
original model while maintaining unimpaired quality. Smaller
models perform better on tasks with fewer data and retain more
remarkable generalization ability after fine-tuning because they
are less prone to overfitting. The best trade-off is obtained using
the task-agnostic XtremeDistil model.

Index Terms—knowledge distillation, transformers, sentiment
analysis, MultiEmo

I. INTRODUCTION

Large pre-trained language models (PLMs) have become the

most popular research focus in the field of Natural Language

Processing (NLP) [1]–[4]. Since the creation of the transformer

architecture [5], most of the best models have been based on

it. They are pre-trained on a large unsupervised text corpus

and then fine-tuned on a downstream task. These models

have achieved outstanding results in many Natural Language

Understanding (NLU) tasks (e.g., GLUE [6]).

One of the NLP tasks is sentiment analysis, which has

become very popular recently [7], [8]. Emotion and sentiment

perception of texts can be used for many purposes, e.g.,

prediction of election results [9], and detection of threats

in future events [10]. The analysis of customer reviews and

opinions is also of great interest [11], [12] because it can help

manufacturers create better products. Such applications show a

need for effective and efficient methods to perform sentiment
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analysis of the text. Additionally, these methods should be

able to work in a multidomain manner at the level of single

sentences and full documents.

The transformer-based PLMs can obtain great results in

sentiment analysis [13]. Nevertheless, their efficiency is very

low due to a large number of parameters. Long inference

time and big size cause difficulties in deploying them in

real-life environments. There are a few techniques that aim

to compress large-scale models, including quantization [14],

weight pruning [15], and knowledge distillation, KD [16]. In

the context of transformer models, apart from some works

concerning quantization [17]–[19] and weight pruning [20]–

[22] the most attention was put on KD [23]–[27]. Recent

research focuses on hybrid methods that integrate quantization,

pruning, and KD [28]–[31].

Due to abundantly available methods, it can be hard to

choose the most appropriate one concerning a given appli-

cation, e.g., sentiment analysis. The best approach does not

need to be the one with the highest quality measures. In the

context of compression methods, evaluation, speedup, and size

reduction are equally important issues. Training time can also

be a relevant factor.

This work presents a thorough analysis of compression

methods for BERTBASE. We test them on MultiEmo sentiment

analysis task [32], considering classification quality and work

efficiency. Our experiments focus on sentence and document

level granularity. Domain issue is also considered. As a result,

it turns out that the best trade-off between efficiency and

quality is obtained for the XtremeDistil method, which is 6.4x

faster, 8.6x smaller, and retains most of the original model’s

quality.

II. RELATED WORK

A. Model Compression.

Compression of machine learning models has been studied

for a long time. For example, quantization methods reduce the

number of bits needed to represent parameters in a model [14].

Another approach is network pruning [15] which removes

redundant parameters or components. It can be done in an

unstructured manner where individual, less important weights

are pruned or in a structured manner where entire blocks of

weights are pruned at once.
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KD is a procedure where knowledge of a large model

(teacher) is transmitted into a compact model (student) so

that the student mimics the teacher’s behavior. Bucila et al.

[33] compress a large and cumbersome ensemble model into

a single neural network while preserving the performance by

minimizing the mean squared error (MSE) between the outputs

of both models. Hinton et al. [16] distill an ensemble of neural

nets into a single neural net using so-called soft targets from

the smoothed teacher outputs and the hard targets from the

data. Romero et al. [34] shows that the performance of the

student model can be further improved by using not only the

teacher outputs but also its internal representation.

Since that time, many attempts have decreased the perfor-

mance gap between the teacher and the student or compressed

the model significantly. These attempts include weight quanti-

zation of the student [35], or a multistep KD with an assistance

of an intermediary teacher (Teacher Assistant KD) [36]. It

bridges the size gap between the teacher and the student

model.

B. Language Models Pretraining.

Pretraining has been widely applied in NLP. The feature-

based approach focuses on learning word representations

(word embeddings). These representations can be context-

independent as word2vec [37], GloVe [38], fastText [39] or

contextualized as ELMo [1].

Since the emergence of transformers [5], a fine-tuning

approach has been developed – a transformer language model

is firstly pretrained on a large corpus in an unsupervised

manner and afterward fine-tuned on some downstream tasks

using labeled data. It has caused significant performance

improvements in many natural language understanding (NLU)

tasks. Many popular models are based on that framework, such

as GPT [3], BERT [2], and ELECTRA [4].

C. Transformer Model Compression.

One of the limitations of transformer models like BERT is

their large size and long time needed for training or inference.

That is why compressing these models has become a very

critical issue.

First quantization methods applied on transformer models

reduce weights to 8 bits, e.g., Q8BERT [17]. The next attempts

successfully quantize parameters to 2 bits (ternariztion in

TernaryBERT [40] with 14.9x compression rate) or even 1

bit (binarization in BinaryBERT [19] with 24x compression

rate).

Another approach for compressing transformer models is

pruning. One example of unstructured pruning is magnitude

weight pruning [20] which removes weights with values below

a certain threshold. The experiments show that reducing 30-

40% of weight does not affect performance significantly. Other

works focus on structured pruning. Poor Man’s BERT [21]

simply drops the chosen transformer layers obtaining the

best results by removing the top layers. BERT-of-Theseus

[22] performs the training of the BERT model with random

replacement of the modules with more compact ones.

One of the first attempts to compress the BERT model

using KD was Patient KD (PKD) [23]. It is a task-specific

method that transfers the knowledge from the predictive and

intermediary layers. The performance of student models is

better than that of the models with the same architecture but

solely fine-tuned. FastBERT [41], and RomeBERT [42] are

self-KD methods that ensure adaptive inference time by a

dynamic mechanism of early exits from the shallower layers.

Task-agnostic KD methods are universal because they allow

for fine-tuning on any NLU task. One of such methods is

DistilBERT [24] where distillation is applied at the pretraining

stage on a large corpus using soft targets and cosine em-

bedding loss. DistilBERT requires that the student’s hidden

dimension be the same as the teacher’s. It is not necessary

for TinyBERT [25] and MiniLM [26]. TinyBERT is a two-

staged method that allows obtaining a general task-agnostic

or task-specific model. The knowledge is distilled from the

predictive layer, hidden layers, self-attention matrices, and the

embedding layers. MiniLM proposes to use only self-attention

values of the last transformer layer during KD, showing that

they are fundamental components in transformers. It also

benefits from the Teacher Assistant KD approach. Another

task-agnostic method is MobileBERT [27] which compresses

the model width.

Many recent works focus on integrating various techniques

to compress BERT models. DynaBERT [29] combines struc-

tured weight pruning and KD, allowing a task-specific model

whose size can be dynamically adjusted. LadaBERT [28] and

ROSITA [31] are task-specific methods which utilize weight

pruning, matrix factorization and KD. XtremeDistilTransform-

ers [30] is a task-agnostic framework which combines KD

and matrix factorization. It is not trained on an unsupervised

task but some source tasks. To improve the results, data

augmentation and progressive learning are utilized.

Many compression methods for the BERT model are em-

pirically compared by Ganesh et al. [43]. However, it is done

using the results on GLUE and SQuAD [44] reported by the

authors of the original papers. On the other hand, in our work,

we compare the chosen compression methods by conducting

experiments on MultiEmo, which is a completely different

sentiment analysis task. Additionally, it allows to take into

account text level and domain aspects for further analysis.

III. MULTIEMO DATASET

MultiEmo [32] is a benchmark dataset for the sentiment

analysis task. This collection is based on the PolEmo 2.0

dataset [45], [46], consisting of more than 8,000 consumer

reviews, containing more than 57,000 sentences. These opin-

ions cover 4 different domains: medicine, hotels, school, and

products. The dataset is provided with a priori split into

training, development, and test sets in ratio 80%/10%/10%.

Within PolEmo 2.0, all opinions and all sentences forming

them were annotated with the sentiment. 3 independent experts

annotated each item. The sentiment classes used were: posi-

tive, negative, neutral, and ambivalent. Annotator agreement

measured using Positive Specific Agreement for texts was
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over 90%, while for sentences, it was over 87%. The original

PolEmo dataset was created for Polish texts.

The MultiEmo dataset contains PolEmo opinions auto-

matically translated into ten languages using DeepL1. Both

PolEmo 2.02 and MultiEmo3 are available under an open

license. In this work, we use the English translations to

compare compression methods.

IV. COMPARED METHODS

In the work, we compare state-of-the-art methods compress-

ing the BERTBASE model. They are either task-specific or

task-agnostic. Most of them use knowledge distillation, but

some benefit from quantization and pruning as well. Table I

presents them. The following methods are considered:

• DistilBERT [24] is a task-agnostic method which distills

knowledge at the pre-training stage on a large unsu-

pervised corpus. As a loss function, it uses soft targets

distillation loss and cosine embedding loss. The student

is initialized from the layers of the teacher BERTBASE

model. We use the available pretrained DistilBERT6

which is fine-tuned for MultiEmo tasks.

• XtremeDistilTransformers [30] is a task agnostic

method which distills knowledge on a source task. It uses

matrix factorization and KD techniques.

The embedding matrix is compressed using Singular

Value Decomposition (SVD). A training objective in

KD consists of MSE for hidden states, self-attention

states, task-specific logits, and cross-entropy (CE) loss

for ground truth data. A learnable linear transformation

on the hidden student states is performed to match the

teacher’s hidden dimensions. For better performance, the

source task data is augmented. We fine-tune the available

XtremeDistil student model with L = 6 layers and

hidden dimension H = 256. It was initialized with the

MiniLM model and pretrained on the MNLI task with

ELECTRABASE [4] as a teacher (instead of BERTBASE),

which has the same architecture as BERTBASE but

was pre-trained using different tasks, therefore features

slightly better performance.

• TinyBERT [25] is a method that performs KD in both

the pretraining and the task-specific fine-tuning stage.

The loss consists of MSE between the hidden states,

the embedding layer, the self-attention layers, and CE

between the outputs. The dimensions are aligned by

learnable linear transformations.

A large text corpus is used in the first stage, called general

distillation. It produces a general TinyBERT model, the

student in the second stage where distillation on some

downstream augmented data is performed.

In our work, TinyBERT is treated either as a task-agnostic

method (denoted as TinyBERTk,TA) where a general

model is directly fine-tuned or as a task-specific one

(denoted as TinyBERTk,TS) with a further distillation on

1https://www.deepl.com/
2https://clarin-pl.eu/dspace/handle/11321/710
3https://clarin-pl.eu/dspace/handle/11321/798

a downstream MultiEmo task. That distillation is two-

phased: (1) for the intermediary layers and (2) for the

predictive layer. We use available general TinyBERT4

(H = 312), TinyBERT6 (H = 768) models which were

pre-trained with BERTBASE as a teacher.

• BERT-of-Theseus [22] is a task-specific, structured prun-

ing method. During training, the original modules of

the large model (predecessor) are progressively replaced

with smaller modules. The probability of replacement

increases linearly as the training procedure continues. In

the second stage, the successor model consisting only

of the smaller modules is additionally fine-tuned. In the

first stage, the weights of the predecessor are frozen; in

both stages, CE loss on the ground truth data is used. In

our work, the predecessor model is BERTBASE which is

compressed to BERT6 by replacing the subsequent two

layers with one layer.

• ROSITA (Refined BERT cOmpreSsion with InTegrAted

techniques) [31] is a task-specific method which uses

weight pruning, matrix factorization, and KD. The em-

bedding layer is reduced with the SVD method, and

the last transformer layers, less important neurons of

transformer layers, and attention heads are pruned. It is

performed in a progressive way with interleaving KD

steps. KD loss consists of CE between the outputs and

MSE for the hidden states and the embedding layers.

The process is divided into three stages: (1) distillation of

the intermediary student model with the same architecture

as the teacher; (2) iterative depth pruning with KD (as a

result, a model with fewer layers is obtained); (3) iterative

width pruning where attention heads are pruned, and di-

mensions of hidden states and embeddings are decreased,

pruning interleaves KD. During the entire process, the

augmented data for a task are used. In our experiments,

BERTBASE is used as the teacher; the final model has

8 layers, 2 self-attention heads, and a hidden dimension

of 128.

V. EXPERIMENTS

In this section, we conduct various experiments which com-

pare how the chosen compressing methods work for the Multi-

Emo sentiment analysis task in the context of effectiveness and

quality. Additionally, the analysis focuses on a domain aspect

of texts. We test the quality of the compressed models for both

the single domain (SD) with MultiEmo (Hotels, Medicine,

Products, School) as well as the leave-one-domain-out (DO)

scenario. These scenarios are tested at the level of whole

opinion texts (SDT, DOT) and the level of individual opinion

sentences (SDS, DOS) in the English language.

We evaluated DistilBERT, XtremeDistilTransformers, Tiny-

BERT, ROSITA, and BERT-of-Theseus. For reference, we also

fine-tune BERTBASE for 4 epochs with learning rate 5e-5 and

weight decay 0.01. We fine-tune task-agnostic compressed

models with the same parameters as for BERTBASE.

The best performing fine-tuned BERTBASE model serves as

a teacher in the task-distillation TinyBERT and ROSITA and as
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TABLE I
COMPARISON OF THE ANALYZED COMPRESSION METHODS.

Method Task-
agnostic

Embedding
Layer

Hidden
state

Attention
state

The same
hidden dimension

Data
Augmentation

Weight
Pruning

DistilBERT � �(Lcos) �

XtremeDistil � �(SVD) � � �

TinyBERT �/ � �(MSE) � � �

BERT-of-Theseus � �

ROSITA �(SVD) � � �

TABLE II
COMPARISON OF THE CONSIDERED COMPRESSION METHODS FOR ALL MULTIEMO DOMAINS AT THE SENTENCE LEVEL. THE RESULTS ARE AVERAGED

ON FIVE REPETITIONS.

Method Parameters Memory
[MB]

Training
[min] Eval [s] Accuracy Macro

F1
Macro
Recall

Macro
Precision

BERTBASE 109M 418 26.0 13.9 78.8 74.7 74.1 75.8

DistilBERT 67M 255 (1.6x) 14.1 7.0 (2.0x) 77.9 73.9 73.3 74.8
XtremeDistil 13M 49 (8.6x) 6.5 2.3 (6.2x) 76.7 72.4 71.7 73.9

TinyBERT6,TA 67M 255 (1.6x) 14.1 7.2 (1.9x) 77.7 73.8 73.5 74.3

TinyBERT6,TS 68M 258 (1.6x) 62.9 7.2 (1.9x) 78.2 74.4 74.1 74.7

TinyBERT4,TA 14M 55 (7.6x) 5.5 2.1 (6.6x) 76.3 72.0 71.1 73.7

TinyBERT4,TS 15M 56 (7.5x) 38.3 2.0 (6.9x) 76.3 72.2 71.5 73.4

BERT-of-Theseus 67M 255 (1.6x) 19.1 7.8 (1.8x) 76.6 72.5 72.1 73.2

ROSITA 14M 55 (7.6x) 121.5 3.4 (4.1x) 77.5 72.9 72.2 74.9
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Fig. 1. Comparison between the considered compression methods applied for the sentence level MultiEmo data from all domains. The results are averaged
on five repetitions.

a predecessor in BERT-of-Theseus. For TinyBERT, a student

model is a general TinyBERT model. Both two distillation

phases are performed for 4 epochs with a learning rate of 5e-

5 and weight decay of 0.01. For training BERT-of-Theseus,

these parameters are the same. The initial replacing rate is set

to 0.3, and the coefficient k of the linear scheduler controlling

the current value of replacing rate is 0.00014. For ROSITA,

all three stages of the compression process are performed for

four epochs with a weight decay of 0.01. The learning rate

for the first and the second stage is 2e-5, and the third one is

5e-5. The proportion of pruning steps in the second stage is

0.2 and in the third stage is 0.1.

In each case, the model is trained by minimizing the loss

related to a given model/method on the train data set using

the Adam optimizer [47] with β1 = 0.9 and β2 = 0.999. For

testing, the model checkpoint is used for which the best results

on the development set were obtained. The batch size is 16

for the sentence-level tasks and 8 for the document-level ones.

The maximum sequence length is 128 and 256, respectively,

for the sentence and the document level. All experiments are

repeated 5 times. They are conducted on GeForce GTX 1080

Ti. Data augmentation, originally utilized for TinyBERT and

ROSITA, was not performed during our experiments.

Results of the experiments performed at the sentence level

are presented in Table II and Figure 1. These results demon-

strate that: (1) The best results are obtained for TinyBERT6,TS

with retained 99.2% of accuracy. (2) The most efficient models

are XtremeDistill, TinyBERT4,TA and TinyBERT4,TS. They

retain, respectively, 97.3%, 96.8%, and 96.8% of accuracy.

(3) TinyBERT with task-specific KD improves the results
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TABLE III
COMPARISON OF THE CONSIDERED COMPRESSION METHODS FOR MULTIEMO ALL DOMAINS AT THE DOCUMENT LEVEL. THE RESULTS ARE AVERAGED

ON 5 REPETITIONS.

Method Parameters Memory
[MB]

Training
[min] Eval [s] Accuracy Macro

F1
Macro
Recall

Macro
Precision

BERTBASE 109M 418 12.7 7.3 86.7 84.8 84.5 85.9

DistilBERT 67M 255 (1.6x) 6.7 3.6 (2.0x) 87.2 85.3 85.0 86.0
XtremeDistil 13M 49 (8.6x) 2.3 1.1 (6.4x) 86.4 85.0 84.8 85.2

TinyBERT6,TA 67M 255 (1.6x) 6.8 3.7 (2.0x) 85.7 84.8 84.9 84.8

TinyBERT6,TS 68M 258 (1.6x) 28.7 4.1 (1.8x) 86.2 84.4 83.8 85.1

TinyBERT4,TA 14M 55 (7.6x) 2.0 1.0 (7.1x) 84.3 82.7 82.3 83.2

TinyBERT4,TS 15M 56 (7.5x) 16.1 1.1 (6.5x) 86.2 84.1 83.2 85.6

BERT-of-Theseus 67M 255 (1.6x) 10.2 3.7 (1.9x) 85.2 83.9 83.8 84.1

ROSITA 14M 55 (7.6x) 55.0 1.0 (7.5x) 83.7 81.9 81.8 82.5
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Fig. 2. Comparison between the considered compression methods applied for the document level MultiEmo data for all domains. The results are averaged
on five repetitions.

by a slight margin but demands a much longer training

procedure (it needs two phases of distillation). (4) DistilBERT

offers moderate compression with only a small performance

drop. Its results are very similar to the task-agnostic variant

of TinyBERT6 and are only not significantly worse than

TinyBERT6,TS. Task-specific methods are not always needed

since more flexible task-agnostic methods can obtain compet-

itive performance. (5) BERT-of-Theseus does not improve the

results compared to DistilBERT but is trained longer. It is

the worst compression method in that scenario because the

compression ratio is not so high, and the performance drop is

significant. (6) ROSITA model has comparable size reduction

as XtremeDistill and TinyBERT4 with slightly better results.

However, its training process is very long because consists of

3 stages.

Table III and Figure 2 present results of the exper-

iments at the document level. The best results are ob-

tained for DistilBERT6 which even outperforms the fine-

tuned BERTBASE model. The same as for the sentence level,

the most efficient models are XtremeDistill, TinyBERT4,TA

and TinyBERT4,TS which retain respectively 99.7%, 97.2%

and 99.4% of accuracy. In that case, task-specific TinyBERT

outperforms task-agnostic TinyBERT more significantly. It

shows that task-specific distillation can be more important

for tasks with smaller data. BERT-of-Theseus method again is

worse than DistilBERT. ROSITA is much worse than the other

methods. Its weak performance can be caused by the smaller

number of data for the document-level tasks. Additionally, this

data was not augmented as it was done in the original paper.

It shows that the ROSITA method works very well but only

for tasks with a sufficient amount of data.

The mixed domain scenario experiments at both text gran-

ularity levels have shown that the best trade-off between

efficiency and effectiveness is achieved for TinyBERT4 and

XtremeDistill. Their speedup and size reduction are approxi-

mately 7x. ROSITA also works quickly but demands a very

long training procedure and a greater amount of data, which

not always can be assured. Such great efficiency improvements

are not observed for DistilBERT and TinyBERT6 what makes

them a worse option for compression even though their

classification quality is better and, in some cases, can even

outperform the original model.

A. Domain studies

We do thorough studies on how the considered models work

in the following domain settings: (1) single-domain – model

trained and evaluated on the same data from a single domain;

(2) domain-out – model trained using elements from 3 domains

and evaluated on the remaining domain, this variant can

verify the classification ability to capture domain-independent
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TABLE IV
SINGLE-DOMAIN (SD) RESULTS FOR THE SENTENCE LEVEL (SDS) FOR

VARIOUS DOMAINS (HOTELS, MEDICINE, PRODUCTS, SCHOOL).

T Method Acc. F1 SP AMB 0 SN

S
D

S
-H

BERTBERT 82.08 77.40 85.87 59.07 77.58 87.09

DistilBERT 81.50 76.67 85.09 58.65 76.19 86.76

TinyBERT6,TA 81.78 77.16 86.22 58.97 76.62 86.81

TinyBERT6,TS 82.25 77.37 85.75 58.72 77.41 87.61
BERT-of-Theseus 80.37 75.27 84.27 55.53 75.31 85.98

XtremeDistil 80.66 75.87 84.25 57.97 75.51 85.74
TinyBERT4,TA 80.11 75.37 83.55 57.57 74.70 85.65

TinyBERT4,TS 80.45 75.25 84.80 56.19 74.55 85.47

S
D

S
-M

BERTBERT 78.64 70.18 81.27 38.45 83.93 77.08

DistilBERT 78.55 69.79 81.48 36.02 84.08 77.58

TinyBERT6,TA 78.01 69.33 81.07 36.14 83.60 76.52

TinyBERT6,TS 79.37 71.20 82.81 39.49 84.45 78.04
BERT-of-Theseus 77.78 68.35 79.83 33.58 83.45 76.55

XtremeDistil 77.21 68.27 78.26 35.44 82.96 76.40
TinyBERT4,TA 75.94 66.97 76.93 34.01 81.62 75.32

TinyBERT4,TS 76.63 67.35 79.22 31.85 82.96 75.38

S
D

S
-P

BERTBERT 70.78 63.77 80.18 45.52 49.88 79.52

DistilBERT 70.16 61.75 75.87 41.37 49.75 79.99

TinyBERT6,TA 70.00 61.11 77.31 43.27 44.49 79.37

TinyBERT6,TS 71.13 63.73 77.70 49.40 47.61 80.22
BERT-of-Theseus 68.63 60.33 75.57 38.96 48.50 78.29

XtremeDistil 69.84 62.42 77.91 40.82 53.15 77.80
TinyBERT4,TA 67.87 58.90 74.54 37.71 46.34 77.04

TinyBERT4,TS 68.54 61.42 74.25 47.39 46.37 77.68

S
D

S
-S

BERTBERT 61.90 56.03 67.38 63.35 38.24 55.16

DistilBERT 62.21 56.41 65.82 65.21 40.53 54.07

TinyBERT6,TA 61.74 57.59 68.14 62.16 46.87 53.20

TinyBERT6,TS 63.72 57.90 70.34 64.92 39.52 56.81
BERT-of-Theseus 57.00 49.34 63.90 60.31 38.25 34.90

XtremeDistil 60.16 52.55 65.16 63.81 43.65 37.59

TinyBERT4,TA 62.21 57.55 65.18 65.02 44.41 55.58
TinyBERT4,TS 57.55 53.18 61.04 60.64 41.09 49.94

TABLE V
SINGLE-DOMAIN (SD) RESULTS FOR THE WHOLE TEXT LEVEL (SDT) FOR

VARIOUS DOMAINS (HOTELS, MEDICINE, PRODUCTS, SCHOOL).

T Method Acc. F1 SP AMB 0 SN

S
D

T
-H

BERTBERT 85.06 84.48 88.47 62.94 96.57 89.94

DistilBERT 86.84 87.01 88.95 70.10 97.85 91.13
TinyBERT6,TA 85.82 86.14 88.67 67.11 98.55 90.23

TinyBERT6,TS 84.61 84.56 88.17 62.75 97.80 89.51

BERT-of-Theseus 84.00 83.86 89.09 62.22 96.05 88.09

XtremeDistil 86.08 85.72 88.77 66.75 96.55 90.81

TinyBERT4,TA 85.01 84.59 86.19 64.01 97.05 91.10
TinyBERT4,TS 84.15 84.28 87.32 63.08 97.59 89.13

S
D

T
-M

BERTBERT 90.40 81.23 92.03 42.82 98.40 91.66

DistilBERT 88.93 79.49 90.75 39.05 97.72 90.45
TinyBERT6,TA 88.32 79.82 90.76 41.23 98.26 89.05

TinyBERT6,TS 79.08 70.22 81.31 32.35 96.69 70.52

BERT-of-Theseus 86.36 77.93 87.61 38.74 97.56 87.80

XtremeDistil 89.42 77.42 90.58 29.91 98.39 90.80
TinyBERT4,TA 84.40 74.03 84.52 28.76 95.88 86.95

TinyBERT4,TS 86.97 80.11 90.93 44.49 97.26 87.76

S
D

T
-P

BERTBERT 75.00 43.36 30.00 57.97 00.00 85.47

DistilBERT 79.58 46.96 33.33 67.22 00.00 87.29
TinyBERT6,TA 74.58 41.69 28.00 54.22 00.00 84.53

TinyBERT6,TS 75.42 34.14 00.00 51.69 00.00 84.86

BERT-of-Theseus 68.33 34.52 8.00 48.95 00.00 81.15

XtremeDistil 80.83 44.19 20.00 67.53 00.00 89.22
TinyBERT4,TA 72.08 28.55 00.00 31.18 00.00 83.03

TinyBERT4,TS 80.00 33.47 00.00 44.87 00.00 89.00
S

D
T

-S
BERTBERT 75.20 45.08 83.46 68.86 00.00 28.00

DistilBERT 77.60 47.47 85.01 72.88 00.00 32.00
TinyBERT6,TA 74.00 39.65 82.76 69.16 00.00 6.67

TinyBERT6,TS 68.00 32.14 79.42 49.14 00.00 00.00

BERT-of-Theseus 68.80 32.51 78.56 51.49 00.00 00.00

XtremeDistil 76.00 38.72 83.98 70.89 00.00 00.00

TinyBERT4,TA 72.80 36.58 82.17 64.16 00.00 00.00

TinyBERT4,TS 70.00 35.39 79.96 61.59 00.00 00.00

sentiment features. These experiments were performed for all

models apart from ROSITA due to the long training time.

Table IV and Table V present single-domain results for the

sentence and the document level, respectively. Accuracy and

macro F1-score are presented along with F1-score for each

sentiment class. Shortened names of the methods are used.

DistilBERT, TinyBERT6, and BERT-of-Theseus are grouped

as larger models compared to the most efficient XtremeDistil

and TinyBERT4 methods. For both text granularities, the

results are better for domains with more data, i.e., hotels

and medicine. Performance of the compressed models is

comparable with BERTBASE; in many cases, it is even better,

especially for domains with smaller amounts of data. For the

sentence level, TinyBERT6,TS obtains the highest results, but

for the text level, DistilBERT is better. It shows that when

there is a sufficient amount of training examples, task-specific

methods give better results than task-agnostic ones, but it can

be the opposite when there is little data.

For the sentence level among the most efficient methods,

the best results are obtained for XtremeDistil in most cases

(only for the school domain TinyBERT4,TA is better). Its

scores are approximately 2 percentage points worse than the

best ones. At the text level, XtremeDistil outperforms other

methods within the most efficient method group. Moreover,

its results demonstrate the same quality level as the larger

methods, which is not observed at the sentence level. The best

compressing method outperforms the original model in 7 out

of 8 cases. It suggests that a smaller, more appropriate model

can be better for a simple task, especially when the dataset

is not very large. The higher number of parameters can cause

that model to overfit, which is easier to avoid in the case of

smaller models.

Looking at the particular sentiment classes, the best results

are obtained for positive and negative examples for all do-

mains. It means that more expressive sentiment is easier to

be recognized by the models, which can be confirmed by the

results for neutral class, which are generally slightly worse

(apart from the hotels and medicine domains for the text level).

The worst performance is for an ambivalent class. The models

have problems detecting that class because it is not easy to

define, as it consists of ambiguous texts that were not easy to

annotate even for people.

Domain-out results are presented in Table VI and Table VII.

For all domains, the results are worse than in the corresponding

single-domain scenario. In many cases, the results for the

compressed methods are better than for BERTBASE. Large

size causes the model to be prone to overfitting to trained

data. Thus it loses its generalization abilities for data from

other domains. For the compressed models, the adversarial

phenomenon is lesser; e.g., DistilBERT, XtremeDistil, or

TinyBERT6,TA outperforms BERT in many cases, in particular

for the text level. The results demonstrate that task-agnostic
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TABLE VI
DOMAIN-OUT (DO) RESULTS FOR THE SENTENCE LEVEL (DOS) FOR

VARIOUS out DOMAINS: (HOTELS, MEDICINE, PRODUCTS, SCHOOL).

T Method Acc. F1 SP AMB 0 SN

D
O

S
-H

BERTBERT 74.28 69.18 79.95 50.94 64.99 80.84

DistilBERT 71.97 66.76 77.87 47.77 63.10 78.32

TinyBERT6,TA 72.59 67.61 78.78 49.09 63.80 78.75

TinyBERT6,TS 75.58 70.05 79.22 53.07 65.95 81.97
BERT-of-Theseus 70.36 65.39 76.66 47.27 60.45 77.17

XtremeDistil 74.05 68.53 78.21 49.74 65.40 80.75
TinyBERT4,TA 71.70 66.74 76.02 49.15 63.37 78.41

TinyBERT4,TS 71.76 65.29 75.26 45.28 61.42 79.20

D
O

S
-M

BERTBERT 66.78 60.98 71.30 31.96 70.69 69.98

DistilBERT 65.88 59.65 70.20 31.08 67.97 69.34

TinyBERT6,TA 65.63 60.17 69.81 32.66 68.31 69.91

TinyBERT6,TS 68.05 59.67 70.77 25.98 71.25 70.66
BERT-of-Theseus 64.30 58.24 66.50 29.37 68.91 68.19

XtremeDistil 66.25 60.14 68.67 33.61 69.14 69.15
TinyBERT4,TA 63.82 58.35 66.74 33.36 65.76 67.52

TinyBERT4,TS 65.02 56.71 67.45 23.91 67.57 67.92

D
O

S
-P

BERTBERT 62.18 55.35 70.92 39.85 37.22 73.40

DistilBERT 61.51 53.88 70.57 36.50 35.17 73.27
TinyBERT6,TA 60.92 54.64 70.41 39.72 36.76 71.65

TinyBERT6,TS 61.67 54.77 70.00 41.14 35.12 72.83

BERT-of-Theseus 60.59 53.52 68.74 39.94 33.05 72.36

XtremeDistil 63.91 56.66 74.94 38.66 39.41 73.63
TinyBERT4,TA 59.35 52.25 69.87 35.77 33.52 69.84

TinyBERT4,TS 58.52 51.95 64.06 41.29 31.90 70.54

D
O

S
-S

BERTBERT 50.04 46.17 58.36 49.96 27.18 49.18

DistilBERT 50.59 46.70 63.42 43.99 29.82 49.56

TinyBERT6,TA 53.20 48.58 62.69 52.46 27.80 51.39
TinyBERT6,TS 52.73 48.56 58.59 55.14 29.62 50.89

BERT-of-Theseus 49.09 44.31 59.22 49.61 20.80 47.61

XtremeDistil 52.65 47.54 62.77 50.35 24.04 53.01
TinyBERT4,TA 47.75 42.75 59.80 45.39 16.90 48.89

TinyBERT4,TS 46.96 42.74 57.68 46.11 23.37 43.79

TABLE VII
DOMAIN-OUT (DO) RESULTS FOR THE WHOLE TEXT LEVEL (DOT) FOR

VARIOUS out DOMAINS: (HOTELS, MEDICINE, PRODUCTS, SCHOOL).

T Method Acc. F1 SP AMB 0 SN

D
O

T
-H

BERTBERT 80.20 78.12 84.21 50.64 91.01 86.60

DistilBERT 81.37 80.16 86.26 57.19 90.40 86.80
TinyBERT6,TA 80.76 80.09 85.68 57.81 90.50 86.36

TinyBERT6,TS 74.53 70.63 81.51 39.77 78.27 82.98

BERT-of-Theseus 76.66 74.55 83.56 44.66 86.86 83.09

XtremeDistil 78.94 77.00 82.99 47.48 90.90 86.62

TinyBERT4,TA 79.49 77.87 81.39 55.72 87.00 87.38
TinyBERT4,TS 76.86 73.11 83.58 42.41 82.08 84.36

D
O

T
-M

BERTBERT 82.57 74.52 85.66 31.61 94.33 86.46

DistilBERT 81.35 72.83 83.94 32.05 89.57 85.77
TinyBERT6,TA 77.61 71.46 79.07 35.46 88.80 82.50

TinyBERT6,TS 69.24 59.18 61.45 26.65 70.03 78.59

BERT-of-Theseus 77.74 71.20 83.23 33.44 87.00 81.14

XtremeDistil 83.24 75.41 85.95 35.82 93.57 86.30
TinyBERT4,TA 76.45 69.17 76.49 27.90 89.21 83.07

TinyBERT4,TS 75.05 68.22 72.33 27.90 88.47 84.19

D
O

T
-P

BERTBERT 81.67 68.21 63.33 67.21 53.33 88.95

DistilBERT 82.08 66.92 54.67 70.38 53.33 89.32
TinyBERT6,TA 69.17 61.05 59.33 50.55 54.67 79.65

TinyBERT6,TS 67.92 52.67 67.43 50.46 11.11 81.67

BERT-of-Theseus 70.00 49.20 62.86 53.40 00.00 80.54

XtremeDistil 80.42 64.77 64.10 66.00 40.00 88.98
TinyBERT4,TA 71.67 50.44 57.43 61.63 00.00 82.68

TinyBERT4,TS 77.50 53.96 72.00 56.81 00.00 87.05
D

O
T

-S
BERTBERT 68.40 48.56 81.64 59.44 00.00 53.17

DistilBERT 68.80 48.40 83.36 61.36 00.00 48.89

TinyBERT6,TA 66.40 46.51 79.23 56.86 00.00 49.95

TinyBERT6,TS 62.00 42.96 77.04 48.57 00.00 46.24

BERT-of-Theseus 73.20 53.02 86.95 67.06 00.00 58.06
XtremeDistil 65.60 42.89 85.32 51.35 00.00 34.88

TinyBERT4,TA 69.60 52.70 82.84 68.07 00.00 59.90
TinyBERT4,TS 59.60 42.21 77.88 51.99 00.00 38.98

methods are better in that scenario. Task-specific models can

give worse results because they lose generalizing abilities

in compensation for better performing on close-to-train-data

examples.

The observations for the specific sentiment categories are

consistent with those noted for the single-domain scenario.

The polarized categories have better results than the neutral

and ambivalent categories. The cross-domain approach allows

the models to better detect positive texts in the product domain

and negative texts in the school domain, which was impossible

for the single domain scenario. It shows that the domain-out

approach can be beneficial in some specific cases. But this

is not always true; for example, for TinyBERT4 models for

neutral class in the product domain.

The domain experiments have shown that task-specific

methods perform better for single-domain and domain-out

scenarios, but only when a large dataset is necessary. On

the other hand, these methods work worse when the dataset

is limited. In those cases, task-specific distillation is not so

effective, and it is better to rely on the pre-distilled model,

which is fine-tuned for a concrete task. In the context of

the domain-out experiment, another factor is overfitting; it

is possible that due to the distillation of other domains with

insufficient data, the model loses generalizing abilities. Hence

its performance on a left-out domain is worse.

The analyses of the results reveal that the compressed

models can outperform the original model when working with

limited data. The lesser number of parameters makes such

models less prone to overfit. It is especially relevant for cross-

domain cases. Among the most efficient models, XtremeDistil

outperforms both TinyBERT4 models in most cases. It is also

competitive with the larger models, especially at the text level.

VI. CONCLUSIONS

In this work, we compared transformer compression meth-

ods focusing on the MultiEmo sentiment analysis task. The

experiments showed that the performance of the compressed

method is slightly worse, but much better efficiency is gained.

XtremeDisitl method is the best trade-off between efficiency

and quality because it offers a 6.4x speed-up and 8.6x com-

pression rate with a minimal performance drop.
The compressed method, especially task-agnostic methods

like XtremeDistil, can outperform the original size model

mainly when data are limited. Smaller models are not so prone

to overfitting, so their application can be treated as a kind

of regularization compared to larger models. That aspect can

be even more important in cross-domain situations. Similarly,

task-agnostic methods have better generalization ability than

task-specific methods when the amount of data is limited, as

was shown in the domain-out experiments. However, when

high performance is required for a concrete task, task-specific

methods should still be considered, especially when the size

of a dataset is considerable.
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The high performance of the XtremeDistil method with

such a large compression ratio can arise from applying the

ELECTRA model as a teacher, which is different from the

other methods where standard BERTBASE is used. It is also

initialized with the MiniLM model, which is pre-distilled

from BERTBASE. It shows that a better teacher and starting

point can help obtain better results. Future ablation studies

should be conducted to check whether it is the main factor

causing its superiority over the other methods. Additionally,

TinyBERT, for which good results are obtained, initially uses

data augmentation. In future work, it is worth verifying how

it improves the quality of the ROSITA method.
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[32] J. Kocoń, P. Miłkowski, and K. Kanclerz, MultiEmo: Multilingual, Mul-
tilevel, Multidomain Sentiment Analysis Corpus of Consumer Reviews,
06 2021, pp. 297–312.

[33] C. Bucila, R. Caruana, and A. Niculescu-Mizil, “Model compression,”
in KDD ’06, 2006.

[34] A. Romero, N. Ballas, S. E. Kahou, A. Chassang, C. Gatta, and
Y. Bengio, “FitNets: Hints for thin deep nets,” 2015.

[35] A. Polino, R. Pascanu, and D. Alistarh, “Model compression via
distillation and quantization,” in International Conference on Learning
Representations, 2018.

[36] S. I. Mirzadeh, M. Farajtabar, A. Li, and H. Ghasemzadeh, “Improved
knowledge distillation via teacher assistant: Bridging the gap between
student and teacher,” 2019.

[37] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of
word representations in vector space,” 2013.

[38] J. Pennington, R. Socher, and C. D. Manning, “Glove: Global vectors
for word representation,” in Empirical Methods in Natural Language
Processing (EMNLP), 2014.

[39] P. Bojanowski, E. Grave, A. Joulin, and T. Mikolov, “Enriching word
vectors with subword information,” 2017.

[40] W. Zhang and S. Skiena, “Trading strategies to exploit blog and news
sentiment.” 2010.

[41] W. Liu, P. Zhou, Z. Zhao, Z. Wang, H. Deng, and Q. Ju, “FastBERT: a
self-distilling BERT with adaptive inference time,” 2020.

[42] S. Geng, P. Gao, Z. Fu, and Y. Zhang, “RomeBERT: Robust training of
multi-exit BERT,” 2021.

[43] P. Ganesh, Y. Chen, X. Lou, M. A. Khan, Y. Yang, D. Chen, M. Winslett,
H. Sajjad, and P. Nakov, “Compressing large-scale transformer-based
models: A case study on BERT,” Transactions of the Association for
Computational Linguistics, 2021.

[44] P. Rajpurkar, J. Zhang, K. Lopyrev, and P. Liang, “SQuAD: 100,000+
questions for machine comprehension of text,” in EMNLP, 2016.
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