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Abstract—Neuro-symbolic approaches explore ways to com-
bine neural networks with traditional symbolic knowledge. These
methods are gaining attention due to their efficiency and the
requirement of fewer data compared to currently used deep
models. This work investigated several neuro-symbolic models for
sentiment analysis focusing on a variety of ways to add linguistic
knowledge to the transformer-based architecture. English and
Polish WordNets were used as a knowledge source with their
polarity extensions (SentiWordNet, plWordNet Emo). The neuro-
symbolic methods using knowledge during fine-tuning were not
better or worse than the baseline model. However, a statistically
significant gain of about three percentage points in the F1-macro
was obtained for the SentiLARE model that applied domain data
— word sentiment labels — already at the pretraining stage. It
was the most visible for medium-sized training sets. Therefore,
developing an effective neuro-symbolic model is not trivial. The
conclusions drawn from this work indicate a further need for a
detailed study of these approaches, especially in natural language
processing. In the context of sentiment classification, it could help
design more efficient AI systems that can be deployed in business
or marketing.

Index Terms—neuro-symbolic, sentiment analysis, WordNet,
linguistic knowledge

I. INTRODUCTION

Deep learning models have been widely used in many

artificial intelligence (AI) tasks. However, despite their perfor-

mance, neural networks suffer from a lack of interpretability

and the need for large amounts of data for learning. In con-

trast, traditional symbolic methods that use human-prepared

information are easier to explain and can work with less data.

Unfortunately, they depend heavily on the quality of external

knowledge and do not capture complex correlations. The short-

falls of these two techniques have led researchers to explore

a novel area of AI called neuro-symbolic, a combination

of deep learning architectures with symbolic reasoning. This

approach has already outperformed state-of-the-art (SOTA)

deep learning models, in domains such as image and video

reasoning with significantly less training data [1], [2].

A good understanding of the language semantics is very

important for text classification problems when the model has

to learn to predict the appropriate label from the input text.

This work focuses primarily sentiment analysis which aims

to decide whether the presented text has a positive, negative,

or neutral polarity. In a more advanced scenario, handling the

sentiment ambivalence can also be considered [3]. Standard

machine learning techniques have been applied to this task,

such as decision trees, SVM, Naive Bayes or random forest.

From the classical symbolic approach, a text is evaluated using

external knowledge bases, e.g., sentiment dictionaries, due to

which words from the text are linked to proper polarization

derived from such dictionaries. The final sentiment is an ag-

gregation over all words [4], [5]. Currently, the most common

methods for sentiment analysis are deep learning architectures

based on transformer models [6].

Many lexicon resources for various languages have been

developed in the past decade. Princeton WordNet (PWN) [7]

is a major one for English, but similar knowledge bases have

also been created for other languages. Some contain emotive

annotations for specific word meanings assigned by people

(e.g. SentiWordNet [8], plWordNet Emo [9]). In addition, nat-

ural language processing (NLP) tools were created to analyze

data like human understanding, such as part-of-speech (PoS)

tagger or word sense disambiguation (WSD) systems. Given

the difficulty of the sentiment analysis task, which connects

NLP with psychology and cognitive science, intuitively, it

makes a good candidate for using neuro-symbolic methods

via incorporating external knowledge prepared by linguists. It

could improve the results of standard deep learning models,

as already proven for other NLP problems [10], [11].

The main objective of this article is to answer the following

Research Questions: (RQ1): How to efficiently provide lin-

guistic knowledge to the transformer-based model and improve

the model’s classification results in relation to the baseline?

(RQ2): Will the model performance change when knowledge

is incorporated during fine-tuning versus the pretraining stage?

(RQ3): Does the neuro-symbolic approach deliver on its

promises regarding the requirements for fewer data while

performing as well as the baseline on full dataset?

405

2022 IEEE International Conference on Data Mining Workshops (ICDMW)

2375-9259/22/$31.00 ©2022 IEEE
DOI 10.1109/ICDMW58026.2022.00059



II. RELATED WORK

Sentiment analysis has recently become a very active re-

search area in AI that has led to many proposals of tradi-

tional machine learning techniques and those based on neural

network architectures [6]. Some use human knowledge in

graphs, lexicons, or other symbolic representations. One of the

main NLP resources is a knowledge graph called WordNet.
It is a large lexical database where nouns, verbs, adjectives,

and adverbs are grouped into cognitive synonyms (synsets),

each expressing a distinct concept. The first WordNet was

created for English – Princeton WordNet (PWN) [7]. The

Polish version plWordNet (pl. Słowosieć) [12] was created

soon after and has been continuously extended until today.

The most useful for sentiment classification are extensions

of wordnets focusing on opinion mining. For English, it is

SentiWordNet [8] which assigns to each synset of PWN

three sentiment scores (float values): positivity, negativity, and

objectivity. In case of Polish, plWordNet Emo [13] provides

80k units tagged for emotional overtones - positive, negative,

ambiguous, or neutral. This annotation was performed on the

level of lexical units and their use examples [14]. Furthermore,

the labeling of units was expanded to include eight basic

emotions and valuations [15].

Another source of polarity knowledge is various kinds

of lexicons. Many of them differ mainly in the way they

were labeled and in the source of the data provided for

the annotation process. The vast majority are obviously for

English. One of the most known is the NRC Word-Emotion
Association Lexicon, commonly called EmoLex [16]. The

annotations of ≈25k English senses were made here by

crowdsourcing and consisted of eight basic emotion labels and

two sentiments (negative and positive). We can also distinguish

automatically generated lexicons, such as the NRC Hashtag

Sentiment Lexicon [17] or the Sentiment140 Lexicon [18]. The

last interesting collection is a database SenticNet [19], which

provides a set of semantics, sentics, and polarity associated

with 400k natural language concepts.

Symbolic methods to classify sentiment use linguistic

knowledge, rules, or lexicons. They are mainly based on

statistics, algebra, feature engineering, and traditional machine

learning models like SVMs or decision trees [20]. A standard

mathematical approach to predict sentiment is to sum up the
polarity values of all words in the document that exist in a

sentiment lexicon. This idea was used in [21] with Princeton

WordNet as a knowledge source. Another popular method in

the literature is feature extraction, which mainly involves

counting words with a given polarity. Extensive research on

this topic on Twitter data was done by [22] who obtained

the prior polarity of words from Whissel’s DAL [23] dictio-

nary and prepared emotion lexicons. In-depth feature analysis

showed that those of Twitter-specific type (emoticons, hash-

tags, etc.) add value to the classifier only marginally. Authors

highlighted the urgent need to develop sentiment lexicons
even when they are created on a different domain of data than

the target task. Polarity feature engineering was also reviewed

in [18] where two classifiers were developed for SemEval-

2013 Task 2 [24]. The solution presented there uses several

surface-form, semantic, and sentiment features, e.g., count of

negated words, emoticons polarity, number of hashtags, word

n-grams presence, etc. Each text was represented as a feature

vector, an input to the SVM model. Again, sentiment lexicon
features led to the most gain in performance.

The main advantage of neural networks is their ability to

capture context-dependent semantic composition effects over

sentences. The first neuro-symbolic approaches have evolved

closely around already known classical ones. A simple one was

proposed in [25] where the total sentiment score of a given

sentence was treated as a weighted sum of prior polarity
scores of negation and sentiment words, where the weights

are learned by the neural model. The LSTM architecture

was explored in work [26] combined with regularization
techniques. Three types of linguistic resources were addressed

in that paper: sentiment lexicon as a source of the prior polarity

of a word, negation words -– typical sentiment shifters, and

intensity words that change the valence degree of the current

polarity score. The key idea was to regularize the difference

between the predicted sentiment distribution of the current po-

sition and that of the previous or next positions. Another group

of incorporating external knowledge into neural-based models

is focused on adding lexicon-aware input vectors to the

usual context embeddings. This idea was highly exploited in

research. [27] utilized lexical features into transformer-based

BERT model [28] for abusive or offensive remarks detection

in social media posts. Authors introduced two architectures –

HurtBERT Encoding and HurtBERT Embedding. Features of

a vector or matrix were given in a separate model branch and

then concatenated with the BERT output. The work proved

that proposed methods improved the results over the BERT

baseline in most of the provided in-domain and cross-domain

experiments.

MOre recent ideas exploit the potential of deep network

architectures. SentiLARE model introduced in [29] injects

knowledge into the RoBERTa on the pretrain stage by mod-

ifying the standard masked language model (MLM) training

task. This way, authors enriched the input sequence with the

external information, including part-of-speech tag and senti-

ment polarity, to capture the relationship between sentence-

level language representation and word-level linguistic knowl-

edge. A different idea to infuse factual knowledge into the

pretrained model was described in [30]. Proposed method

Knowledge Embedding and Pre-trained Language Represen-
tation (KEPLER) takes advantage of knowledge graphs de-

livering the information about entities. An example of such a

resource type may be the WordNet, where entities or senses

are connected with different types of relations.

III. DATA PREPARATION

This section describes the datasets used and the preprocess-

ing steps taken to efficiently provide the external knowledge

of the polarity scores and emotion annotations from the

WordNets – Princeton PWN and Polish plWN.
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Fig. 1: Data preprocessing steps

A. Datasets

The focus was on open-source data for the English and

Polish languages only.

• IMDB [31] - a collection of English reviews from the

Internet Movie Database (IMDb) website labelled as pos-

itive or negative. Two class setup was derived from a 10-

point rating scale. In this dataset, only highly polarizing

reviews are considered -– a negative text has a score ≤ 4

out of 10, and a positive review has a score ≥ 7 out of

10.

• Movie Reviews [32] - a dataset of English movie review

sentences labeled for their overall sentiment polarity or

subjective rating scale. Binary classification.

• Multiemo/PolEmo2.0 [33] - a benchmark dataset for

the multilingual sentiment analysis task. The collection

was created on the basis of the Polish written dataset

PolEmo2.0 [34] which was translated automatically into

ten other languages. The following classes were assigned:

minus, zero, ambiguous, and plus.

• GoEmotions [35] - a human-annotated English dataset of

carefully curated Reddit comments labelled for 27 fine-

grained emotion categories or neutral. These data are

intended for the multi-label classification of emotions.

The distribution of labels is uneven; the neutral tag

strongly dominates the other emotions, making this set

the most difficult to get good classification results.

• Allegro Reviews [36] - a sentiment analysis dataset

consisting of product reviews written in Polish and ex-

tracted from the Allegro website – a popular e-commerce

marketplace. Each review contains at least 50 words and

has a rating on a 5-point scale.

B. Preprocessing

All texts from the datasets were preprocessed by the

AMuSE-WSD tool introduced in [37] which is an end-to-end

system with a SOTA multilingual model for the Word Sense

Disambiguation (WSD) task. External domain knowledge (po-

larity scores) was added in the next steps. The whole pipeline

is shown in Figure 1.

Two sources of sentiment information were chosen for

this work - SentiWordNet and plWordNet Emo. The output

TABLE I: Token annotation coverage in preprocessed datasets

(pos - positive, neg - negative)

Dataset
SentiWordNet (%) plWordNet Sent (%) plWordNet Emo (%)
all pos neg all pos neg emotions valuations

IMDB 44.9 12.0 5.4 27.5 3.9 3.5 23.0 23.4
Movie Reviews 52.3 14.4 7.2 32.1 5.6 5.0 26.5 26.8
Polemo2.0 48.1 8.3 5.9 31.5 3.8 2.9 24.5 25.1
Multiemo 45.0 10.5 5.0 28.6 3.3 2.3 22.8 23.2
Allegro Reviews 47.9 8.3 6.0 28.2 3.7 2.8 22.4 22.7
GoEmotions 45.8 12.5 5.9 25.9 3.8 3.5 24.9 25.2

from AMuSE-WSD returned the Princeton WordNet sense

offsets, thus the easiest way to get polarity scores was from

SentiWordNet. Adding emotive tags and sentiment annotations

from plWordNet Emo was more complex. Thanks to the partial

integration of plWN with PWN, the PWN-plWN synset IDs

mapping was obtained through synonymy, hyperonymy, and

hyponymy relations. As a result, separate files containing

word-level annotations were created for each dataset.

Each preprocessed dataset was analyzed in terms of token

annotation attribute coverage. A summarization is presented

in Table I. All collections for ≈ 50% of their words have a

sentiment value assigned from SentiWordNet. There is also a

significant predominance of neutral words over positive and

negative ones, with negative words being the minority.

IV. MODELS

The work aimed to explore methods from simple exter-

nal knowledge delivery to advanced integration into model

weights. Four different neuro-symbolic architectures using

the transformer were chosen based on these conditions. All

of them were taken from sources in the literature by re-

implementation or adaptation to the research conditions.

A. HurtBERT

This method was proposed in [27] for the abusive language

detection task. It extracts features from the HurtLex lexicon,

which are then processed by a separate branch and concate-

nated with contextual embeddings before the classification

layer. Lexical information can be used in two ways:

• HurtBERT Encoding - using a frequency count for the

lexicon categories;

• HurtBERT Embedding - obtained with an embedding

layer mapping a given word to a one-hot representation,

and LSTM network (Figure 2).

The second method is more expressive, as it considers token

order. As the amount of categories in plWordNet differs from

the ones used in the original paper (17 specific to the HurtLex),

the dimensionality of the sentiment embedding layer had to

be modified to 24. This number includes all fine-grained

sentiment scores and possible emotion tags from plWordNet

Emo.

B. Tailored KEPLER

An adaptation of KEPLER [30] which infuses descriptive

information from a knowledge graph into a pretrained lan-

guage model (PLM). It uses factual entries about entities
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Fig. 2: HurtBERT Embedding architecture

contained in resources such as Princeton WordNet or Wiki-

data [38]. Graph structure is represented as TransE [39] triplets

(h, r, t) where h, t emblems the head and the tail entities; r
is a relation type. To harness knowledge, its entities’ repre-

sentations are obtained by encoding their textual descriptions

with PLM. Thus, PLM can be learned with the Knowledge

Embedding objective and a task objective.

The presented approach differs from the initial implemen-

tation, where extra knowledge is used during the pretraining

stage via unsupervised masked language modeling. Tailored
KEPLER is modified to a single task — it incorporates entity

data during fine-tuning (Figure 3). As a graph knowledge

source, the plWordNet is used, from which the relations

between lexical units and synsets are extracted along with their

definitions and usage text samples. Since the data processing

step was based on synsets, the considered triplets were nar-

rowed down to the relationships like synonymy, hypernymy,

and hyponymy. The relation types are encoded by a randomly

initialized, learnable embedding table.

LKE = − log σ(γ − dr(h, t))−
n∑

i=1

1

n
log σ(dr(h

′
i, t

′
i)− γ)

(1)

dr(h, t) = ‖h+ r− t‖ (2)

To fine-tune the pretrained model, multitask loss L = LKE+
LNLP is applied, where LNLP is responsible for a downstream

NLP task. Only those triplets that include synsets visible in

the training dataset split are given during learning.

C. SentiLARE

The last model is taken directly from [29] where knowledge

is injected into transformer-based RoBERTa architecture by

modification of a standard MLM task, creating a new label-
aware masked language model (LA-MLM). Besides textual

sequence, the SentiLARE input requires external information –

part-of-speech tags and sentiment values. In the original work,

PoS for each word is acquired via Stanford Log-Linear tagging

tool [40] and then used to match the polarity scores from Sen-

tiWordNet. One lemma can have several meanings, therefore,

Fig. 3: KEPLER architecture

TABLE II: Sample sizes in dataset splits

Dataset #Train #Validation #Test

IMDB 22,500 2,500 25,000
Movie Reviews 8,534 1,078 1,050
Polemo2.0/Multiemo 6,573 823 820
Allegro Reviews 9,577 1,002 1,006
GoEmotions 43,410 5,426 5,427

the sentiment values are obtained by the unsupervised WSD

method [25].

The model is pretrained in the LA-MLM setup, consisting of

two subtasks – early fusion and late supervision — combined

in one loss function. In early fusion, SentiLARE is required

in addition to predicting the word in masked positions, also

predicting its PoS tag and word-level polarity conditioned by

the whole sentence sentiment label. The latter subtask aims to

predict the sentence-level label and the word information. As

a result, this approach delivers knowledge-aware represen-
tation vectors as a direct output from RoBERTa.

V. TRAINING SETUP

The selected datasets already had a publicly available ready

division into three files: training, validation, and testing set.

Only IMDB and Movie Reviews data do not have validation

sets, so the final three-split form was used from the reposi-

tory [41]. The overview of split sizes is shown in Table II.

In an attempt to answer question RQ3, the size of the

training set had to be manipulated during the model learning.

A list of train sizes was defined for each type of dataset,

starting with 250 examples and ending with the full set.

Subsequent values were selected proportionally to the size of

each training split so that at least approximately 5, 10, 15, 30,

and 60% of the complete data were tested. In the case of the

GoEmotions dataset, experiments were started with a training

set size of 1000, as it was found that smaller sizes were not

sufficient for any model — either with baseline or neuro-

symbolic ones — to learn the classification task. This is most

likely caused by the difficulty of the multi-label prediction task

configuration. To maintain a distribution of classes in training

subsets similar to the full version, a stratified splitting was

used.

As a baseline model, SOTA transformer-based architectures

with linear classification heads were fine-tuned for each task.
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HerBERT [42] was used for Polish datasets and BERT for En-

glish. To properly compare the performance of the SentiLARE

model, the baseline was changed to RoBERTa. The training

took maximally 50 epochs with an early stopping patience

parameter equal to 20 epochs. The batch size was set to 32

and the model was optimized using AdamW with a learning

rate of 1ε−5 along with a warmup linear scheduler.

VI. EXPERIMENTS AND RESULTS

The experiments were divided into two parts according to

the stage of knowledge transfer to the models — during fine-

tuning (Finetune-Exp) or pretraining (Pretrain-Exp). The

first group contains HurtBERT and Tailored KEPLER archi-

tectures and the second – SentiLARE approach with modified

MLM task. The authors of the SentiLARE paper have shared

the checkpoint of the trained model [41] which was used for

the purpose of this study. Due to the nature of RoBERTa, only

the English datasets could be considered for fine-tuning using

the published model. Each experiment was repeated 10 times

and averaged F1-macro score was reported.

The polarity source for HurtBERT data was a combination

of SentiWordNet and plWordNet Emo where plWN was taken

first; the emotion information was only provided by the latter

resource. In case of SentiLARE, datasets were enriched in

two ways - using only SentiWN polarity scores, and using

two knowledge graphs together. Thus, two versions of neuro-

symbolic trials were distinguished accordingly: SentiLARE
(SentiWN) and SentiLARE (plWN).

The obtained results presented in Fig. 4a show that the

HurtBERT and Tailored KEPLER models performed the same

or worse than baseline BERT. Architectures using a simple

way of providing knowledge at the fine-tuning stage failed

to deliver expectations of the neuro-symbolic model. On the

contrary, results achieved for SentiLARE (Fig. 4b) proved the

superiority of the neuro-symbolic approach over the baseline

model. It was possible to outperform the RoBERTa for most

of the datasets; even a 2-4 percentage point metric increase

was noted for the Multiemo and IMDB collections. The

advantage was the highest for small to medium-sized training

sets. However, no improvement in classification quality for

the GoEmotions dataset was also noted. These insights were

supported by Student’s t test [43] between the SentiLARE

and its baseline. The assumption of distribution normality

was checked using the Shapiro-Wilk [44] test. No statistical

significance was obtained only for GoEmotion. Performance

comparison between versions of the model, SentiLARE (Sen-
tiWN) and SentiLARE (plWN), also resulted in no significant

difference. The addition of partial sentiment knowledge from

Polish WordNet did not improve but also did not worsen the

results, which may prove that plWN is well integrated with

PWN.

To further investigate how the neuro-symbolic SentiLARE

model improve learning process, Differential Data Cartogra-

phy was plotted for Multiemo and IMDB dataset. The focus

was on a medium training size, here equal to 1000 samples.

Visualization was inspired by work [45] where three different

training dynamics measures were presented.

• Confidence - captures how confidently the model as-

signed a true label (y∗i ) to the sample, calculated as a

mean probability across epochs:

μ̂ =
1

E

E∑
e=1

pe(y
∗
i |xi), (3)

where pe is a model probability at the end of epoch e.

• Variability - measures how model was indecisive about

sample label during training, low value means stable

prediction of one label, and high value - often change

of assigned label; calculated as a standard deviation:

σ̂ =

√√√√√
E∑

e=1
(pe(y∗i |xi)− μ̂i)2

E
. (4)

• Correctness - fraction of correctly predicted labels across

training epochs.

Data maps in Fig. 5 and 6 show the difference in above

measures between SentiLARE and baseline architectures. The

values for the data points were obtained by subtracting the

baseline’s training dynamics metrics from the SentiLARE

model’s. Each data point symbolize one training sample. The

most important part of the figure is the 4th quadrant of the

coordinate system where majority of points are located. It

denotes the increase in the model confidence and a reduction

in its variability. Such changes are the most desirable and

proves that the addition of prior sentiment knowledge at the

pretraining stage improved the quality of the model.

VII. DISCUSSION

RQ1: How to efficiently provide linguistic knowledge to
the model and improve the model’s classification results
in relation to the baseline?

From the review conducted, the key to success was defi-

nitely providing domain data at the pretraining stage and

injecting it into the knowledge of the model (its weights).

SentiLARE was the only considered neuro-symbolic approach

to the sentiment classification task that yielded a significant

increase in prediction measures. However, in the context of the

obtained results, the question arises of why the other methods

did not work. For the Finetune-Exp group, all models failed

to outperform the SOTA baselines. A possible explanation for

HurtBERT-Encoding and HurtBERT-Embedding methods is

that high-level embedded text does not cooperate well con-

cated with simpler feature encoding before the classification

layer. Overall, the values from both vectors had a different

distribution, which apparently could interfere with the correct

training of the network — it could come down to ignoring

the values coming from the sentiment database. In case of

Tailored KEPLER approach, the fault may have been in the

knowledge graph representation way. The TransE method

does not adequately express transitive relations, which are

very common in WordNets [46]. Moreover, added knowledge
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(a) Finetune-Exp

(b) Pretrain-Exp

Fig. 4: F1-macro scores for different train sizes

was of a more general type (definitions and usage examples)

instead of sentiment-specific.

On the other hand, the Pretrain-Exp group’s results showed

that for the GoEmotions dataset the SentiLARE method was

insufficient to beat the baseline. First, it could be explained by

the fact that SentiLARE was created with the idea of classify-

ing sentiment rather than emotion. Therefore, the model was

heavily biased towards sentiment knowledge type.

In summary, the effectiveness of the neuro-symbolic model

largely depends on how the knowledge is incorporated. Adding

it to the deep-neural network weights at the pretraining level

seems to be one of the most reasonable choices for sentiment

classification.

RQ2: Will the model performance change when knowledge
is incorporated during fine-tuning versus at the pretrain
stage?

When infusing knowledge during pretraining, the Senti-

LARE had brought the desired increase in prediction quality,

contrary to models with knowledge added at the fine-tuning

stage. However, it cannot be rejected that there is or will

be another way to infuse knowledge at the fine-tuning level

of transformer-based architectures, which was not considered

in this research. It could be also dependent on the type of

task being solved and the type of knowledge, e.g., Tailored

KEPLER did not work with transitive WordNet relations, but

when the original KEPLER was trained on the Wikipedia with

non-transitive relationships, it gave a boost in model quality

measures in relation classification or entity typing tasks [30].
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Fig. 5: Differential Data Cartography for SentiLARE and

RoBERTa models on IMDB

Fig. 6: Differential Data Cartography for SentiLARE and

RoBERTa models on Multiemo

RQ3: Does the neuro-symbolic approach deliver on its
promises regarding requirements for fewer data while
performing as well as the baseline on full dataset?

Meeting these requirements is possible with a properly de-

signed neuro-symbolic architecture which can access external

symbolic knowledge effectively. In the scope of this study,

only SentiLARE met this promise. It was especially reported

for three datasets: IMDB, Movie Reviews, and Multiemo,

where the gain was the greatest for small and medium-sized

training sets. This issue requires further research.

VIII. CONCLUSIONS AND FUTURE WORKS

This work presented the review of several carefully selected

neuro-symbolic models for text classification problems related

to sentiment or emotion prediction. It is a novel, future-proof

area in the machine learning field, and reports very promising

results in various deep learning tasks.

An extensive research was done to analyze and validate

neuro-symbolic solutions. They were conducted on five dif-

ferent datasets for English and Polish using four transformer-

based approaches. A few ways of infusing linguistic knowl-

edge into the models have been tested, from the simplest one

in the form of a separate feature vector during fine-tuning,

to injecting knowledge during pretraining of the language

encoder. Then, the quality of the models was measured and

compared.

The results obtained revealed the difficulty of designing

the proper knowledge transfer method so that it could be

compatible with transformers that operate at a high level of

abstraction. Most of the neuro-symbolic architectures tested

were unsuccessful; they did not improve F1-macro scores rel-

ative to the baseline. The only successful way to add external

knowledge turned out to be by adding it directly into the

model weights while pretraining the transformer blocks. This

approach (SentiLARE) led to an approximately 3 pp. increase

for some collections. It was an excellent result compared to

the SOTA models.

The most important conclusion is that there are many

methods of feeding human-prepared knowledge into neural

networks, and how to do it effectively is still an open question.

The conducted experiments may be a prelude to further

research on the topic of neuro-symbolic approaches in the

sentiment analysis. There is certainly a need to better explore

the SentiLARE architecture and its full potential for the Polish

language.

The effective usage of human knowledge in deep neural

models will definitely require the development of new ar-

chitectures in the near future. They will probably be of a

completely different nature from the current ones, to better

absorb external information. This potential breakthrough will

also open the door to other areas of NLP, such as making

inferences from textual data or its general understanding.

Until now, neural networks have not been able to learn such

tasks that require logical thinking. With the help of symbolic

knowledge, this can change.
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