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Abstract—Many publications prove that the creation of a
multiobjective machine learning model is possible and reason-
able. Moreover, we can see significant gains in expanding the
knowledge domain, increasing prediction quality, and reducing
the inference time. New developments in cross-lingual knowledge
transfer open up a range of possibilities, particularly in working
with low-resource languages. With a motivation to explore
the latest subfields of natural language processing and their
interactions, we decided to create a multi-task multilingual model
for the following text classification tasks: functional style, domain,
readability, and sentiment. The paper discusses the effectiveness
of particular language-agnostic approaches to Polish and English
and the effectiveness and validity of the multi-task model.

Index Terms—deep learning, language-agnostic, multi-task text
classification

I. INTRODUCTION

The process of machine learning originated as an imita-
tion of the actual human learning process. If we delve into
this phenomenon’s nature, we can notice that learning more
complex operations is preceded by learning minor tasks. For
example, to calculate a mathematical equation, a student must
first learn addition, subtraction, and multiplication. Intuitively,
we can conclude that knowing the operations of addition
will make it faster to learn multiplication. A closer look
reveals that although the tasks listed above may be of different
difficulty levels and may deal with seemingly other problems,
some knowledge is common to both tasks. In the case of the
mathematical operations mentioned previously, this will be the
basic knowledge of the numbers’ values.

Another great example is the simultaneous learning of
multiple languages from the same language group. Learning
Italian is much easier if a student knows French or Spanish,
as these languages have similar grammar rules or words. This
observation leads us to believe that a similar analogy regarding
domain knowledge can be made for machine learning.

Multi-task learning (MTL) is creating a single model dedi-
cated to performing more than one task. In this approach, one
model for a given input during a single iteration can assign
multiple labels for each basic task.
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One of the potential benefits is that the context for each task
is generalized and thus extended in comparison to single-task
models. The comprehensive information about the subject may
potentially result in increasing the prediction quality of the
model. Another important aspect is the reduction of inference
time and resource consumption. Solving tasks one by one with
dedicated models can be more time-consuming (or require
more resources to parallelize the computation) than a single
iteration of a multi-task model.

Multi-task approaches are becoming increasingly common
in natural language processing (NLP). To process a text,
we need to obtain an appropriate representation for it. For
several years, the standard proposed by Mikolov [1] has been
the creation of vector embeddings. Nowadays, state-of-the-
art approaches often rely on large pre-trained models, such
as bidirectional encoder representations from transformers –
BERT [2] or language-agnostic sentence representations –
LASER [3]. With hundreds of millions of parameters trained
on large datasets, such models achieve the best results for
many NLP tasks [4].

Researchers highlight the remarkable value of low-resource
languages [5]. Thanks to language-agnostic models, solutions
and datasets developed for almost any language can be applied
cross-linguistically, significantly reducing the potential cost
of creating dedicated datasets or language-specific tools. This
could be an essential factor for business and science, allowing
many areas of NLP in low-resource languages to be explored
at a significantly better level. Not surprisingly, this topic has
been overgrown in recent years, driven mainly by IT industry
leaders such as Google [6] and Facebook [3].

In our solution, we decided to compare the current methods
using two languages – resource-rich English and low-resource
Polish. It allows us to determine changes in prediction quality
depending on the language’s resource richness for a particular
task. When defining the experiment’s scope, we chose four
text classification tasks: sentiment, domain, functional style,
and readability. The difficulty of each task is differentiated
and defined by datasets.

Given the ongoing development of the concerned areas, we
have made the following contributions:

• Determine the performance of each language-agnostic
approach on each of the selected datasets for resource-
rich and low-resource languages.

• Examine the effects of applying the multi-task model and
compare it to task-specific models regarding prediction
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quality and time consumed per task.
• Demonstrate that the use of multi-task learning can

improve performance for an unbalanced sentiment dataset
(a subset of AmazonReviews in our case).

II. RELATED WORK

Multi-task learning is becoming increasingly popular in var-
ious artificial intelligence fields, particularly NLP or computer
vision. The paper [7] presents the main ideas, i.e., what multi-
task learning is, why it works, and the critical problem of
determining related tasks. It also shows the performance of
multi-task learning on shallow neural networks and compares
them with single-task networks.

Architectures and solutions for real-world applications fol-
low this. An example is a paper on speech synthesis [8],
showing the small gain of using a common data representation
for different tasks and using stacked bottleneck features.

Another exciting solution was using multi-task learning to
improve the generalization of models for sentiment classifica-
tion for datasets with various domains [9]. For this problem,
the sentiment classifier was split into two components: a main
independent one, which is used to gain general sentiment
knowledge, and a side domain-dependent one. Besides, a
domain similarity graph is proposed to capture the similarities
between different domains and regularize the domain-specific
sentiment classifier parameters.

A further idea [10] of applying multi-task to NLP is to
predict jointly such classes as part-of-speech tags, chunks,
named entity tags, semantic roles, semantically similar words,
and the likelihood that the sentence makes sense (language
modeling). They used trainable embedding vectors, which are
then passed through a TDNN (Time-Delay Neural Network)
using convolutional layers. An exciting addition was semi-
supervised learning to extend the dataset using publicly avail-
able data from the Internet.

Research papers [11], [12] provide an overview of what
has been done in multi-task learning and classify the methods
into different categories such as hard/soft parameter sharing,
feature learning, task clustering, and task relation approaches.

When looking for multi-task text classification solutions,
there are many research papers in recent years. One of them
[13] introduces a new Gate Multi-Task Convolutional Neural
Network (CNN) architecture with separate subnets for each
task to utilize all datasets. It uses a gate mechanism to select
and share these features between subnetworks.

Another idea is to combine representations based on single
tasks. They used word embeddings for binary classification of
sentiment and sarcasm [14], followed by sentence embeddings
using GRU gates. Finally, the sentence embedding vectors are
combined using a neural tensor network (NTN). The results
show that the combined training of related tasks such as
sarcasm and sentiment prediction results better than single-
task models.

In one of the papers on stacked ensemble models [15], the
presented approach assumes a combination of Long Short-
Term Memory (LSTM), CNN, Gated Recurrent Unit (GRU),

and feature-based model based on Support Vector Regression
(SVR). All components are fused using a three-layer mul-
tilayer perceptron (MLP) network. The author in his work
undertakes the tasks of prediction financial sentiment for short
texts originated from news sites and microblogs as well as
prediction of emotion intensity on tweets. The study has shown
the superiority of the ensembled approach over using single
models.

A study on depression level estimation [16] looked at a
multiparameter architecture, evaluating the model with fully
shared parameters against a model which shares only some of
the parameters. The tests showed that sharing all parameters
between tasks produces better results for most cases.

Some solutions improve the primary task by creating side
tasks. A support task such as negative supervision [17] can
generate different representations for each class to enhance
the text classification results.

However, multi-task learning is not only limited to NLP.
There are also studies in computer vision [18], i.e., classifying
the artist, the type/style, the object’s material, or predicting the
year the object was made. An intriguing part of this research
work was the integration of weights for each loss function.
The loss function for the regression had about ten times larger
values than the loss function for multi-label classification.

In summary, many research papers on multi-task learning
have proposed new architectures that have matched or beaten
previous state-of-the-art or single-task models. Many used
the weighted average of single loss functions for each task,
manually choosing weights or setting equal values as 1/n (n -
number of tasks). There is more about how we determined the
weights in Section V-A.

III. DATASETS

Our research started from the Polish language datasets,
where we tried to select different text classification tasks,
finally deciding on three: a functional style, domain, and
sentiment. The selection of corpora from the resource-rich
English language was carried out to match them with the
already selected Polish language datasets. The tasks matched
each other as closely as possible. We matched analogous tasks
for the Polish and English corpora (domain and sentiment clas-
sification). In the case of functional styles, we used readability
level classification as a supplementary task.

A. Polish Corpus of Wrocław University of Technology

Polish Corpus of Wrocław University of Technology
(KPWr) [19]–[21] is a corpus of both written and spoken texts
that have been semi-automatically and manually annotated at
multiple semantic and grammatical levels. Additionally, meta-
data such as text domain, keywords, text type, and functional
style have been manually assigned to the documents. In this
work, we use the domain and functional style labels.

The functional style is a way of expression that depends
on the utterance’s content, purpose, and function. KPWr doc-
uments are annotated with functional style classes: scientific,
press, literary, rhetorical, legal, colloquial.
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TABLE I
CHARACTERISTICS OF DATASETS. *KPWR DOMAIN CLASSES: SOURCES, BIBLIOGRAPHIES, META-DESCRIPTION; CULTURE AND ARTS; GEOGRAPHY
AND PLACES; HEALTH AND FITNESS; HISTORY AND EVENTS; MATHEMATICS AND LOGIC (FORMAL SCIENCES); LIFE SCIENCES; PEOPLE AND "THE

SELF"; PHILOSOPHY AND THINKING; RELIGION AND BELIEF SYSTEMS; SOCIETY, SOCIAL, AND HUMAN SCIENCES; TECHNOLOGY AND APPLIED
SCIENCES. **THE TASK IS MULTI-LABEL, SO THE VALUES DO NOT ADD UP TO 100% BUT REPRESENT THE PERCENTAGE OF DOCUMENTS ANNOTATED

WITH A GIVEN CLASS.

Lang. Dataset Task Size
[docs] Classes Classes in

examples [%]

PL KPWr functional
style 1628 scientific, press, literary,

rhetorical, legal, colloquial 34.1/35.1/9.3/6.3/8.0/7.2

PL KPWr domain 1628 *12 domain labels
(listed in caption)

**5.0/30.0/6.4/2.6/35.9/0.9
/5.3/9.3/0.9/4.5/60.0/22.5

ENG OneStopEnglish readability 567 elementary, intermediate,
advanced 33.3/33.3/33.3

PL PolEmo 2.0 sentiment 8216 positive, negative,
ambivalent, neutral 27.8/37.9/19.5/14.8

ENG subset of
AmazonReviews sentiment 2001 rating: 1, 2, 3, 4, 5 2.1/2.4/7.5/20.3/67.6

ENG subset of
AG’s News domain 2000 World, Sports, Business,

Sci/Tech 25.0/25.0/25.0/25.0

Unlike the other single tasks in this paper, the domain
classification in KPWr is multi-label, i.e., each document
has assigned at least one (often several) of the 12 subject
labels: Sources, bibliography, meta-description; Culture and
arts; Geography and places; Health and fitness; History
and events; Mathematics and logic (formal sciences); Life
sciences; People and "the self"; Philosophy and thinking;
Religion and belief systems; Society and the social and human
sciences; Technology and applied sciences

B. OneStopEnglish corpus

OneStopEnglish [22] is a corpus containing texts from
the website onestopenglish.com, more precisely newspaper
articles transcribed by teachers to correspond to 3 different
levels of text complexity. This means that each document
is available in 3 versions: elementary (the easiest to read);
intermediate (containing more complex words); and advanced
(closest to the original, the most complex).

We use this corpus as a text readability classification task,
using documents as examples of elementary, intermediate, and
advanced classes.

C. PolEmo 2.0

PolEmo 2.0 [23], [24] is a Polish corpus containing 8,216
reviews consisting of 57,644 sentences. Annotations of the text
are at both the sentence level and the document level. Texts
originate from four different sources representing four differ-
ent domains: hotels, products, school, and medicine. PolEmo
2.0 is an integral part of the most popular Polish language
benchmark KLEJ [25], which emphasizes its importance.

We can distinguish four labels representing the different
sentiment values of a text. Classes and their distributions
are described in Table I. Although the dataset consists of
reviews, labels were assigned by independent annotators (text
recipients) without taking into account the author’s opinion
(rating) during the final evaluation. A psychologist and a
linguist annotated reviews. Another independent annotator
solved disagreements [23]. The released collection has already

been split into test (820 samples), validation (823 samples),
and training (6573 samples) subsets.

D. AmazonReviews

The original Amazon product dataset contains 142.8 million
product reviews given by users of the online shopping platform
Amazon between 1994 and 2014. It is a well-known source of
data, especially in recommendation systems such as the works
of Ruining He [26] and Julian McAuley [27].

To bring the collection size in line with the other datasets,
2001 reviews from the Musical Instruments subset were
selected. The samples were established in the process of
stratified random sampling and divided into train/test/valid sets
of 80%/10%/10%, respectively.

For this collection, the text’s sentiment corresponds to the
rating given by the user on Amazon. The ratings range from
1 to 5, where 1 is the most negative sentiment and 5 the
most positive one. As we can see in Table I, the dataset is
highly unbalanced – there is a significantly higher number of
positive reviews (ratings 4 and 5). In other works such as [28]
the authors often decide to simplify the task by aggregating
classes into smaller clusters. We decided to leave the original
annotations to make this task relatively complex.

E. AG’s News Topic Classification Dataset

AG’s News Topic Classification Dataset is a collection
constructed by Xiang Zhang from AG News 1. Initially, AG
News was a collection of over 1 million articles from a
variety of news sources. The texts were collected using an
academic news search engine called ComeToMyHead. The
dataset contains metadata attributes such as: source, URL, title,
image, category, description, rank, publication date, and video.

AG’s News Topic Classification Dataset was created and
used as a text classification benchmark in the paper [29]. The
authors extracted about 32,000 articles that were tagged with
one of the four most popular topics: World (0), Sports (1),

1groups.di.unipi.it/~gulli/AG_corpus_of_news_articles.html
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Business (2), Sci/Tech (3). They also extracted the most critical
columns, i.e., the article’s title, content, and topic label.

IV. MODELS

To obtain a single multi-task model for both Polish and
English texts, we focused on trained language-agnostic models
that would allow us to obtain embeddings for each document.
To obtain language-agnostic representations, we used the
selected state-of-the-art models in their original form (with
no fine-tuning). We used these embeddings to train multiple
variants of MLP models, as described in Section V.

A. LASER

LASER [3] stands for Language-Agnostic Sentence Rep-
resentation, and it is a framework introduced by Intelligence
Research Lab in 2019. Artetxe and Schwenk highlighted that
this tool was created to obtain universal language-agnostic
embeddings, which should be especially significant in terms of
development for low-resource languages. This model is based
on sequence-to-sequence autoencoder architecture, where the
encoder is BiLSTM neural network, and the decoder is LSTM
neural network. It is worth noticing that only a single encoder
and decoder are used, even though in the process of training,
93 different languages are involved. At the end of the learning
process, the decoder is discarded to obtain language-agnostic
sentence representation in the form of a 1024 dimensional
vector from an encoder’s output. Assuming that two sentences
differ in language but have the same meaning, they will be
interpreted as two adjacent points of a common cross-language
multidimensional space when processed by LASER. Using this
property, we obtain language-independent representations of
the text.

B. LaBSE

In 2020, Google AI presented LaBSE [6] (Language agnos-
tic BERT Sentence Encoder) - effective cross-lingual sentence
embeddings. LaBSE arose as a result of training a bidirectional
dual encoder with additive margin softmax over 6B translation
pairs in over 112 languages. The authors emphasize much
better performance on less popular languages compared to
previous language-agnostic solutions. Both texts are given
as input to the dual-encoder model. The training process is
performed to make the outputs as similar as possible. The
cosine function determines the vector space similarity. The loss
function is a sum of the source-to-target and target-to-source
loss functions. Feng in his research associates a pre-trained
encoder to Masked Language and Translation Language Mod-
els on both monolingual data and bilingual translation pairs.
Source and target sentences were encoded with a BERT base
encoder imposing the maximal sentence length to 512 tokens
(BERT architecture constraints).

Similar to the LASER, the output of a model is a language-
agnostic representation of a text. A 768-dimensional vector
represents each sentence. The evaluation presented in the
paper shows a clear advantage over other language-agnostic
approaches (LASER and mUSE) and multilingual BERT

(however, there is a big difference in the size of vocabulary
in favor of LaBSE) in tasks such as finding a translation
among a set of sentences from a different language. We
used an implementation provided by Sentence Transformers
framework2.

C. distilUSE

The last considered architecture is distilUSE, a model
obtained by multilingual knowledge distillation of mUSE [30],
a method presented in [31]. This model requires a corpus
of sentence pairs with identical meanings but in different
languages. One of the languages must be supported by a
so-called teacher model. It is based on training the student
model so that pairs of corresponding sentences from different
languages have output vectors encoded by the student as close
as possible to the output vector of the sentence in English
from the teacher model, i.e., ideally, if the output vectors of
sentences with the same meaning from different languages are
identical. This results in aligned vectors in a shared space
across languages.

Specifically, we used the distiluse-base-multilingual-cased-
v2 model available within Sentence Transformers2. The mUSE
model was used as the teacher model, while the DistilBERT
multilingual model acted as the student. Which according
to the notation in [31] represents (DistilBERT <- mUSE).
Therefore, the output vectors of the disitilUSE model are very
close to those of the original mUSE model.

V. EVALUATION

We conducted a series of experiments to answer the follow-
ing questions:

• Which language-agnostic text representation works best
for each of the given problems?

• How does combining multiple tasks into one affect model
performance and runtime?

• Whether the use of a multi-task model can significantly
reduce the total inference time while maintaining predic-
tion quality?

A. Setup

The work associated with our experiment can be broken
down into two stages. The first phase involved working with
task-specific models. For each dataset, we obtained all three
types of agnostic embedding vectors. Subsequently, for each
configuration thus obtained, we tested the prediction quality
of the classifiers in the form of different MLPs depicted in
Table II. At the end of phase one, we collated the results to
determine the best task-specific models for each given task.

In the second phase, we combined the datasets of all training
and validation data into one. Missing labels for each task were
assigned to the best task-specific model of that particular task.
This ensured that each text unit from all examined datasets had
a label for each task. The combined dataset was used to train a
multi-task model. An important factor in the training process

2www.sbert.net/
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Datasets

Single-task 
models

Multi-task 
model

...

...

train set

validation set

test set

labeling

training + testing

training

copy 
test sets

stage II

stage I

testing

gold standard

Combined dataset
gold + silver standard

Fig. 1. The pipeline of experiments has two stages: in the first stage, single-task models are trained and tested. A combined training and validation set is
created in the second stage, and a multi-task model is trained and tested.

Loss =
n∑

t=1

wtLt (1)

Equation 1. L is loss function, and t is a single task, n is a number of tasks,
and w stands for single-task loss weight.

was the selection of the loss function. In line with the paper
[32], we used the weighted combined loss described in (1). An
essential factor affecting the quality of learning is the value of
the loss function for each task. According to Strezoski [18],
it is essential to keep values in the same order of magnitude.
Therefore, we assigned the weight of each single-task loss as
a value inversely proportional to the loss function’s final value
on the validation dataset for the best task-specific model.

Finally, we compared the multi-task model’s performance
versus the single-task model on each test set corresponding
to a specific task. The whole course of action is visualized in
Figure 1.

B. Evaluating single-task models

For each task, we ran each MLP configuration (Table II) ten
times (resulting in 900 runs), the results shown in all tables
are the average of these runs, and metrics were calculated on
the test sets. The exact configurations are shown in Table III,
where they all use the Adam optimizer with a learning rate set
to 10−3. The input and output layers were adjusted according
to the embeddings’ length and the number of classes, respec-

TABLE II
MLP CONFIGURATIONS.

no. Hidden units Batch size Dropout
#1 128 200 0.3
#2 128 | 64 200 0.3
#3 768 | 64 256 0.8
#4 768 | 64 256 0.4
#5 512 | 256 | 128 256 0.5

tively. As a loss, for single-label tasks, we used cross-entropy,
while for the multi-label task ([KPWr | domain] only), we used
binary cross-entropy.

We used the F1-macro metric from the validation set to
select the best single-task models to prevent information
leakage. We checked the best MLP model for each text
representation obtained with the language-agnostic models.
The single-task models’ results can be found in Table III
(left side of each column). In each task, MLPs using LaBSE
embeddings performed best. For the tasks [KPWr | domain]
and [OneStop. | read.], respectively, configurations #5 and #2
performed best. In all other tasks, configuration #1 scored best.

C. Evaluating multi-task model

As with the single-task model, for the multi-task models,
we checked each configuration (Table II) for each text rep-
resentation model (resulting in 150 runs). The output of the
multi-task network consists of concatenated one-hot vectors
for single tasks. Loss is calculated as described in (1), and F1
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TABLE III
F1-MACRO FOR THE BEST SINGLE-TASK AND MULTI-TASK MLP MODELS ON SELECTED EMBEDDINGS.

LaBSE LASER distilUSE
Dataset Task single-task multi-task single-task multi-task single-task multi-task
KPWr fun. style 75.48 72.76 74.39 72.72 69.60 64.63
OneStop. read. 50.14 51.41 30.41 41.75 35.13 38.45
KPWr domain 45.76 39.57 38.85 32.53 45.27 36.75
AG’s domain 84.75 83.21 75.61 74.70 84.46 83.14
PolEmo sentiment 83.57 83.21 80.25 78.59 74.94 73.52
Amazon. sentiment 23.68 26.19 18.38 22.29 18.80 23.75

Avg. 60.56 59.39 52.98 53.76 54.70 53.37

TABLE IV
COMPARISON OF THE BEST SINGLE-TASK MODELS AND BEST MULTI-TASK MODEL.

STATISTICALLY SIGNIFICANT DIFFERENCES (FROM SINGLE-TASK TO MULTI-TASK) ARE MARKED IN BOLD.

Test accuracy Test F1-macro
Dataset Task single-task multi-task single-task multi-task
KPWr functional style 79.88 77.54 (-2.34) 75.48 72.76 (-2.72)
OneStop. readability 50.53 51.40 (+0.87) 50.14 51.41 (+1.27)
KPWr domain 91.94 91.48 (-0.46) 45.76 39.57 (-6.19)
AG’s domain 84.70 81.85 (-2.85) 84.75 81.99 (-2.76)
PolEmo sentiment 83.40 83.17 (-0.23) 83.57 83.21 (-0.36)
Amazon. sentiment 66.25 65.80 (-0.45) 23.68 26.19 (+2.51)

Avg. 76.12 75.21 (-0.91) 60.56 59.19 (-1.37)

metrics and accuracy are calculated on the part of the vector
that corresponds to a given task.

We used the F1-macro validation sum for all tasks on
the validation set from the combined dataset for evaluation.
The test sets were the same for single-task models (and
unchanged), allowing for direct comparison. The best results
were obtained for configuration #1 using LaBSE embeddings,
as shown in Table III. This is the most straightforward con-
figuration tested, and despite the complexity of the task, i.e.,
the multiplicity of classes, it achieved the best results.

We compared the best multi-task model’s performance and
the best single-task model, selecting them according to the
F1-macro results on the validation set. It is worth noting that
the multi-task model was learned on a combined set, labeled
in part by precisely these single-task networks.

We presented the average scores for each of the top models
in Table IV, where we indicated the statistically significant
differences3 in the multi-task model metrics. Looking at the
F1 scores, the performance differences are significant in 4 of
the 6 tasks, where 3 of the tasks are unfavorable to the multi-
task model. The most significant decrease is seen in the [KPWr
| domain] task, for which the best single-task network had the
most complex architecture #5.

To compare the runtime of a single multi-task model and 6
single-task models for all tasks, we conducted a test where we
measured the inference time of a model (or a set of models)
on embeddings from the training set, repeated 10 times (10 ·
11522 examples). Additionally, we repeated each run 10 times.
The results, in the form of prediction times, performed on

3 We checked and compared the results of the single-task and multi-task
models with a paired t-test, making sure the distributions were normal with
the Shapiro-Wilk test.

the available hardware4, are as follows: single-task models:
74.20 ± 0.82s, multi-task model: 11.44 ± 0.04s;. On a large
scale, this represents more than 6-fold time savings (which
can make a difference in production environments) with a low
cost in the quality of results.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we have prepared a pipeline to compare
multilingual single-task models with multi-task ones. To do
so, we tested multiple language-agnostic models and differ-
ent sets of hyperparameters on several popular classification
tasks: text-domain, functional style, or sentiment. The LaBSE
model was unbeatable for every hyperparameters’ value and
all tasks in the single-task testing process. In the multi-
task testing, we found that although the differences were
statistically significant3, they were relatively small. One of
the critical gains of using a multi-task model is the low
label inference time for all considered tasks compared to the
sequential processing of single-task models. In the case we
discussed, the six single tasks’ output produced 6.5 slower
than the multiobjective approach. This shows how much can
be gained, especially from a business point of view. We reduce
time and the amount of space the model takes up (assuming
that, as in our case, the classifier architectures are similar).

In future work, we plan to extend these models with
additional modules and check out other architectures like
Caps-Nets or see how tasks can be grouped to improve the
performance further. We would also like to test the presented
architecture on subjective tasks (including sentiment and emo-
tion recognition) in a personalized approach (the model makes
decisions in the context of a specific user), by extending

4MB: ASRock X470 Master SLI; CPU: AMD Ryzen 9 3900X 12-Core
Processor; RAM: 64 GB (4x16Gb, 2133 MT/s DDR4)
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recently proposed approaches [33]–[35]. We noticed the much
lower performance of the multi-task model on tasks where the
single model classifier’s architecture differs significantly from
the proposed multi-task classifier. This led us to the next idea
of identifying suitable tasks for being combined in a multi-
task approach based on similar architectures of classifiers in
single-task models. Perhaps it is not necessarily a good idea
to solve all six tasks with a single model, and two smaller
multi-task models, handling these tasks together would still
offer a reasonable time decrease while not losing prediction
quality.
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“Polish Corpus of Wrocław University of Technology 1.3,” 2019.
CLARIN-PL digital repository.
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