
An attention ensemble based approach for
multilabel profanity detection

Pratik Ratadiya
Dept. of Computer Engineering,

Pune Institute of Computer Technology,

Maharashtra, India.

Deepak Mishra
Dept. of Avionics,

Indian Institute of Space Science and Technology,

Kerala, India.

Abstract—The amount of user-generated content in the cy-
berspace keeps increasing in the 21st century. However, it has
also meant an increase in the number of cyber abuse and bullying
incidents being reported. Use of profane text by individuals
threatens the liberty and integrity of the digital space. Manual
moderation and reporting mechanisms have been traditionally
used to keep a check on such profane text. Dependency on human
interpretation and delay in results have been the biggest obstacles
in this system. Previous deep learning-based approaches to
automate the process have involved use of traditional convolution
and recurrence based sequential models. However, these models
tend to be computationally expensive and have higher memory
requirement. Further, they tend to produce state of the art
results in binary classification but perform relatively poorly on
multilabel tasks, owing to less flexibility in architecture. In today’s
world, classifying text in a binary way is no longer sufficient and
thus a flexible solution able to generalize well on multilabel text
is the need of the hour. In this paper, we propose a multihead
attention-based approach for detection of profane text. We couple
our model with power weighted average ensembling techniques to
further improve the performance. The proposed approach does
not have additional memory requirement and is less complex as
compared to previous approaches. The improved results obtained
by our model on publicly available real-world data further
validate the same. Flexible, lightweight models which can handle
multilabel text well can prove to be crucial in cracking down on
social evils in the digital space.

Index Terms—Self attention, Profanity detection, Sentiment
analysis, Natural language processing

I. INTRODUCTION

There has been a constant rise in user activity as well as

the amount of data being generated in the cyberspace. Today,

there are approximately 4.42 billion internet users across the

world [1]. Social media constitutes to be a major source of

user-generated data on the web. As of July 2019, almost

510,000 new comments are uploaded on Facebook every

minute with a presence of more than 1.59 billion daily active

users [2]. Almost 680 million tweets are sent by users daily

[3]. The information being generated is expected to only keep

increasing in the coming years. This data could be put to good

use in the domains of sentiment detection and classification.

With the extension of cyberspace, the scourge of cyberbul-

lying and abuse has also assumed haunting proportions with

a mass number of incidents of bullying, threatening and hate

on social media being reported every day. Lack of serious and

timely supervision has been a major factor in exacerbating

this problem. Difference in opinions on various issues often

lead to users resorting to the use of profane language. Use

of such language threatens the liberty of other individuals

online. Such profane text can be categorized into multiple

categories like toxic, hate, insult etc and interest has now

grown beyond binary categorization. Thus, the detection of

profane text accurately across multiple categories in quick time

is the need of the hour.

Previous approaches for profanity and cyber abuse detection

have involved using supervised machine learning and deep

learning algorithms [4], [5], [12]. Advanced deep learning-

based approaches have made use of convolution and recurrence

mechanisms. A main characteristic of LSTMs [6] and GRUs

has been the use of a memory unit(cell state). The architectures

also tend to have increased complexity. Although these models

have been able to produce state of the art results in binary

classification, they tend to generalize poorly for multilabel

categorization.

In this paper, we propose the use of attention mechanism

for the task in hand. Specifically, we make use of multihead

attention in our architecture. We further make use of power

weighted average ensembling to improve our results. The

proposed architecture is found to be superior in handling

multilabel text and provides optimum results on a standard

public dataset1 across various metrics. We also compare our

obtained results with [17] presented at Sentire’18 and show

the superior performance of the proposed approach. Our main

contributions in this paper could be listed as:

1) We have been able to achieve quality results despite

altogether skipping the recurrence mechanism which is

used in most approaches.

2) We have made effective use of positional encoding to

provide information related to sequence in absence of

recurrence.

3) We have been able to demonstrate effective retention

of maximum information present in a sequence despite

padding by using concatenation.

The rest of the paper is structured as follows: Section

2 talks about related work in this area while the proposed

methodology is explained in section 3. Dataset description and

the results obtained are discussed in section 4. Our analysis of

1https://www.kaggle.com/c/jigsaw-toxic-comment-classification-challenge

544

2019 International Conference on Data Mining Workshops (ICDMW)

2375-9259/19/$31.00 ©2019 IEEE
DOI 10.1109/ICDMW.2019.00083

the work conducted is presented in section 5 while the paper

is concluded in section 6.

II. BACKGROUND AND RELATED WORK

Toxicity detection has been an active area of research in the

field of Natural Language Processing. Numerous approaches

have been tried in the past to solve the issues faced in the area

of detection of cyber abuse, bullying, hate speech and profane

text especially after the rise in the use of machine learning

algorithms as well as availability of computational power and

data. [4] was one of the first attempt to detect cyberbullying by

making use of C4.5 decision trees and instance-based learner.

[5] used various features like PoS tagging, Tf-Idf and label

specific features for cyber abuse detection. Z. Zhang et al

made use of a hybrid CNN+GRU based model along with

elastic net regularization for detecting hate speech on twitter

[7]. The authors also indicate how hate speech can often be

different from profane and abusive text. Lai et al made use of

recurrent CNNs for the task of text classification [8]. Zhang

et al demonstrated the use of character-level CNN for text

classification [9]. [10] proposed a Tf-Idf and N-gram based

SVM and Logistic regression model for detection of cyber-

aggressive comments. [11] combined bidirectional LSTMs

with max pooling to enhance results in text classification.

Badjatya et al proposed the use of multiple deep learning-

based architectures like CNNs, LSTMs and Fasttext for the

detection of hate speech in tweets [12]. Founta et al proposed

a unified deep learning-based model which combined two

different networks for abuse detection [13]. [14] empirically

compared the improved performance of CNN over traditional

machine learning algorithms in the detection of cyberbullying.

Georgokopoulus et al worked in toxic comment classification

using CNNs albeit they worked on a binary classification task

[15]. Multiple natural language features were proposed to be

used by Brand et al for classification of comments under online

news. [16]

Majority of the work has been done by considering bi-

nary classification. Quite recently, Saeed et al worked on

overlapping toxic sentiment classification using various deep

neural architectures and concluded BiGRUs to be ideal for

the same [17]. A notable observation is that almost all of

these approaches have relied on convolution or recurrence

for context understanding and classification. The relatively

contemporary attention mechanism has not yet been actively

used in this domain. While [18] does make use of attention for

hate speech detection, they combine it with LSTM to derive

the final architecture.

III. METHODOLOGY

Our task is to classify a given text sample into one or more

of six categories of profanity-toxic, severe toxic, obscene,

insult, threat and identity hate. We explain our solution by

describing our approach for each phase of the standard text

classification pipeline- preprocessing, text encoding, model

training and prediction.

A. Preprocessing of text

The text is converted into lower case. It is stripped of any

special characters, as well as numbers as these do not primarily

add to the profanity of the sentence. Any abbreviations and

short representations of verbs like shouldnt, cant are converted

into full form for smoother and accurate embedding represen-

tation later. The cleaned text is also stripped of any stop words

present in it. Stop words are the commonly used words which

primarily serve to keep the sentence grammatically correct.

The probability of occurrence of stop words in sentences

containing profane text and clean sentences is almost the

same and they do not contribute to the profanity proportion.

The retained text is then converted into tokens based on the

frequency of occurrence of individual words in the training

data.

To improve the performance of the model, sequences are

usually padded to a constant length. This is done by ei-

ther appending characters or truncating the sequence at the

start(referred as pre-padding) or at the end(referred as post

padding). However in a task like profanity detection where

toxic language is generally used by the user at the start or the

end of sentence, there is a risk of information loss by padding

sequences only in a particular way. We tackle this problem by

passing two inputs to our model for every sample- one being

the pre-padded sequence and the other being the post-padded

sequence. The intermediate outputs are later concatenated to-

gether and passed ahead. This way we are guaranteed to retain

the features of the entire sequence. This approach of handling

sequence padding helps us significantly boost our results as

shown later. It should be noted that the layers common for

both the sequences share the same parameter values for the

dimension of text encodings, positional encodings and the

multi-head attention layer. Parameters aren’t shared between

the two columns, but the values used are the same.

B. Text encoding

We make use of word embeddings to convert the text into

model friendly data. Embeddings are the distributed repre-

sentation of text in n-dimensional space. They try to retain

human understanding of words in the feature space. Every

word is replaced by a n dimension vector. Various pre-trained

embeddings like Word2Vec, GLoVe and Fasttext have been

used by researchers in the past. For our use, we focus on the

GLoVe and Fasttext word embeddings. We train four models

differentiated only by the type of pre-trained embeddings that

they use. The predictions of the four different models are then

ensembled together to obtain the final prediction as described

later. The four different embeddings used are:

1) Fasttext word embeddings: 300 dimension embeddings

for 2 million words.

2) GloVe twitter embeddings: 200 dimension embeddings

for 1.2 million words trained upon 27 million tweets.

3) Concatenated word embeddings: 500 dimension embed-

dings obtained by concatenating Fasttext embeddings

and GloVe twitter embeddings in the same order.

545

4) Reverse concatenated word embeddings: 500 dimension

embeddings obtained by concatenating Fasttext embed-

dings and GloVe twitter embeddings in the reverse

order i.e. twitter representations are followed by fasttext

representations.

Separate representations are derived for both the pre-padded

and post-padded sequences. Both Fasttext and Glove twitter

embeddings are available only in the said dimensions. Here

it should be noted that in case of concatenated and reverse

concatenated word embeddings, if either of the original word

embedding matrix do not contain the given word, the values

are assigned as zero for the respective dimension range. In this

way, we convert the original text into a matrix representation

which is more suitable as input to the deep learning model.

C. Model architecture

A common architecture is used in case of all the

four models. We propose the use of multi-headed self

attention mechanism [20] as the principal component of the

model architecture. By making use of attention, recurrence

mechanism is skipped completely from the model and the

memory requirement and complexity is reduced. As a result,

though, no information regarding the order of sequence is

present due to lack of recurrence. To tackle this problem,

we introduce a positional encoding layer which provides

information regarding the position of a word in the sequence.

For each of the two inputs, the output of the embedding layer

is passed to the positional encoding layer and subsequently to

the multi-head attention layer. The representations obtained

for the two sequences are then concatenated together and

passed through an average pooling layer, a dropout layer and

then to the output nodes. The model architecture is as shown

in fig 1. The working of each layer is as follows:

1) Positional encoding:

This layer helps with providing information regarding the

absolute and relative position of tokens in the sequence. It has

the same dimension as that of the embedding layer thereby

connecting properly. Researchers have earlier made use of both

fixed as well as learned positional encodings. In our case,

fixed positional encodings are used which are derived from

sinusoidal functions of different frequencies:

PE(pos,2i) = sin(pos/10000(2i/dmodel)) (1)

PE(pos,2i+1) = cos(pos/10000(2i/dmodel)) (2)

where pos is the position, i is a particular dimension and

dmodel is the dimension of the embeddings. The advantage of

using these functions is that they are able to address relative

positions properly. Every n + kth positional encoding could

be represented as a linear function of PEn.

Fig. 1: Block diagram of the proposed model architecture

Fig. 2: Schematic representation of self dot product attention

[20]

2) Multi head attention:

Attention function is the mapping of queries and key-

value pairs to an output. Self attention is a variant of the

attention mechanism where different positions of a sequence

are related to calculate representations of the same sequence.

546

For predicting a new word, an attention vector is calculated

which is based on correlation with other words present in the

sequence.

Particularly, we make use of scaled dot product kind of self

attention. For matrices Q, K and V for query, keys and values

respectively, the attention function carries out a dot product of

the query and key values and passes them through a softmax

before obtaining final weights to be multiplied with the values

V. The scaled dot product attention value is calculated as:

Attention (Q,K, V) = softmax(
QKT

√
dk

)V (3)

where

• V, is the value vector

• Query, Q = EWq

• Key, K = EWk

• Value, V = EWv

Wq ,Wk,Wv are the weight matrices for the queries, keys

and values respectively. 1/
√
dk acts as a scaling factor thus

the name scaled dot product attention. As we are making use of

self attention, Q, K and V are all the same wiz. representations

provided by the positional encoding layer.

In multihead self attention, we do not restrict ourselves to

making use of outputs of only one attention function. Instead

for h different projections of the queries, keys and values,

the outputs of the attention function are calculated. All these

output values are then concatenated together and worked upon

further. The multi-head self attention function is given as

follows:

Multihead(Q,K, V) = Concat(head1, ..., headh)W
O (4)

where headi = Attention(Q(Wi)
Q,K(Wi)

K , V (Wi)
V)

Based on our empirical studies, we find h=8 to be the ideal

number of parallel attention layers for our task. The values

of these layers are concatenated together to deduce the final

value as shown in figure 2.

After this stage, the outputs obtained for the two input

sequences are concatenated together and passed to the next

layers.

3) Average pooling and dropout:

The average pooling layer helps in reducing the total number

of parameters. It does so by taking into consideration the

average of all elements present in the pooling window and

only taking this average value forward as representation of

the window. Further to avoid overfitting, we pass the obtained

values through a dropout layer. Dropout ignores a certain set

of neurons at random during the training phase to ensure that

no intra network co-dependency is developed [19]. During

our experimentation, we found a dropout value of 0.3 to be

ideal for the current architecture. The output of the dropout

layer is then fed to a dense layer containing 6 nodes which

represents the final output layer, with each node corresponding

Fig. 3: Multi head attention consisting of parallel running

attention layers [20]

to one category. Note that we train the model by optimizing

the binary cross-entropy loss and not the categorical cross-

entropy loss often used in case of multiple output nodes to

satisfy the condition of multilabel classification.

D. Predictions

To improve the performance, we ensemble the predictions

provided by the four different models to get the final

prediction. We make use of the following two ensembling

techniques:

1) Weighted average ensembling:

In this method, prediction of each model is assigned a

weight based on the accuracy of the model. Individual weight

value lies between 0 and 1 and the sum of weights assigned

to all models should be equal to 1. The sum of products of

predictions with weights is considered as the final prediction.

The weighted average predictions are thus given as:

WeightedAveragePrediction =

n∑

i=1

PiWi (5)

where Pi denote the predictions of the ith model and Wi

indicates the weight assigned to model i. n indicates the total

number of models being used and

n∑

i=1

Wi = 1

. In our case, n = 4 and we assign the weights of 0.3, 0.25,

0.25, 0.2 to the twitter, concatenated, reverse concatenated

and fasttext embeddings based model predictions respectively.

This helps us in getting a generalized output which is scaled

effectively.

547

2) Power weighted average ensembling:

It is similar to weighted average ensembling except the fact

that we take the power of every prediction before multiplying

them to the weights and summing them up. This ensures that

the model must be very confident of predicting the positive

label(value = 1) so that the value is retained even after

raising it to a power. The formula for power weighted average

ensembling is given as:

P.W.A. prediction =

n∑

i=1

(P k
i)Wi (6)

where k indicates the power by which the predictions are to be

raised and Wi indicates the individual class weight. Note that

the higher the value of k will be, more skewed results will be

obtained. After experimental results, we find out k = 2 to be

the ideal value in our case. We then make the final predictions

by averaging out the predictions given by the weighted average

ensemble and the power weighted average ensemble together.

Algorithm 1 Ensembling of predictions

Input: Predictions of the four models P, Weights for each

model W

Output: Final predictions fp

1: fp = 0
2: weighted pred, pow weg pred;
3: for all p ∈ P do
4: weighted pred← weighted pred+ p ∗Wp

5: pow weg pred← pow weg pred+ p2 ∗Wp

6: end for

7: fp = (weighted pred+ pow weg pred)/2
8: return fp

IV. DATASET DESCRIPTION AND RESULTS

The proposed architecture is evaluated on the publicly

available dataset on Kaggle released as part of the toxic

comment classification challenge.

A. Dataset description

The dataset consists of a text field and six output labels

namely toxic, severe toxic, obscene, threat, insult and identity

hate. It is a multilabel dataset with samples being annotated

into more than one of the six categories. The training dataset

consists of 159,571 samples while the test set consists of

over 63 thousand samples. A major issue we face in the

training dataset is of heavy class imbalance with over 90%

not containing any kind of profanity. This leads to the risk of

model overfitting and we handle this issue by undersampling

the completely clean data by 30%. After the preprocessing

of text, the fixed sequence length is set to 205 based on the

average and deviation values. The model is then trained on

this data.

B. Performance metric

Majority of the training data is clean text and as a result,

accuracy cannot be an appropriate metric for a task as it can

give a false inference by favouring the majority class. We thus

resort to other performance metrics such as mean AUROC,

precision, recall and F1 score.

Receiver Operating Characteristics(ROC) curve maps the

true positive rate to the false positive rate and area under

the same indicates the probability of model rating a random

positive instance higher than a random negative instance.

Formula for the same is given as:

AUROCmean =
1

L

L∑

i=1

AUROC(li)

Precision refers to how precisely a model categorizes a

given sample into a particular class. For prediction Z and truth

value Y , the precision is calculated as:

Precision =
1

L

L∑

i=1

|Yi ∩ Zi|
|Zi|

Recall indicates how many of a particular class samples was

the model able to predict. We calculate the average recall as:

Recall =
1

L

L∑

i=1

|Yi ∩ Zi|
|Yi|

The F1 score is the harmonic mean of precision and recall.

The average F1 score is calculated as:

F1 score =
1

L

L∑

i=1

2 ∗ Precision ∗Recall

Precision+Recall

In our case, L=6. The model was trained on Tesla K80

GPU on Google Colaboratory. The trained model was then

evaluated over each of the above-mentioned metrics.

C. Results obtained

The results of the model on the test set are evaluated on

each of the metrics. We focus more on the mean Area under

ROC metric as it provides a better intuition of performance

in case of class imbalance and multilabel classification. The

same metric has been used in the challenge as well. The results

obtained by various models and final ensembled model are as

shown in table 1.

It can be seen that the final ensembled results outweigh the

ones of individual models. Next, we compare our results with

[17] who made use of Bi-GRU based network on the same

dataset at Sentire’18. The comparison across mean AUROC

score and accuracy is as shown in table 2.

It can be seen that our approach dominates the Bi-GRU

based model. Further, we also compare the results obtained

by the respective models per label across precision, recall and

f1 score metrics as tabulated in table 3

It can be seen that our proposed approach has outperformed

the other model on the majority of the classes across all

the metrics. The areas where it has underperformed could be

548

Model Mean AUROC

Attention(Fasttext embeddings) 97.89

Attention(Twitter embeddings) 98.01

Attention(Concatenated emb.) 98.02

Attention(Rev. concat. emb.) 98.07

Attention(Weighted average) 98.2

Attention(Power weighted average) 98.18

Attention(Final ensemble) 98.3

TABLE I: Profanity detection scores of various models

Model Mean AUROC Mean Accuracy score

Attention ensemble 98.3 97.45

Bi-GRU 98.23 92.39

TABLE II: Comparison of results across multiple metrics

Metric Model tox. s tox. obsc. thr. ins. i hate

Precision
Attention 0.69 0.54 0.73 0.62 0.77 0.82

Bi-GRU 0.65 0.55 0.68 0.53 0.73 0.67

Recall
Attention 0.84 0.25 0.71 0.18 0.59 0.3

Bi-GRU 0.75 0.13 0.71 0.46 0.58 0.48

F1
Attention 0.76 0.34 0.72 0.28 0.67 0.44

Bi-GRU 0.7 0.21 0.69 0.49 0.65 0.56

TABLE III: Comparison of models per label score(Attention

refers to the Attention ensemble model)

attributed to the fact of class imbalance. Thus, our approach

has given better results. We also carry out complexity analysis

of various layer types as shown in table 4.

Layer Type Complexity per layer

Self attention O(n2.d)

Recurrent O(n.d2)

Convolution O(k.n.d2)

TABLE IV: Complexity analysis of various layers. n refers

to the sequence length, d is the embedding dimension and k

refers to the kernel size

Attention thus tends to be less complex than conventional

approaches. Further, as a part of ablation studies, we also

show the impact of concatenation of padded sequences in our

architecture in table 5.

Finally we also show the impact of the amount of power

in power weighted average ensembling on the final results as

shown in table 6. Thus a detailed result analysis clearly shows

the benefit of using attention mechanism over conventional

methods along with variation in result based on changes in

certain factors.

Type of padding used Mean AUROC

Pre-padding 96.7

Post-padding 96.4

Concatenation of pre and post padding 98.3

TABLE V: Comparison of results for various padding types

used

Power used in P.W.A. ensembling Mean AUROC

k = 2 98.3

k = 4 98.2

k = 8 98.14

TABLE VI: Comparison of results for various values of power

in power weighted average ensembling

V. ANALYSIS

Our main observations after performing out the study have

been:

• The complexity per layer as well as the minimum number

of sequential operations required for self attention is less

as compared to convolution or recurrent models thus

making it a desirable choice.

• Concatenation of pre-padded and post-padded sequences

leads to considerable improvement in results especially

in case of models based on attention where positional

information is fundamentally absent.

• The higher the power used for power weighted average

ensembling, sharper the results would be. This would

mean improved results in case of true predictions but also

at the expense of heavy loss in case of false predictions.

• Recent models based on the transformer architecture like

BERT [21] tend to give better results than the proposed

architecture but they come at the expense of huge training

cost as well as computation requirement. Also, these

models have multi-head self attention as their building

block only.

VI. CONCLUSION

Thus by making use of attention mechanism, we have been

able to achieve standard results in the area of multilabel

profanity detection. While attention by itself cannot retain

all information of a sequence, it can prove to be a powerful

architecture when coupled with other features like positional

encoding while cutting down on the complexity and memory

requirement. While some earlier approaches have argued that

preprocessing is not a necessary step, our results show it to

be crucial to provide relevant and useful information to the

deeper attention layers. The improved results across metrics

over the previous approach are a testament to the power which

attention mechanism holds. Further improvement in our work

includes modifications in the post attention layers for better

information transfer. Word embeddings can be replaced with

549

Byte Pair Encodings(BPE) and the results could be analyzed.

Hyperparameter tuning can be explored further along with

the issues of tackling class imbalance when making use of

attention. Models like transformer, BERT based upon attention

have already begun dominating traditional methods and the

idea of using only recurrence for sequence modelling keeps

becoming weaker day by day. Attention-based models have

proven to be a better alternative and can be put to use in areas

of sentiment classification and mapping effectively.

REFERENCES

[1] ”Internet users in the world statistics”, 2019
Accessed: 01-08-2019. [Online] Available:
https://www.internetworldstats.com/stats.htm

[2] ”The top 20 valuable facebook statistics”, 2019 Accessed:
01-08-2019. [Online] Available: https://zephoria.com/top-15-
valuable-facebook-statistics/

[3] Irfan Ahmad, ”How Much Data Is Generated Every Minute?
[Infographic]”, 2019 Accessed: 01-08-2019. [Online] Avail-
able: https://www.socialmediatoday.com/news/how-much-data-
is-generated-every-minute-infographic-1/525692/

[4] Kelly Reynolds, April Kontostathis, Lynne Edwards, “Using
Machine Learning to Detect Cyberbullying”, 10th International
Conference on Machine Learning and Applications and Work-
shops, Dec 2011.

[5] Dinakar, K., Reichart, R. and Lieberman H, “Modeling the
detection of textual cyberbullying”, In Proceedings of the In-
ternational Conference on Weblog and Social Media 2011.

[6] Sepp Hochreiter,Jurgen Schmidhuber, ”Long short-term mem-
ory”, Neural Computation 9(8):1735-1780, 1997

[7] Z. Zhang, D. Robinson, and J. Tepper, ”Detecting hate speech
on twitter using a convolution-gru based deep neural network”,
in European Semantic Web Conference. Springer, 2018, pp.
745760.

[8] S. Lai, L. Xu, K. Liu, and J. Zhao, ”Recurrent convolutional
neural networks for text classification.” in AAAI, vol. 333, 2015,
pp. 22672273.

[9] X. Zhang, J. Zhao, and Y. LeCun, ”Character-level convolu-
tional networks for text classification”, in Advances in neural
information processing systems, 2015, pp. 649657.

[10] Vikas Chavan, Shylaja SS, “Machine learning approach for de-
tection of cyber-aggressive comments by peers on social media
network”, International Conference on Advances in Computing,
Communications and Informatics (ICACCI), 2015.

[11] P. Zhou, Z. Qi, S. Zheng, J. Xu, H. Bao, and B. Xu, ”Text clas-
sification improved by integrating bidirectional lstm with two-
dimensional max pooling”, arXiv preprint arXiv:1611.06639,
2016

[12] Pinkesh Badjatiya, Shashank Gupta, Manish Gupta, Vasudeva
Varma, “Deep Learning for Hate Speech Detection in Tweets”,
Proceedings of ACM WWW’17 Companion, Perth, Western
Australia, Apr 2017

[13] Antigoni-Maria Founta, Despoina Chatzakou, Nicolas Kourtel-
lis, Jeremy Blackburn, Athena Vakali, Ilias Leontiadis, ”A
Unified Deep Learning Architecture for Abuse Detection”,
arXiv:1802.00385 [cs.CL]

[14] M. Ptaszynski, J. K. K. Eronen, and F. Masui, ”Learning deep
on cyberbullying is always better than brute force”, in IJCAI
2017 3rd Workshop on Linguistic and Cognitive Approaches
to Dialogue Agents (LaCATODA 2017), Melbourne, Australia,
August, 2017, pp. 1925.

[15] S. V. Georgakopoulos, S. K. Tasoulis, A. G. Vrahatis, and V. P.
Plagianakos, ”Convolutional neural networks for toxic comment
classification”, arXiv preprint arXiv:1802.09957, 2018.

[16] D. Brand and B. Van Der Merwe, ”Comment classification for
an online news domain”, 2014.

[17] Hafiz Saeed, Khurram Shahzad, Faisal Kamiran, ”Overlapping
Toxic Sentiment Classification using Deep Neural Architec-
tures”, International Conference on Data Mining Workshops
(ICDMW), 2018.

[18] Gretel Liz De la Pena Sarrac en, Reynaldo Gil Pons, Carlos
Enrique Muniz Cuza, Paolo Rosso, ”Hate Speech Detection
using Attention-based LSTM”,Vol-2263, Ceur-WS.

[19] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya
Sutskever, Ruslan Salakhutdinov, “Dropout: A Simple Way to
Prevent Neural Networks from Overfitting”, Journal of Machine
Learning Research, 1929 1958, 2014.

[20] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit,
Llion Jones, Aidan N. Gomez, Lukasz Kaiser, Illia Polosukhin,
“Attention is All you Need”, Advances in Neural Information
Processing Systems(NIPS) 30, 2017.

[21] Jacob Devlin, Ming-Wei Chang, Kenton Lee, Kristina
Toutanova, “BERT: Pre-training of Deep Bidirectional Trans-
formers for Language Understanding”, arXiv:1810.04805
[cs.CL]

550

