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Abstract—With the explosion of Big Data, fast and frugal
reasoning algorithms are increasingly needed to keep up with
the size and the pace of user-generated contents on the Web.
In many real-time applications, it is preferable to be able to
process more data with reasonable accuracy rather than having
higher accuracy over a smaller set of data. In this work, we
leverage on both random features and random neurons to
perform analogical reasoning over Big Data. Due to their big
size and dynamic nature, in fact, Big Data are hard to process
with standard dimensionality reduction techniques and clustering
algorithms. To this end, we apply random projection to generate a
multi-dimensional vector space of commonsense knowledge and
use an extreme learning machine to perform reasoning on it.
In particular, the combined use of random multi-dimensional
scaling and randomly-initialized learning methods allows for both
better representation of high-dimensional data and more efficient
discovery of their semantic and affective relatedness.

Index Terms—Dimensionality reduction; neural networks.

I. INTRODUCTION

Although fundamental in many areas of science, random-

ness is really native to computer science [1]. Its computational

nature was clarified by Kolmogorov [2]. He and his followers

built in the 1960s- 1970s the first successful theory of random

objects, defined roughly as those that cannot be computed

from short descriptions. Kolmogorov also suggested in the

1960s that randomness may have an important relationship

with nondeterminism; namely, that the task of finding a

‘nonrandomness’ witness (i.e., short fast program generating a

given string) may be a good candidate to prove that exhaustive

search cannot be avoided.
In the context of big data analytics [3], randomness can be

key to address emerging needs such as fast learning speed

and big dimensionality reduction [4]. When dealing with

highly-dynamic and highly-dimensional data, minimal human

intervention and efficient data representation are important

factors for making sense of big data streams. Because of

Big Data’s volume, velocity, and variety, in fact, standard

data representation techniques and learning methods are bound

to fail. In this work, we propose to exploit randomness to

address the issue of scalability of knowledge representation

and reasoning within sentic computing [5], a framework that

has been used for several sentiment analysis applications,

including healthcare [6], [7], intention awareness [8] and

finance [9], [10].

In the past, graph mining techniques and multi-

dimensionality reduction techniques [11] have been employed

on a knowledge base obtained by blending ConceptNet [12],

a directed graph representation of commonsense knowl-

edge [13], with WordNet-Affect (WNA) [14], a linguistic

resource for the lexical representation of affect. In this work,

a novel cognitive model based on the combined use of

random projections (RP) [15] and extreme learning machines

(ELM) [16] is exploited on the same knowledge base to further

improve the way multi-word expressions are organized in

a brain-like universe of natural language concepts. Results

demonstrate noticeable enhancements in emotion recognition

from natural language text with respect to previously adopted

strategies and pave the way for future development of more

biologically inspired approaches to the emulation of affective

commonsense reasoning.

The rest of this paper is organized as follows: Section 2

introduces related works; Section 3 illustrates how the affective

commonsense knowledge base is constructed; next, Section

4 and 5 describe the multi-dimensional scaling techniques

adopted to perform reasoning on such a knowledge base; then,

Section 6 presents an evaluation of the proposed cognitive

architecture; finally, Section 7 offers some concluding remarks

and future work recommendations.

II. RELATED WORK

Concept-level sentiment analysis is a NLP task that has

recently raised growing interest both within the scientific

community, leading to many exciting open challenges, as well

as in the business world, due to the remarkable benefits to

be had from marketing and financial market prediction. The

potential applications of concept-level sentiment analysis, in

fact, are countless and span interdisciplinary areas such as

stock market prediction, political forecasting, social network

analysis, social stream mining, and human-robot interaction.

For example, Li et al. [17] implemented a generic stock

price prediction framework and plugged in six different mod-

els with different analyzing approaches. They used Harvard

psychological dictionary and Loughran-McDonald financial

sentiment dictionary to construct a sentiment space. Textual

news articles were then quantitatively measured and projected

onto such a sentiment space.
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The models’ prediction accuracy was evaluated on five years

historical Hong Kong Stock Exchange prices and news articles

and their performance was compared empirically at different

market classification levels. Rill et al. [18] proposed a system

designed to detect emerging political topics in Twitter sooner

than other standard information channels. For the analysis,

authors collected about 4 million tweets before and during

the parliamentary election 2013 in Germany, from April until

September 2013. It was found that new topics appearing in

Twitter can be detected right after their occurrence. Moreover,

authors compared their results to Google Trends, observing

that the topics emerged earlier in Twitter than in Google

Trends.

Jung and Segev [19] analyzed how communities change

over time in the citation network graph without additional

external information and based on node and link prediction

and community detection. The identified communities were

classified using key term labeling. Experiments showed that

the proposed methods can identify the changes in citation

communities multiple years in the future with performance

differing according to the analyzed time span.

Montejo-Raez et al. [20] introduced an approach for

sentiment analysis in social media environments. Similar to

explicit semantic analysis, microblog posts were indexed by a

predefined collection of documents. In the proposed approach,

performed by means of latent semantic analysis, these docu-

ments were built up from common emotional expressions in

social streams. Bell et al. [21] proposed a novel approach

to social data analysis, exploring the use of microblogging to

manage interaction between humans and robots, and evaluating

an architecture that extends the use of social networks to

connect humans and devices. The approach used NLP tech-

niques to extract features of interest from textual data retrieved

from a microblogging platform in real-time and, hence, to

generate appropriate executable code for the robot. The simple

rule-based solution exploited some of the ‘natural’ constraints

imposed by microblogging platforms to manage the potential

complexity of the interactions and to create bi-directional

communication.

III. BUILDING THE KNOWLEDGE BASE

The affective commonsense knowledge base developed

within this research work is built upon ConceptNet, the graph

representation of the Open Mind corpus, which structurally

similar to WordNet [22], but whose scope of contents is

general world knowledge, in the same vein as Cyc [23]. Instead

of insisting on formalizing commonsense reasoning using

mathematical logic [24], ConceptNet uses a new approach:

it represents data in the form of a semantic network and

makes it available to be used in natural language processing

(NLP). The prerogative of ConceptNet, in fact, is contextual

commonsense reasoning: while WordNet is optimized for

lexical categorization and word-similarity determination, and

Cyc is optimized for formalized logical reasoning, ConceptNet

is optimized for making practical context-based inferences

over real-world texts.

In ConceptNet, WordNet’s notion of node in the semantic

network is extended from purely lexical items (words and

simple phrases with atomic meaning) to include higher-order

compound concepts, e.g., ‘satisfy hunger’ and ‘follow recipe’,

to represent knowledge around a greater range of concepts

found in everyday life. Moreover WordNet’s repertoire of

semantic relations is extended from the triplet of synonym,

IsA and PartOf, to a repertoire of twenty semantic relations

including, for example, EffectOf (causality), SubeventOf (event

hierarchy), CapableOf (agent’s ability), MotivationOf (affect),

PropertyOf, and LocationOf. ConceptNet’s knowledge is also

of a more informal, defeasible, and practically valued nature.

For example, WordNet has formal taxonomic knowledge

that ‘dog’ is a ‘canine’, which is a ‘carnivore’, which is a ‘pla-

cental mammal’; but it cannot make the practically oriented

member-to-set association that ‘dog’ is a ‘pet’. ConceptNet

also contains a lot of knowledge that is defeasible, i.e., it

describes something that is often true but not always, e.g.,

EffectOf(‘fall off bicycle’, ‘get hurt’), which is something that

cannot be left aside in commonsense reasoning. Most of the

facts interrelating ConceptNet’s semantic network are dedi-

cated to making rather generic connections between concepts.

Hence, ConceptNet alone is not enough for sentiment analysis

tasks as it specifies how concepts are semantically related to

each other but often lacks connections between concepts that

convey the same kind of emotion or similar polarity.

To overcome such a hurdle, WNA, a linguistic resource for

the lexical representation of affective knowledge developed

starting from WordNet, is used. WNA is built by assigning to

a number of WordNet synsets one or more affective labels

(a-labels). In particular, the affective concepts representing

emotional states are identified by synsets marked with the a-

label ‘emotion’, but there are also other a-labels for concepts

representing moods, situations eliciting emotions, or emotional

responses. WNA was developed in two stages. The first con-

sisted of the identification of a first core of affective synsets.

The second step consisted of the extension of the core with

the relations defined in WordNet. ConceptNet and WNA are

blended together by combining the matrix representations of

the two knowledge bases linearly into a single matrix, in which

the information between the two initial sources is shared.

The first step to create the affective blend is to transform

the input data so that it can all be represented in the same

matrix. To do this, the lemma forms of ConceptNet concepts

are aligned with the lemma forms of the words in WNA and

the most common relations in the affective knowledge base

are mapped into ConceptNet’s set of relations, e.g., Hypernym

into IsA and Holonym into PartOf. In particular, ConceptNet

is first converted into a matrix by dividing each assertion

into two parts: a concept and a feature, where a feature is

simply the assertion with the first or the second concept left

unspecified such as ‘a wheel is part of’ or ‘is a kind of liquid’.

The entries in the resulting matrix are positive or negative

numbers, depending on the reliability of the assertions, and

their magnitude increases logarithmically with the confidence

score.
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WNA, similarly, is represented as a matrix where rows

are affective concepts and columns are features related to

these. The result of aligning the matrix representations of

ConceptNet and WNA is a new affective semantic network,

in which commonsense concepts are linked to a hierarchy of

affective domain labels. In such a semantic network, termed

AffectNet, commonsense and affective knowledge are in fact

combined, not just concomitant, i.e., everyday life concepts

like ‘have breakfast’, ‘meet people’, or ‘watch tv’ are linked

to affective domain labels like ‘joy’, ‘anger’, or ‘surprise’.

Such knowledge base results very useful when performing

tasks such as emotion recognition or polarity detection from

natural language text, as opinions and sentiments are often

conveyed implicitly through context and domain dependent

concepts, rather than through specific affect words.

IV. MULTI-DIMENSIONAL SCALING

The best way to solve a problem is to already know a

solution for it. But, if we have to face a problem we have

never met before, we need to use our intuition. Intuition can

be explained as the process of making analogies between the

current problem and the ones solved in the past to find a

suitable solution. This kind of thinking is maybe the essence of

human intelligence since in everyday life no two situations are

ever the same and we have to continuously perform analogical

reasoning for problem solving and decision making.

The human mind constructs intelligible meanings by contin-

uously compressing over vital relations [25]. The compression

principles aim to transform diffuse and distended conceptual

structures to more focused versions so as to become more

congenial for human understanding. In order to emulate such

a process, principal component analysis (PCA) was previously

applied on the matrix representation of AffectNet, a semantic

network in which commonsense concepts were linked to

semantic and affective features (Table 1). The result was

AffectiveSpace.

PCA is most widely used as a data-aware method of

dimensionality reduction [26]. PCA is closely related to the

low-rank approximation method, singular value decomposition

(SVD), in the sense that PCA works on a transformed version

of the data matrix [27]. SVD seeks to decompose the AffectNet

matrix A ∈ R
n×d into three components,

A = USV T , (1)

where U and V are unitary matrices, and S is an rectan-

gular diagonal matrix with nonnegative real numbers on the

diagonal.

SVD has been proved to be optimal in preserving any

unitarily invariant norm1‖ · ‖M [27]:

‖ A−Ak ‖M= min
rank(B)=k

‖ A− B ‖M, (2)

1A norm ‖·‖M is unitarily invariant if ‖UAV ‖M = ‖A‖M for all A and
all unitary U, V.

TABLE I
A SNIPPET OF THE AFFECTNET MATRIX

AffectNet IsA-pet KindOf-food Arises-joy ...
dog 0.981 0 0.789 ...
cupcake 0 0.922 0.910 ...
songbird 0.672 0 0.862 ...
gift 0 0 0.899 ...
sandwich 0 0.853 0.768 ...
rotten fish 0 0.459 0 ...
win lottery 0 0 0.991 ...
bunny 0.611 0.892 0.594 ...
police man 0 0 0 ...
cat 0.913 0 0.699 ...
rattlesnake 0.432 0.235 0 ...
white tiger 0.230 0 0 ...
... ... ... ... ...

where Ak, i.e., AffectiveSpace, is formed by only contain-

ing the top k singular values in S. Hence, in AffectiveS-

pace, commonsense concepts and emotions are represented

by vectors of k coordinates. These coordinates can be seen

as describing concepts in terms of ‘eigenmoods’ that form

the axes of AffectiveSpace, i.e., the basis e0,...,ek−1 of the

vector space. For example, the most significant eigenmood, e0,

represents concepts with positive affective valence. That is, the

larger a concept’s component in the e0 direction is, the more

affectively positive it is likely to be. Concepts with negative e0
components, then, are likely to have negative affective valence.

Thus, by exploiting the information sharing property of

SVD, concepts with the same affective valence are likely

to have similar features – that is, concepts conveying the

same emotion tend to fall near each other in AffectiveSpace.

Concept similarity does not depend on their absolute positions

in the vector space, but rather on the angle they make

with the origin. For example, concepts such as beautiful
day, birthday party, and make someone happy are

found very close in direction in the vector space, while

concepts like feel guilty, be laid off, and shed
tear are found in a completely different direction (nearly

opposite with respect to the centre of the space).

The problem with this kind of representation is that it is

not scalable: when the number of concepts and of seman-

tic features grows, the AffectNet matrix becomes too high-

dimensional and too sparse for SVD to be computed [28].

Although there has been a body of research on seeking for

fast approximations of the SVD, the approximate methods are

at most ≈ 5 times faster than the standard one [27], making

it not attractive for real-world big data applications.

It has been conjectured that there might be simple but

powerful meta-algorithms underlying neuronal learning [29].

These meta-algorithms should be fast, scalable, effective,

with few-to-no specific assumptions, and biologically plau-

sible [28]. Optimizing all the ≈ 1015connections through

the last few million years’ evolution is very unlikely [28].

Alternatively, nature probably only optimizes the global con-

nectivity (mainly the white matter), but leaves the other details

to randomness [28].
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In order to cope with the ever-growing number of concepts

and semantic features, thus, we replace SVD with random

projection (RP) [15], a data-oblivious method, to map the orig-

inal high-dimensional data-set into a much lower-dimensional

subspace by using a Gaussian N(0, 1) matrix, while preserving

the pair-wise distances with high probability. This theoretically

solid and empirically verified statement follows Johnson and

Lindenstrauss’s (JL) Lemma [28]. The JL Lemma states that

with high probability, for all pairs of points x, y ∈ X simulta-

neously,√
m

d
‖ x− y ‖2 (1− ε) ≤‖ Φx− Φy ‖2≤ (3)

≤
√

m

d
‖ x− y ‖2 (1 + ε), (4)

where X is a set of vectors in Euclidean space, d is the

original dimension of this Euclidean space, m is the dimension

of the space we wish to reduce the data points to, ε is a

tolerance parameter measuring to what extent is the maximum

allowed distortion rate of the metric space, and Φ is a random

matrix.

Structured random projection for making matrix multipli-

cation much faster was introduced in [30]. Achlioptas [31]

proposed sparse random projection to replace the Gaussian

matrix with i.i.d. entries in

φji =
√
s

⎧⎪⎨
⎪⎩
1 with prob. 1

2s

0 with prob.1− 1
s

−1 with prob. 1
2s

, (5)

where one can achieve a ×3 speedup by setting s = 3,

since only 1
3 of the data need to be processed. However, since

our input matrix is already too sparse, we avoid using sparse

random projection.

When the number of features is much larger than the

number of training samples (d� n), subsampled randomized

Hadamard transform (SRHT) is preferred, as it behaves very

much like Gaussian random matrices but accelerates the pro-

cess from O(nd) to O(n log d) time [32]. Following [33] [32],

for d = 2p where p is any positive integer, a SRHT can be

defined as:

Φ =

√
d

m
RHD (6)

where

• m is the number we want to subsample from d features

randomly.

• R is a random m×d matrix. The rows of R are m uniform

samples (without replacement) from the standard basis of Rd.

• H∈ R
d×d is a normalized Walsh-Hadamard matrix, which

is defined recursively: Hd =

[
Hd/2 Hd/2

Hd/2 Hd/2

]
with H2 =[

+1 +1
+1 −1

]
.

• D is a d × d diagonal matrix and the diagonal elements

are i.i.d. Rademacher random variables.

Fig. 1. AffectiveSpace.

Our subsequent analysis only relies on the distances and

angles between pairs of vectors (i.e. the Euclidean geometry

information), and it is sufficient to set the projected space

to be logarithmic in the size of the data [34] and apply

SRHT. The result is a new vector space model, AffectiveSpace

(Fig. 1), which preserves the semantic and affective relatedness

of commonsense concepts while being highly scalable.

V. AFFECTIVE ANALOGICAL REASONING

To reason on the disposition of concepts in AffectiveSpace,

we use the Hourglass of Emotions (Fig. 2), an affective cat-

egorization model developed starting from Plutchik’s studies

on human emotions [35]. In the model, sentiments are re-

organized around four independent dimensions whose different

levels of activation make up the total emotional state of the

mind. The Hourglass of Emotions, in fact, is based on the

idea that the mind is made of different independent resources

and that emotional states result from turning some set of these

resources on and turning another set of them off [36].

In the model, affective states are not classified, as often

happens in the field of emotion analysis, into basic emotional

categories, but rather into four concomitant but independent

dimensions, characterized by six levels of activation, which

determine the intensity of the expressed/perceived emotion as

a float ∈ [-1,+1]. Such levels are also labeled as a set of 24

basic emotions (six for each of the affective dimensions) in a

way that allows the model to specify the affective information

associated with text both in a dimensional and in a discrete

form.

Such basic emotions are used as seeds in AffectiveSpace

for classification by means of extreme learning machine

(ELM) [37]. ELM is an emerging learning technique that

provides efficient unified solutions to generalized feed-forward

networks and, hence, have strong potential as a viable alterna-

tive technique for large-scale computing and machine learning

in many different application fields, including text analysis [?],

speech processing [39] and multimodality [?].
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Fig. 2. The Hourglass of Emotions.

ELM learning theory [16] shows that the hidden neurons of

generalized feedforward networks do not need to be tuned

and these hidden nodes can be randomly generated. All

the hidden node parameters are independent from the target

functions or the training datasets. ELM theories conjecture

that this randomness may be true to biological learning in

animal brains [41]. In this work, we merge the advantages of

ELM, e.g., fast learning speed, ease of implementation, and

minimal human intervention, with the computational efficiency

of random projections (RP) in order to deal with Big Data.

Let x ∈ R
d denote an input vector. The function, f(x), of

an output neuron in an ELM that adopts L ’hidden’ units is

written as:

f(x) =
L∑

j=1

wj · a(rj · x+ bj) (7)

Thus, a set of random weights {rj ∈ R
d; j = 1, .., L}

connects the input to the hidden layer; the j-th hidden neuron

embeds a random bias term, bj , and a nonlinear activation

function, a(.).

A vector of weighted links, w ∈ R
L , connects the

hidden layer to the output neuron. The vector quantity w =
[w1, ..., wL] embeds the degrees of freedom in the ELM

learning process, which can be formalized after introducing

the following notations:

• X is the N x (d + 1) matrix that originates from the

training set. X stems from a set of N labeled pairs

(xi, yi), where xi is the i-th input vector and yi ∈ R

is the associate expected ’target’ value.

• R is the (d+ 1) x L matrix with the random weights.

Here, by using a common trick, both the input vector, x,

and the random weights, rj , are extended to x := [x1, ..., xd, 1]
and rj ∈ R

d+1 to include the bias term. Accordingly, the ELM

learning process requires one to solve the following linear

system

y = Hw (8)

where H is the hidden layer output matrix obtained by

applying the activation function, a(), to every element of the

matrix:

XR (9)

The above expression clarifies that in the ELM scheme the

hidden layer performs a mapping of the original d-dimensional

space into a L-dimensional space through the random matrix

R, which is set independently from the distribution of the

training data. In principle, the feature mapping phase may

either involve a reduction in dimensionality (L < d) or,

conversely, remap the input space into in an expanded space

(L > d). The quantity L is crucial because it determines

the generalization ability of the ELM. At the same time,

it affects the eventual computational complexity of both the

learning machine and the trained model. These aspects become

critical in hardware implementations of the ELM model, where

resource occupation is of paramount importance.

The present work exploits the fruitful properties of random

projections to reduce dimensionality of data. The RP approach,

in fact, can be employed to tune the basic quantity L. The

ability of RP to preserve, approximately, the distances between

the N data vectors in a subspace of lower dimension is a

valuable property for machine learning applications in general.

Indeed, this property is the conceptual basis of the novel

approach that connects the ELM feature mapping scheme to

the RP paradigm.

A new ELM model can be derived, if one set as hypotheses

that 1) L should be smaller than d and 2) the mapping

implemented by the weights rj satisfies the JL lemma. Under

these assumptions, the ELM mapping scheme always imple-

ments the dimensionality reduction process. In practice, one

takes advantage of the properties of RP to obtain an ELM

model that shrinks the size L of the hidden layer and reduces

the computational overhead accordingly. The crucial point

is that the JL lemma guarantees that the original geometry

of the data is only slightly perturbed by the dimensionality

reduction process; indeed, the degradation grows gradually as

L decreases (given d and N ).
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In principle, the literature provides several criteria for the

construction of a random matrix that satisfies the JL lemma.

The present work focuses on matrices where the entries

are independent realizations of +1 or −1 Bernoulli random

variables; hence, matrix R is generated as follows:

Ri,j =

{
1/
√
L, with probability1/2

−1/√L, with probability1/2
(10)

VI. EVALUATION

The proposed architecture investigates if an emulation of

the biological neural system, represented by a randomness-

based reasoning architecture, could outperform the state-of-

the-art sentic computing framework based on PCA and k-

medoids [42]. In particular, the proposed framework uses

random projections to both represent and classify Big Data

in a multi-dimensional vector space.

The performance of the proposed ELM are tabulated in

Table II where they are compared with the state-of-the-art

k-medoids approach, k-nearest neighbor (k-NN), and a

random classifier in the context of emotion recognition. In

particular, the percentage of entries where b∗ = b (‘strict

accuracy’) is considered. However, since the used dataset can

include noise and entries may incorporate a certain degree

of subjectiveness, this criterion was relaxed by considering

the accuracy of entries which have |b∗ − b| ≤ 1 (‘relaxed

accuracy’). As it can be seen from Table II, the proposed

ELM approach outperforms the state-of-the-art k-medoids

model, as well as the k-NN model and the random classifier.

Strict accuracy Relaxed accuracy
Random 14.3% 40.1%
k-NN 41.9% 72.3%
k-medoids 43.2% 74.1%
ELM 46.9% 84.3%

TABLE II
PERFORMANCE COMPARISON

In order to test the performance of the proposed approach

in a more practical environment, the ELM was also embed-

ded into an opinion mining engine for the inference of the

cognitive and affective information associated with natural

language. Such an engine consists of four main components:

a pre-processing module, which performs a first skim of text;

a semantic parser, whose aim is to extract concepts from the

opinionated text; a target spotting module, which identifies

opinion targets; an affect interpreter, for emotion recognition

and polarity detection.

The pre-processing module firstly interprets all the affective

valence indicators usually contained in opinionated text such

as special punctuation, complete upper-case words, cross-

linguistic onomatopoeias, exclamation words, negations, de-

gree adverbs and emoticons. Secondly, it converts text to

lower-case and, after lemmatizing it, splits the opinion into

single clauses according to grammatical conjunctions and

punctuation.

Then, the semantic parser deconstructs text into concepts

using a lexicon based on sequences of lexemes that represent

multiple-word concepts extracted from ConceptNet, WordNet

and other linguistic resources. These n-grams are not used

blindly as fixed word patterns but exploited as reference for

the module, in order to extract multiple-word concepts from

information-rich sentences. So, differently from other shallow

parsers, the module can recognize complex concepts also

when irregular verbs are used or when these are interspersed

with adjective and adverbs, e.g., the concept ‘buy christmas

present’ in the sentence “I bought a lot of very nice Christmas

presents”. The semantic parser, additionally, provides, for each

retrieved concept, the relative frequency, valence and status,

that is the concept’s occurrence in the text, its positive or

negative connotation and the degree of intensity with which

the concept is expressed.

For each clause, the module outputs a small bag of con-

cepts (SBoC), which is later on analyzed separately by the

target spotting module and the affect interpreter to infer the

cognitive and affective information associated with the input

text, respectively. In case any of the detected concepts is found

more than once in the vector space (that is, any of the concepts

has multiple senses), all the SBoC concepts are exploited for a

context-dependent coarse sense disambiguation. In particular,

to represent the expected semantic value of the clause as

a whole, the vectors corresponding to all concepts in the

clause (in their ambiguous form) can be averaged together. The

resulting vector does not represent a single meaning but the

‘ad-hoc category’ of meanings that are similar to the various

possible meanings of concepts in the clause [43]. Then, to

assign the correct sense to the ambiguous concept, the sense

of each concept that has the highest dot product (and thus the

strongest similarity) with the clause vector has to be sought.

The target spotting module aims to individuate one or more

opinion targets, such as people, places, events and ideas, from

the input concepts. This is done by projecting the concepts

of each SBoC into the graph representation of AffectNet,

in order to assign these to a specific conceptual class. The

categorization does not consist in simply labeling each concept

but also in assigning a confidence score to each category label,

which is directly proportional to the value of belonging to a

specific conceptual cluster (number of steps in the AffectNet

graph). The affect interpreter, in turn, projects the concepts

of each SBoC into AffectiveSpace and feeds their coordinates

to the ELM, in order to assign such concepts to a specific

affective class and, hence, calculate polarity in terms of the

Hourglass dimensions, as specified in formula (7).

As an example of how the opinion mining engine works,

intermediate and final outputs obtained when a natural

language opinion is given as input to the system can be

examined. The tweet “I think iPhone4 is the top of the heap!

OK, the speaker is not the best i hv ever seen bt touchscreen

really puts me on cloud 9... camera looks pretty good too!”

is selected. After the pre-processing and semantic parsing

operations, the following SBoCs are obtained:
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SBoC#1:
<Concept: ‘think’>
<Concept: ‘iphone4’>
<Concept: ‘top heap’>

SBoC#2:
<Concept: ‘ok’>
<Concept: ‘speaker’>
<Concept: !‘good’++>

<Concept: ‘see’>
SBoC#3:
<Concept: ‘touchscreen’>
<Concept: ‘put cloud nine’++>

SBoC#4:
<Concept: ‘camera’>
<Concept: ‘look good’−−>

Opinion
Target

Category Moods Polarity

‘iphone4’ ‘phones’,
‘electronics’

‘ecstasy’, ‘interest’ +0.71

‘speaker’ ‘electronics’, ‘mu-
sic’

‘annoyance’ -0.34

‘touchscreen’ ‘electronics’ ‘ecstasy’,
‘anticipation’

+0.82

‘camera’ ‘photography’, ‘elec-
tronics’

‘acceptance’ +0.56

TABLE III
STRUCTURED OUTPUT EXAMPLE OF OPINION MINING ENGINE

These are then concurrently processed by the target spotting

module and the affect interpreter, which detect the opinion

targets and output, for each of them, the relative affective

information both in a discrete way, with one or more emotional

labels, and in a dimensional way, with a polarity value ∈ [-

1,+1] (as shown in Table III). In order to evaluate the resulting

opinion mining engine, a patient opinion database is used,

and results obtained using k-NN and k-medoids are compared

with those obtained using the ELM. The resource is a dataset

obtained from PatientOpinion2, a social enterprise pioneering

an online feedback service for users of the UK national health

service to enable people to share their recent experience of

local health services online.

It is a manually tagged dataset of 2,000 patient opinions that

associates to each post a category (namely, clinical service,

communication, food, parking, staff, and timeliness) and a

positive or negative polarity. There are no ethical issues

involved in the data used in the experimentation as tweets,

blogposts, and patient opinions were all anonymized. In order

to guarantee full anonymity, moreover, the text associated with

tweets, blogposts, and patient opinions has never been wholly

reported in the proposed tables and examples. The dataset is

hereby used to test the combined detection of opinion targets

and the polarity associated with these. Results show that ELM

generally outperforms k-medoids and k-NN (Table IV).

2http://patientopinion.org.uk

k-NN k-medoids ELM
clinical service 70.1% 72.9% 81.8%
communication 69.8% 75.3% 78.1%
food 79.4% 79.6% 83.1%
parking 71.0% 72.5% 76.7%
staff 76.1% 76.1% 82.1%
timeliness 72.3% 73.0% 79.6%

TABLE IV
F-MEASURE VALUES RELATIVE TO PATIENTOPINION EVALUATION

VII. CONCLUSIONS AND FUTURE WORK

With the advent of Big Data, information extraction from

the huge amount of available unstructured information derived

from blog, wikis, and social networks is a very arduous task.

While existing approaches to information extraction mainly

work at a syntactic-level, computational techniques and tools

were hereby employed to analyze text natural language at

a semantic-level. In particular, we developed a randomness-

based opinion mining engine that, first, deconstructs natural

language text into concepts, then, encodes such concepts as

coordinates of a multi-dimensional vector space, and finally

infers the semantic and affective information associated with

them.

The integration of random features for multi-dimensional

scaling and random neurons for classification, in particular, has

embedded a bio-inspired way of reasoning to carry out cogni-

tive tasks such as emotion recognition and polarity detection.

Such an ensemble model better grasps the non-linearities of the

vector space of affective commonsense knowledge and, hence,

improves the performance of the opinion mining engine.

Randomness, moreover, allows for a more efficient analysis

of Big Data in terms of both space and time consumption.

Since this study has shown promising results, further re-

search is now planned to understand how the emulation of

bio-inspired reasoning processes can aid big data analytics.

Besides allowing for fast and frugal reasoning, moreover,

randomness will be exploited to enable machines to represent

knowledge and perform big data analytics in many different

ways so that, whenever they reach a dead end, they can switch

among different points of view and find one that may work.
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