
Overlapping Toxic Sentiment Classification using
Deep Neural Architectures

Hafiz Hassaan Saeed†
Computer Science Department

Information Technology University
Lahore, Pakistan

phdcs17009@itu.edu.pk

Khurram Shahzad†
Computer Science Department

Information Technology University
Lahore, Pakistan

khurram.shahzad@itu.edu.pk

Faisal Kamiran
Computer Science Department

Information Technology University
Lahore, Pakistan

faisal.kamiran@itu.edu.pk

Abstract—We are living in an era where data is enjoying an
unprecedented increase in its volume in each passing moment
through online media platforms. Such a colossal amount of data
is multifarious in its nature where textual data proves to be
its vital pillar. Almost every sort of online media platform is
producing textual data. Short posts (i.e. Twitter and Facebook)
and comments constitute a significant part of this textual data.
Unfortunately, this text data may contain overlapping toxic
sentiments in terms of personal attacks, abuses, obscenity, insults,
threats or identity hatred. In many cases, it becomes extremely
important to track such toxic posts/data to trigger needed
actions e.g. automated tagging of posts as inappropriate. State-
of-the-art classification techniques do not handle the overlapping
sentiment categories of text data. In this paper, we propose Deep
Neural Network (DNN) architectures to classify the overlapping
sentiments with high accuracy. Moreover, we show that our
proposed classification framework does not require any laborious
text pre-processing and is capable of handling text pre-processing
(e.g. stop word removal, feature engineering, etc.) intrinsically.
Our empirical validation on a real world dataset supports our
claims by showing the superior performance of the proposed
methods.

Index Terms—Toxic comments, Focal Loss, Text Pre-
processing, CNN, Bi-GRU, Bi-LSTM

I. INTRODUCTION

Text classification is a well-known area of research in

Natural Language Processing (NLP) and proved to be a vital

constituent in many applications, such as online search, infor-

mation filtering, topic categorization and sentiment analysis

[1]. In this paper we study the deep neural network based

techniques for overlapping toxic sentiment classification. By

overlapping we mean that a comment (or a document) can

belong to multiple overlapping sentiment classes, for example,

a comment may be an insult, a threat and obscene simultane-

ously. Toxic sentiment classification is of great importance in

order to maintain the unpartisan of online platforms and to pro-

tect the self-esteem of people’s belonging to different cultures,

societies, religions, ethnicities and countries etc. Many online

platforms e.g. Facebook, provide their users with a feature to

report a post in terms of nudity, violence, harassment, suicide

or self-injury, fake news, spam, unauthorized sales and hate

speech.

†Both authors contributed equally to the work.

According to [2] only in 2017, daily Facebook posts volume

surged to 4.3 billion and around 656 million tweets were

posted on daily basis on Twitter. Such a large amount of data

has galvanized both industry and academia in the last few years

to elicit meaningful information from this textual data to inter-

pret the sentiment of users about, for example, any particular

product, incident or a topic. Many machine learning models

are proposed by research community in order to extract useful

information to fathom users’ sentiment. Research community

is actively proposing models for extracting sentiments from

textual data like the model proposed in [3].

Sentiment analysis methods normally classify data into

positive and negative classes. With the elapse of time, interest

is growing beyond binary class classification, to identify and

classify overlapping toxicity in textual data. In this paper, we

use DNN architectures to classify textual data into overlapping

toxic categories. We use a multi-label dataset freely available

at Kaggle1. To identify overlapping toxicity in textual data,

the problem turns into a text classification problem. Geor-

gakopoulos et. al. address the toxic comment classification [4]

and Google Jigsaw also launched perspective API for toxic

comment classification. However, both handle simple binary

text classification on the dataset whereas we have focused on

overlapping classification of multi-label dataset, preserving the

originality of the dataset.

The main contributions of this paper can be stated as

follows:

• We propose a deep learning methodology which requires

no pre-processing due to its inherent feature engineering

capabilities.

• In contrast to the state-of-the-art binary classification,

our method handles overlapping multi-label classification

problem.

• Our extensive empirical validation on real world dataset

shows the superior performance of our methods.

II. RELATED WORK

A number of studies have been conducted on detecting hate

speech, abuse detection or toxic comment classification in text.

According to [5] the term ‘hate speech’ is interchangeably

1https://www.kaggle.com/c/jigsaw-toxic-comment-classification-challenge

1361

2018 IEEE International Conference on Data Mining Workshops (ICDMW)

2375-9259/18/$31.00 ©2018 IEEE
DOI 10.1109/ICDMW.2018.00193

used as profane, offensive or abusive language but they showed

that hate speech can be different from abusive language. They

did a little bit of pre-processing and used CNN+GRU network

where the network was composed of an embedding layer, 1D

convolution, 1D max-pooling, GRU, global max pooling and

finaly a softmax layer with elastic net regularization. Zhang et

al. have empirically shown that character level Convolutional

Neural Network (CNN) perfectly works in classification of

text [6]. Recurrent neural networks shown in [7] and Bi-

LSTMs shown in [8] also give better performance in text

classification. In [9] multiple classifiers such as Random

Forests, Support Vector Machines, Gradient Boosted Decision

Trees, Logistic Regression and Deep Neural Networks with

GloVe word embeddings were used to detect hate speech in

tweets. Related to our work, Cyberbullying is another term

used by the research community that is defined as a post

or an image that insults, humiliates or causes embarrassment

through Internet. [10] used multiple classifiers like Support

Vector Machines, Naïve Bayes, k-Nearest Neighbours, JRip,

J48, Random Forest, Sentence Pattern Extraction arChitecture

(SPEC) and CNNs for Cyberbullying detection and showed

that CNN outperformed other classifiers by over 11% points

in F-score. [11] also detected Cyberbullying across differ-

ent social media platforms using four deep learning models

namely CNN, LSTM, BiLSTM and BiLSTM with attention.

They also used the concept of transfer learning during their

training process on different datasets related to different social

media platforms. The studies conducted on the dataset chosen

in this research work mostly convert the dataset to a binary

classification problem whereas the original released dataset is

a multilabel classification problem. [4] used CNN architecture

that was based on the architecture proposed in [12] and worked

on binary classification for the dataset i.e., they converted

multiple labels to either toxic or non-toxic comments. They

also drew a comparison of CNN with other machine learning

techniques used for classification of toxic comments. [13]

also converted the dataset to binary classification but their

work was to illustrate the importance or necessity of pre-

processing that is considered to be one the very important

ingredients in the natural language processing (NLP) pipeline.

Another study, to classify news comments, proposes the use

of multiple features such as length of comments, uppercase

and punctuation, lexical features such as spelling, expletive

and legibility by applying applied linear and tree based clas-

sifier [14]. FastText is a pre-trained word embedding model

developed by Facebook Artificial Intelligence Research (FAIR)

which is qualified to model text involving out-of-vocabulary

(OOV) words [15].

III. METHODOLOGY

Our problem lies particularly in the domain of multi-label

text classification. A multi-label classification problem is now

being addressed. We are given a multi-label training dataset D

which contains n pairs of documents and label vectors, where

each document corresponds to a single comment in the dataset.

D = {(X,Y)|X ∈ documentspace, Y ∈ {0, 1}L}

Here Y is the label vector and L=6 as we have 6 labels

namely toxicity, severe toxicity, obscenity, threat, insult and

identity hate. The goal is to learn multi-label learning model

M that is a function Z of xi and maps input document/comment

xi to yi where each yi is a label vector.

M = Z(X) : X → Y

In the later sections of this paper, M will be referred to as

the deep learning model, X will be input, Y will be the output

and Z will be used for model predictions. The traditional

text classification pipeline includes text pre-processing, text

encoding, learning model and evaluation.

A. Text Pre-processing

There are several techniques that are used in text pre-

processing such as converting all words to lower case, removal

of stop words, punctuation marks, extra white spaces, non-

printable characters, words with alpha-numeric characters,

emoticons, URLs, hashtags, mentions, date/time, lemmati-

zation, stemming, etc. Initially, we followed all the pre-

processing techniques as described above but the results

proved not to be much satisfactory because stop words and

punctuation marks may contribute in the meaning of the text.

Later on we ignored all pre-processing of data except the

conversion all words to the lower-case. Results with no pre-

processing proved to be promising than with pre-processing

and by promising we mean that we do not lose anything if

we do not pre-process the data. In results section we further

discuss this topic.

Figure 1. Example of a 5 dimensional word embedding

B. Text Encoding

Learning models cannot take text data directly as input. It

should be transformed into some encoding scheme like tradi-

tional schemes used TF.IDF weights for each word existing in

the corpus. Most simple TF.IDF weights are calculated by:

TF.IDF = TF ∗ log(N

DF
)

Here TF is the term frequency, DF is the document frequency

and N is the total number of documents in the corpus. The term

frequency refers to the number of times a word has appeared

in a single document whereas document frequency refers

to the number of documents in which that particular word

has appeared. Most recent and state-of-the-art text encoding

schemes are Word Embedding like Word2Vec by Google,

1362

Glove by Stanford and Fast-Text by Facebook. In this study

we use Fast-Text2 which is a pre-trained word embedding

having 2 Million words where each word is a 300 dimensional

embedding vector. An example of a sentence encoded using a

5 dimensional word embedding is given in Figure 1. The first

column in the example is the actual sentence that has been

tokenized, the second column is the tokenized index number

corresponding to the word in the vocabulary and the third

column shows 5 dimensional word vectors of each word in the

sentence. Thus, a sentence consists of different words and the

words are now vectors, and eventually a sentence has become

a matrix of real numbers.

C. Learning Models
The first and the baseline architecture in this study is

Convolutional Neural Network (CNN) with 1D convolutions.

Then 4 other architectures are studied, in which two are based

on CNNs, one on Long Short Term Memory (LSTM) and the

other on Gated Recurrent Unit (GRU). The details of all these

architectures are given in the next subsections. The common

constituents of all these architectures are:

• The input of the embedding layer is a 200x300 dimen-

sional matrix as we input only 200 words in a sentence

where each word is represented by a 300 dimensional

word embedding. All architectures contain a trainable

embedding layer.

• After embedding layer, in all architectures, we used a 1D

spatial drop out with 40% dropout rate. This 1D spatial

drop out drops an entire 1D vector out with the given rate

and stops the model from overfitting and enforces better

generalizations for learning.

• In all the architectures we use exponential linear unit

ELU except for LSTM, where we use tanh instead. ELU

is a good alternative to ReLU because of its implicit

batch normalization and it also decreases the bias shift

by enforcing the mean activation towards zero [16]. ELU

is defined as:

ELU = f(t) =

{
t if t � 0

α(et − 1) if t < 0

• Focal loss is recently proposed in [17] handles class

imbalance better than cross entropy. We use α=0.25 and

γ=5.0 in all the architectures. Focal loss is given by:

FL(pt) = −αt(1− pt)
γ log(pt)

• The last 4 layers are similar in all architectures. The

fourth last layer is a drop out layer to prevent the model

from overfitting and to get better generalizations. We

use the drop out rate=10%. The third last layer is Fully

connected layer and consists of 100 units with ELU as

activation function, the second last layer has 50 units with

ELU and 6 units of sigmoid constitute the last layer.

We compared and evaluated five deep neural models in this

research study. The architectures of these models are briefly

explained as:

2https://fasttext.cc/docs/en/english-vectors.html

1) CNN-1D: The first and the baseline model used in this

study is the convolutional neural network with 1D convolu-

tions. By 1D convolutions, we mean that the kernel used for

convolution was one dimensional vector. In this architecture,

the first layer is the embedding layer with a 1D spatial drop

out. The next were 4 identical blocks in a sequence connected

to the embedding layer after the 1D spatial drop out layer. Each

block had two convolutional layers and one max pooling layer.

Each convolutional layer had 32 kernels with kernel size=3.

Kernel size determines the field of view of the convolution.

The last 4 layers are already described above.

2) CNN-V: This CNN architecture has 2D convolutional

kernels or filters and is inspired from a very famous VGG16

proposed in [18]. Our limited computational resources deterred

us from training full VGG architecture, therefore we modified

it to a shorter version. Three convolutional blocks in a se-

quence are used with the embedding layer after 1D spatial drop

out where the first two blocks has 2 convolutional layers with

one max pooling layer and the last block has 3 convolutional

layers and a max pooling layer. In the first block convolutional

layers had 16 kernels of size 3x3, the second block has 32

kernels of size 3x3 and last block consists of 64 kernels of

size 3x3. Due to the inspiration from VGG we named this

model as CNN-V.

3) CNN-I: The base of this architecture is the Inception

model proposed in [19] and was also used by Yoon Kim

in [12] for text classification. After the embedding and 1D

spatial drop out layers, 6 convolutional blocks comprised of

a convolutional layer and a max pooling layer were attached

in parallel. The convolutional kernels used in each block are

two dimensional and they differ in each of the six blocks i.e.,

the kernel size in the first convolutional block is 1x300, in

the second convolutional block the kernel size is 2x300 and

in the last block the kernel size is 6x300. We used 32 kernels

in each of the parallel convolutional blocks. The output of all

of these blocks is then concatenated and passed on to last 4

layers as described before.

4) Bidirectional LSTM: This architecture uses two parallel

blocks of bidirectional Long Short Term Memory (LSTM)

where the the term bidirectional means that the input sequence

is given to the LSTM in two ways, first way is to input the

sequence as-it-is and the second way is to input the sequence

in reverse order. A simple LSTM is a variation of a recurrent

neural network that has an input gate, an output gate, a forget

gate and a cell. We used two parallel bidirectional LSTM

blocks having 128 units in one and 64 units in the other. The

output of both of these blocks is concatenated and then two

separate blocks are connected with the concatenation layer.

One of these two separate blocks are used for global average

pooling and the other one is used for global max pooling.

Both these blocks are then concatenated and passed on to

last 4 layers. Hard sigmoid and tanh were used for recurrent

activations and hidden units respectively.

5) Bidirectional GRU: Unlike LSTMs, gated recurrent

units (GRU) do not have output gate. They were first intro-

duced in 2014 in [20]. GRUs have an update gate and a reset

1363

Figure 2. Bi-directional GRU Architecture Block Diagram

gate. The reset gate is responsible of combining new input

with the previous one, and the update gate is responsible of

how much the previous memory is required to be kept.

z = σ(Wzht−1 + Uzxt)

r = σ(Wrht−1 + Urxt)

c = tanh(Wc(ht−1 ⊗ r) + Ucxt)

ht = (z ⊗ c)⊕ ((1− z)⊗ ht−1)

GRU is faster than LSTM because it needs less computa-

tions to update its hidden state. We used two bidirectional GRU

blocks in parallel like we did in the BiLSTM architecture. The

first block has 128 units in it and the second block consists

of 64 units. This architecture is shown in Figure 2. The basic

idea of using GRUs is to learn long-term dependencies or

sequences.

D. Evaluation

To measure the performance of the architectures we used

exact match accuracy, mean area under the receiver operating

characteristic (ROC) curve score, mean precision, mean recall

and mean F1 score. A prediction from a multi-label classifier

can be partially correct. The exact match accuracy ignores the

partially correct predictions and counts only those predictions

to be correct that exactly match with the label vector in all

dimensions. The exact match accuracy is given by:

accuracy =
exactly matched instances

total instances

ROC curve is a plot of true positive rate vs false positive rate

and the area under its curve gives us the probability that the

classifier will rank higher to a random positive instance than to

a random negative instance. We report average of ROC-AUC

of all labels given by:

ROCAUCMean =
1

L

L∑
i=1

ROCAUC(li)

Precision is the proportion of correctly predicted instances

to the total number of predicted as correct instances. Average

precision used in this study is the average of precision of each

label in Y.

PrecisionMean =
1

L

L∑
i=1

|Yi ∩ Zi|
|Zi|

Recall is the proportion of correctly predicted instances to

the total number of actual correct instances. Average recall

used in this study is the average of recall of each label in Y.

RecallMean =
1

L

L∑
i=1

|Yi ∩ Zi|
|Yi|

F1 score is the harmonic mean of precision and recall and

the average F1 score is given by:

F1Mean =
1

L

L∑
i=1

2|Yi ∩ Zi|
|Yi|+ |Zi|

IV. EXPERIMENTATION & RESULTS

We used CNN with 1D convolutions as our baseline archi-

tecture which is then compared with two variants of CNN,

Bidirectional LSTM and Bidirectional GRU. The two CNNs

are inspired from VGG-16 and Inception architectures. We

evaluated our architectures on the dataset openly available at

Kaggle. This dataset has a huge number of comments from

talks page edit of Wikipedia. It is a multi-labelled dataset

and contains six labels in total named as toxic, severe toxic,

obscene, threat, insult and identity hate. Usually, the labels

in the dataset are converted to binary classification task by

combining all the labels into either toxic or non-toxic but we

did not change the originality of the problem and focused on

multi-label task. This dataset has a class imbalance problem

that is why we used focal loss in our all architectures. The

average words in the dataset sentences is 67, however, we

used fixed 200 words for our input embeddings matrix. All

positive labels in the severe toxic column are simultaneously

toxic as well in both train and test sets provided by Kaggle. All

the results shown here are on the test set instead of the train

set. All the results, demo, data and source codes are publicly

available3.

Exact match accuracy, mean ROC-AUC, mean precision,

mean recall and mean F-1 scores are reported for each of the

proposed models (see Figure 3). It is evident from the plot

shown in the figure that the accuracy in each model is almost

equal. The data distribution is highly skewed (towards non-

toxicity), accuracy metric here is misleading as predicting only

the majority class can get us approximately 90% accuracy.

Therefore, we cannot rely on accuracy and have to resort to

other evaluation metrics like precision, recall and F1 scores

for all the labels.

The baseline architecture CNN-1D gave lowest ROC-AUC

score while all other four models gave better ROC-AUC score.

The ROC-AUC scores for CNN-V, CNN-I, Bi-LSTM and Bi-

GRU were approximately equal. CNN-I gave lowest precision

but still is comparable to other models in terms of precision.

3https://github.com/hafizhassaan/Toxic-Comments

1364

Figure 3. Comparison of Model Scores

The baseline CNN-1D gave poor results in recall and F1

scores. Moreover, CNN-V gave highest precision score but

a lower recall and F1 score. CNN-I had the highest recall

and and a good precision and F1 score. Bi-LSTM also had a

very high precision, high recall and high F1 score. Bi-GRU

had highest F-1 score and a very good precision and recall.

Overall, Bi-GRU seemed to perform the best among all the

proposed architectures of this study.

Table I
COMPARISON OF MODELS PER LABEL SCORE

Model Scores toxic s_toxic obscene threat insult id_hate

CNN-1D
Precision 0.68 0 0.78 0 0.79 0
Recall 0.21 0 0.19 0 0.15 0
F1 0.32 0 0.31 0 0.25 0

CNN-V
Precision 0.72 0.48 0.75 0.33 0.85 0.57
Recall 0.4 0.08 0.37 0.01 0.14 0.01
F1 0.52 0.14 0.5 0.02 0.24 0.01

CNN-I
Precision 0.58 0 0.64 0.58 0.76 0.78
Recall 0.84 0 0.74 0.18 0.53 0.4
F1 0.68 0 0.69 0.28 0.62 0.52

BiLSTM
Precision 0.66 0.27 0.72 0.62 0.84 0.84
Recall 0.74 0.01 0.66 0.44 0.45 0.11
F1 0.7 0.02 0.69 0.51 0.58 0.2

BiGRU
Precision 0.65 0.55 0.68 0.53 0.73 0.67
Recall 0.75 0.13 0.71 0.46 0.58 0.48
F1 0.7 0.21 0.69 0.49 0.65 0.56

As stated earlier, the dataset was highly skewed. In such

scenarios it is better to look at scores for individual labels

instead of taking averages. For further analysis, Precision-

Recall-F1 score was separately calculated for each label (see

table I). These results were quite interesting and gave in-depth

overview of how each model was performing. CNN-1D was

not predicting any severe toxic, threat and identity hate labels

at all. CNN-I which seemed to perform very well was also not

predicting any severe toxic label. However other architectures

were able to predict severe toxic and identity hate labels. By

looking at the overall per label scores of precision, recall and

F1, Bi-GRU performed exceptionally well for all the labels. It

gave highest Precision-Recall-F1 score for all the labels.

Table II
TOXIC SENTIMENT SCORES (WITHOUT PRE-PROCESSING)

Sentences toxic s_toxic obscene threat insult id_hate
All Muslims are terrorists yes - - - - yes
all Americans must die yes - - yes - yes
Get the f**k out
of this room.

yes - yes - yes -

sh**t man yes - yes - - -
shyt man yes - yes - - -
sh++t man yes - yes - - -
i hate you you
motherf*****r

yes yes yes - yes -

He is a kind man - - - - - -
you are stupid yes - - - yes -
@ss hole yes - yes - - -
go kill yourself yes - - yes yes -
mothafucka i will kill
you and wear your skin

yes - yes yes yes -

Furthermore, a very short list of sentences is given in table

II along with the predictions from Bi-GRU. The predictions

are thresholded at 0.5. Either ‘Yes’ or ‘-’ is shown in the labels

where ‘Yes’ means that the predicted probability is greater than

or equal to 0.5 otherwise it is ‘-’. The predictions reported here

indicate that even with the raw input, deep learning models are

capable of giving good results.

V. CONCLUSION

This study draws a comparison among DNN models when

there is an overlapping multi-label text classification problem.

Based on the empirical results, considering overlapping text

classification, we recommend not to spend too much time in

data pre-processing. As a matter of fact, stop words, punctua-

tion, etc. proved to be a vital constituent of data when it comes

to the training of the models. Every DNN model shows im-

provement in model performance measurement metrics when

trained using unprocessed data. We also recommend the use of

focal loss to deal with imbalanced classes. Focal loss alleviated

the skewed class problem, though not much significantly,

but still it did not exacerbate the skewness problem. Use of

multiple model performance metrics can prove decisive in the

choosing and rating DNN models. In overlapping multi-label

text classification it is observed that the per-label measurement

of performance metrics corroborates the better understanding

of model performance. Here five performance metrics, accu-

racy, ROC-AUC, precision, recall and F1 guided us towards

the choice of Bi-GRU as the best model for overlapping multi-

label toxic text classification.

REFERENCES

[1] C. C. Aggarwal and C. Zhai, “A survey of text classification algorithms,”
in Mining text data. Springer, 2012, pp. 163–222.

[2] J. Schultz, “How much data is created on the in-
ternet each day?” 2017, accessed: 01-08-2018. [Online].
Available: https://blog.microfocus.com/how-much-data-is-created-on-
the-internet-each-day

[3] H. Meisheri, K. Ranjan, and L. Dey, “Sentiment extraction from
consumer-generated noisy short texts,” in Data Mining Workshops
(ICDMW), 2017 IEEE International Conference on. IEEE, 2017, pp.
399–406.

[4] S. V. Georgakopoulos, S. K. Tasoulis, A. G. Vrahatis, and V. P.
Plagianakos, “Convolutional neural networks for toxic comment clas-
sification,” arXiv preprint arXiv:1802.09957, 2018.

1365

[5] Z. Zhang, D. Robinson, and J. Tepper, “Detecting hate speech on
twitter using a convolution-gru based deep neural network,” in European
Semantic Web Conference. Springer, 2018, pp. 745–760.

[6] X. Zhang, J. Zhao, and Y. LeCun, “Character-level convolutional
networks for text classification,” in Advances in neural information
processing systems, 2015, pp. 649–657.

[7] S. Lai, L. Xu, K. Liu, and J. Zhao, “Recurrent convolutional neural
networks for text classification.” in AAAI, vol. 333, 2015, pp. 2267–
2273.

[8] P. Zhou, Z. Qi, S. Zheng, J. Xu, H. Bao, and B. Xu, “Text classification
improved by integrating bidirectional lstm with two-dimensional max
pooling,” arXiv preprint arXiv:1611.06639, 2016.

[9] P. Badjatiya, S. Gupta, M. Gupta, and V. Varma, “Deep learning for hate
speech detection in tweets,” in Proceedings of the 26th International
Conference on World Wide Web Companion. International World Wide
Web Conferences Steering Committee, 2017, pp. 759–760.

[10] M. Ptaszynski, J. K. K. Eronen, and F. Masui, “Learning deep on
cyberbullying is always better than brute force,” in IJCAI 2017 3rd
Workshop on Linguistic and Cognitive Approaches to Dialogue Agents
(LaCATODA 2017), Melbourne, Australia, August, 2017, pp. 19–25.

[11] S. Agrawal and A. Awekar, “Deep learning for detecting cyberbullying
across multiple social media platforms,” in European Conference on
Information Retrieval. Springer, 2018, pp. 141–153.

[12] Y. Kim, “Convolutional neural networks for sentence classification,”
arXiv preprint arXiv:1408.5882, 2014.

[13] F. Mohammad, “Is preprocessing of text really worth your time for
online comment classification?” arXiv preprint arXiv:1806.02908, 2018.

[14] D. Brand and B. Van Der Merwe, “Comment classification for an online
news domain,” 2014.

[15] P. Bojanowski, E. Grave, A. Joulin, and T. Mikolov, “Enriching word
vectors with subword information,” arXiv preprint arXiv:1607.04606,
2016.

[16] D. Pedamonti, “Comparison of non-linear activation functions for
deep neural networks on mnist classification task,” arXiv preprint
arXiv:1804.02763, 2018.

[17] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár, “Focal loss for
dense object detection,” arXiv preprint arXiv:1708.02002, 2017.

[18] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[19] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,”
in Proceedings of the IEEE conference on computer vision and pattern
recognition, 2015, pp. 1–9.

[20] K. Cho, B. Van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares,
H. Schwenk, and Y. Bengio, “Learning phrase representations using
rnn encoder-decoder for statistical machine translation,” arXiv preprint
arXiv:1406.1078, 2014.

1366

