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Abstract—User-generated mobile application reviews have be-
come a gold mine for timely identifying functional defects in
this type of software artifacts. In this work, we develop a
hidden structural SVM model for extracting detailed defect
descriptions from user reviews at the sentence level. Structured
features and constraints are introduced to reduce the demand of
exhaustive manual annotation at the sentence level and enable
the use of partially annotated review data for model training.
Extensive empirical evaluations on a large collection of mobile
application reviews collected from Apple App Store demonstrate
the effectiveness of our proposed solution in recognizing the user-
reported implementation defects from review content, especially
when only partial annotation is available.

I. INTRODUCTION

Recent years have witnessed an increasing popularity of
mobile applications (or mobile apps in short). The same as
any other types of software artifacts, mobile apps also suffer
from implementation defects, which cause detrimental effects
on both developers and users. Traditional software testing
based solutions are time consuming [1]. Fortunately, users
often describe the problems they encounter in the reviews [2].
These user-generated reviews thus become a gold mine for
timely identifying mobile app functional defects.

Extracting informative descriptions of mobile app defects
from user reviews is challenging. Typically, a review may
cover various aspects of an app; but not necessarily all of
its content is about the functional defects. In this work, we
define defects as abnormal behaviors of an app which produce
incorrect or unexpected results. A sample app review is shown
in Figure 1. This review mentions two specific defects encoun-
tered after an update of the app, and a new function suggestion
that is not related to any defect. Because of the unstructured
nature of user reviews, these three parts are mixed in this
review. A review-level classification solution might recognize
this review mentions functional defects, but it is insufficient
for end-users to digest the detailed defects. For example,
an app developer still needs to read through the categorized
reviews, figure out specific sentences describing the defects,
and stitch relevant information from all the selected reviews.
As a result, extracting user-reported defects at the sentence-
level is necessary.

Sentences in a user review are not independent. As shown
in Figure 1, consecutive sentences are more likely to describe
the same defect. This also indicates the review content is
self-consistent: it is very unlikely for a reviewer to describe
a specific aspect as both problematic and normal. Building

Fig. 1. A sample mobile app review from Apple App Store. Aspects and
sentence-level defect labels are manually annotated in the superscripts with
different colors.

a sentence-level classifier [3] ignore such dependency and
therefore suffer from suboptimal performance. For example,
if one only looks at the sixth sentence in the sample review,
it is very hard to judge whether it is reporting a defect. But
with its preceding sentences, the conclusion becomes clear that
the white business tab is unexpected. In addition, sentences
mentioning app defects also contribute to the overall sentiment
polarity of the review, which is often reflected in the given
overall ratings. As a result, only when integrating all these
aforementioned dependencies, an effective solution could be
derived to extract useful sentence-level descriptions of mobile
app defects from user reviews.

In this work, we develop a structured learning solution
based on the hidden structural support vector machines [4] to
exploit the dependency among sentences for identifying app
defects in user reviews. The proposed method has two unique
advantages. First, it exploits the consistency and transitional
structures among sentences in the same review. Predictions
on sentences thus become dependent, which addresses the
challenges and serious bottleneck of inferring the labels in
short sentences, which usually take a major proportion in
mobile app reviews. Second, because of this explicit depen-
dency modeling, the proposed model can be estimated from
partially annotated reviews, where not all sentences need to
be annotated. This is of particular importance in practice,
as obtaining sentence-level annotations in reviews is time-
consuming and expensive.

Our empirical evaluations on a large collection of mobile
app reviews collected from Apple App Store demonstrated the
effectiveness of the proposed solution in recognizing the user-
reported implementation defects from review content, espe-
cially when only partially annotated training data is available.
We compared the identified defects against the release history
of several popular apps, and found that in most cases our



method correctly identified defects right after new releases.
This confirms the practical value of the proposed solution.

II. RELATED WORK

This paper focuses on extracting sentences which are related
to functional defects of mobile apps from user-generated
reviews. Several directions of previous studies directly relate
to our work.

Mobile app review mining: Mobile app reviews have been
explored in various applications, including app recommen-
dation [5] and mobile app retrieval [6]. Some recent works
examine the utility of such user-generated content in software
engineering area. For example, Chen et.al. ranked reviews
based on the criterion of whether a review mentions app
defects or makes new function suggestions [7]. Maalej and
Nabil classified reviews as defect reports, feature requests,
user experiences, and ratings [8]. However, these studies only
focused on review-level analysis. Given a popular app can
easily receive thousands of reviews after each release, the end-
users still need to read through those selected reviews to figure
out the detailed defects or suggestions.

There are studies identifying user-reported mobile app de-
fects at the sentence level. Moghaddam proposed a distant
learning method to extract user-reported defects and improve-
ment suggestions from app reviews [9]. The reported experi-
ments showed that a simple linear classifier with bag-of-word
features worked the best. But because this empirical study was
only performed on reviews of a single app, the conclusion
is potentially biased. Panichella et. al. classified sentences in
mobile app reviews into more categories: feature request, prob-
lem discovery, information seeking, and information giving
[3]. They introduced a rich set of features including linguistic
features, text features, and sentiment features. However, they
considered sentences as independent, where features were
constructed for each sentence individually. As we discussed
in the introduction, this design unfortunately loses important
structural information in a user review and leads to suboptimal
extraction performance, especially on those short sentences.
Furthermore, in those existing solutions, detailed and exhaus-
tive sentence-level annotation is inevitable to estimate the
sentence classifiers, which increases the overhead of applying
such solutions in practice.

Software defect identification: Software defect report has
been extensively studied as a useful resource to help devel-
opers improve their product in software engineering. Most
of the efforts have been focused on automatically classifying
defect report [10], determining defect severity level [11], and
predicting the effort to fix a defect [12]. A few existing work
studied identifying defect reports from user-generated text
content. Antoniol et. al. [13] introduced a text mining based
method to identify different types of issues in a defect tracking
system. Gegick et. al. [14] studied how to automatically
identify security defect report, which is considered as a special
and important type of defect report. But little has been done
in user review data, which is featured with open purposes and
free text format. Besides, all of these studies targeted in the
development/testing stage of software. This is different from

our problem setup, as we aim to identify defects from user
reviews after the mobile apps have been released.

III. METHOD

Formally, the input of our problem is a user-generated re-
view R = {s1, s2, . . . , sn}, consisting of n sentences, among
which one or more sentences provide details about functional
defects of the app. In this work, we define defect as the
abnormal behavior of an app which produces an incorrect or
unexpected result, or behaves in unintended ways. Therefore,
the learning problem is to infer the defect label hi on sentence
si, which indicates whether the sentence contains information
about any functional defect of the app. To facilitate our
discussion, we define a review-level binary variable y to
indicate whether the review contains any sentence mentioning
about defects, i.e., y = 1 if at least one hi = 1.

Based on the above definition and notations, we describe
the proposed hidden structured learning solution, the devel-
oped features, and the constraint-driven parameter estimation
method in the following subsections.

A. A structured learning solution

A straightforward solution to extract sentence-level de-
fect descriptions is to manually annotate sentences in a set
of training reviews, and build a supervised classifier over
those sentences. However, such a classifier would ignore the
dependency among sentences by classifying each sentence
individually. In addition, the construction of a fully labeled
training set is labor-intensive, as annotators have to make
inference across all sentences in a review to determine the
detailed sentence-level labels. To address these challenges,
we propose a structured learning solution, which explicitly
models the dependency among sentences in a review, such that
annotations can be propagated among labeled and unlabeled
sentences, and model training can be naturally performed on
partially annotated data sets.

Specifically, we formalize our solution within the hidden
structural SVM framework [4]: we consider the sentence-level
defect labels as hidden variables, which contribute to review-
level defect labels. The problem can then be formulated as
a joint inference problem over both the sentence-level and
review-level labels in the following way:

(ŷ, Ĥ) = arg max
(y,H)∈Y ×H

ω>Φ(R,H, y) (1)

where Y and H are the search spaces for review label y
and sentence labels H = {h1, h2, . . . , hn}. Φ(R,H, y) is a
structured feature vector depicting the matching quality of
those labels with respect to the review content, and ω is the
corresponding model parameter indicating the importance of
features when predicting the defects. As a result, we refer to
our structured learning solution as hSVM in this paper.

The inference problem defined in Eq (1) does not consider
the structural dependency between sentence-level defect labels
and review-level labels. As we discussed in our problem
definition, a review to be considered as defect report should
contain at least one sentence indicating a specific defect. To



enforce this, we introduce the following constraint into the
inference problem defined in Eq (1),

n∑
i=1

ĥi ≥ ŷ (2)

However, because of this constraint, the inference problem
becomes computationally intractable (as the sentence-level
predicted labels become dependent on each other, no matter
what kind of structured features will be there in Eq (1)). We
formulate this constrained inference problem as an integer
linear programming (ILP) problem [15], and solve it by an
off-the-shelf optimization package.

The key to the success of our proposed solution is thus
the design of structured features Φ(R,H, y) and the estima-
tion of corresponding feature weight ω. When designing the
features, we need to include not only sentence-level but also
review-level information that can capture the consistency and
transition structures among sentences. When estimating the
model parameters, to overcome the difficulty of constructing a
fully annotated training set, we focus on how to estimate the
model from partially annotated data, i.e., reviews with only
review-level annotations or those with only partially labeled
sentence-level annotations.

B. Structured feature design

In order to capture the dependency among sentences, our
solution leverages both sentence-level and review-level fea-
tures. In the sentence-level features, we consider the textual
content of sentences, the topics of them, as well as the
similarity between sentences and related app descriptions. In
the review-level features, we leverage information from the
observed sentiment ratings, the first-order transitions and pair-
wise consistency between sentences and their defect labels.
We summarize all the features in Table I and describe them
in more details by grouping them into different categories.

1) Sentence-level features: Sentence-level features focus on
exploiting information conveyed in the content of a sentence.
Since a sentence can be considered as a short review, we
can directly utilize features developed for in review-level
defect detection works [8]. In addition, we train a review-level
classifier based on multiple content-based features, and use the
classifier’s output on a sentence as one sentence feature, i.e.,
Φs content(si, hi, y). Moreover, we notice that users tend to
use a shared set of words to describe defects, such as “freeze,”
“idle,” and “crash”. To capture this, we manually compile a list
of indicator words by looking through the frequent words in
our annotated defect reporting sentences. We use the number
of indicator words matched in a sentence as another sentence
feature, which is denoted as Φindicator(si, hi, y).

We observe that a user tends to mention one or more specific
aspects of the app if it is defective. Thus, whether a sentence
mentions a specific aspect of an app becomes an important
indicator for functional defect reporting. Because the topical
aspects of mobile apps are not directly observable in the
review content, we train a PLSA topic model [16] to recognize
them. Specifically, the PLSA model is estimated based on the
concatenated reviews from all apps under the same category.

Each sentence in a target review is assigned to the most similar
aspect. We denote this feature as Φaspect(si, hi, y).

When building features for a sentence, we also include the
similarity between the given sentence to the other reviews of
the same app and version as a sentence-level feature. The
design behind this feature is that if the sentence is describing
certain defect, it is very likely that the other reviewers would
also report the same defect, such that we should expect higher
concentration of similar mentions. We denote this feature as
Φhigh sim(si, hi, y). Based on a similar reason, we also utilize
the average rating of the reviews similar to the target sentence
as another sentence-level features (ratings are weighted by the
corresponding content similarities). A smaller value of this
feature indicates the other similar reviews give a lower overall
rating to this app; and as a functional defect usually leads to
lower overall ratings, this sentence is more likely to describe
a defect. We denote this feature as Φavg rating sent(si, hi, y).

2) Review-level features: We develop a set of review-level
features, including the overall rating of this app and the
average rating of this version of this app. Besides, we also
include the highest similarity value between the target review
and the other reviews of the same app and same version as
one of the features. Due to space limit, we skip the detailed
discussions about such review-level features, but concentrate
on the review-level structured features.

We first incorporate the first-order transition feature
Φtrans(si, si+1, hi, hi+1, y) to capture the changes of a re-
viewer’s focus when describing the app. As shown in Fig-
ure 1, users tend to discuss the same defect in consecutive
sentences. This transition feature is designed to capture such
local transition pattern in users’ defect descriptions. And to
differentiate the potential different patterns in defect reporting
reviews and non-defect reporting reviews, we also include the
predicted review-level label in this feature.

We also develop pairwise features to check the consistency
between the predicted sentence-level defect labels. To be
specific, if a pair of sentences in the same review shares
the same indicator word, the predicted sentence-level defect
labels are supposed to be the same for these two sentences.
Similarly, if two or more sentences describe the same aspect,
the labels for these sentences should also be the same. We
denote these two features as Φindicator cons(si, sj , hi, hj , y),
and Φaspect cons(si, sj , hi, hj , y), which are also related to the
predicted review-level defect label y.

C. Parameter Estimation
With a properly annotated training collection, the model

parameters in hSVM could be effectively estimated. In this
work, we derived our model learning method from the latent
structural SVMs framework [17] as:

min
ω,ξ

1

2
‖ω‖2 + C

M∑
m=1

ξm (3)

s.t. ∀m, max
H∈H

ω>Φ(Rm, H, ym) ≥

max
(ŷ,Ĥ)∈Y×H

ω>Φ(Rm, Ĥ, ŷ) + ∆(ym, ŷ, Hm, Ĥ)− ξm

ξm ≥ 0



Type Feature Description
Φindicator(si, hi, y) The number of matched indicator words in sentence si
Φconstrast(si, hi, y) Whether sentence si contains any contrast conjunction
Φsentiment(si, hi, y) The sentiment orientation of sentence si
Φlength(si, hi, y) The length of sentence si
Φnegation(si, hi, y) Whether sentence si contains any negation
Φstopword(si, hi, y) The proportion of stopwords in sentence si

Sentence Φtitle(si, hi, y) Whether sentence si is the title of the review
level Φlast(si, hi, y) Whether sentence si is the last sentence

features Φaspect(si, hi, y) Whether sentence si mentions a particular aspect
Φs content(si, hi, y) The output of content-based review-level classifier for sentence si
Φhigh sim(si, hi, y) The highest similarity between sentence si and other reviews of the same app and version
Φavg rating sent(si, hi, y) The average overall rating from reviews similar to sentence si
Φstd rating sent(si, hi, y) The standard deviation of overall ratings from reviews similar to sentence si
Φlength disc(si, hi, y) The discretized length of sentence si
Φrating(R, y) The overall rating of the app which review R is about
Φr content(R, y) The output of the content-based classifier for review R
Φaspect c(R, y) The aspect coverage in review R

Review Φsim doc(R, y) The highest similarity between review R and other reviews for the app and version
level Φavg rating doc(R, y) The average overall rating of the version which review R is about

features Φtrans(si, si+1, hi, hi+1, y) Transition between defect labels of consecutive sentences
Φaspect cons(si, sj , hi, hj , y) Whether a pair of sentences mentioning the same aspect have the same defect label
Φindicator cons(si, sj , hi, hj , y) Whether a pair of sentences containing the same indicator word share the same defect label

TABLE I
STRUCTURED FEATURES FOR HSVM. SENTENCE-LEVEL FEATURES CHARACTERIZE THE ASSOCIATION BETWEEN A SINGLE SENTENCE AND DEFECT

LABEL, AND REVIEW-LEVEL FEATURES DEPICTS DEFECT LABELS IN A PAIR OF SENTENCES AND IN THE WHOLE REVIEW.

where ∆(ym, ŷ, Hm, Ĥ) captures the structural loss caused
by the predicted labels (ŷ, Ĥ) against the ground-truth labels
(ym, Hm), {ξm}Mm=1 is a set of slack variables to allow errors
in the training data, and C controls the trade-off between
empirical training loss and model complexity.

The design of ∆(ym, ŷ, Hm, Ĥ) is a key component in
our model estimation, as it represents the quality of predicted
labels with regard to the ground-truth. If the training data set
is fully annotated, any form of structured loss can be utilized,
such as hamming distance between to label vectors [18]. But in
our problem, as exhaustive sentence-level annotation is labor-
intensive and not feasible at scale, we relax the loss function on
sentence-level labels, i.e., no penalty is incurred in a sentence
if it is unlabeled. But to capitalize on the reviews that only have
review-level annotations, we also utilize the constraint defined
in Eq (2) to punish the learned model if the inferred sentence-
level labels contradict with the known review-level labels.
We should note as our training procedure only requires a
partially annotated collection, when sentence-level annotations
are available, the original structural loss will be computed.
In our experiment, we utilized standard hamming distance to
materialize ∆(ym, ŷ, Hm, Ĥ), but other types of structured
loss are also applicable in our model (with potentially different
inference complexity). In both cases, the required inference
problems in Eq (3), i.e., maxH∈H ω>Φ(Rm, H, ym) and
max(ŷ,Ĥ)∈Y ×H ω>Φ(Rm, Ĥ, ŷ) + ∆(ym, ŷ, Hm, Ĥ), can be
effectively solved by the same ILP solver. More specifications
can be found in [15].

IV. EXPERIMENT DESIGN

We crawled more than 753K apps from Apple App Store
in the period from November 2013 to December 2013, via its
search API. For each app, we collected information including
its name, official description, developer, category and version
history. We used the RSS feed provided in the App Store to
fetch the reviews for a given app. 9 graduate students with
computer science background were recruited to perform the

annotation task, i.e., labeling whether a review or a sentence
mentions any specific mobile app defect. When the annotators
judged the reviews/sentences, the description of the app was
provided. They were required to read the description and
understand the functionality of the app before annotations.

A. Training the content-based classifier

To construct the training data set for this classifier, we first
randomly selected 1,200 reviews, and each one of them was
manually annotated at the review level to indicate whether it
mentions a particular defect. The annotators were instructed
to label a review as a defect report if at least one of its
sentences mentioned a functional defect of the app. Among all
the reviews, 355 were labeled as positive, i.e., defect reports,
and 845 as negative.

With the annotated reviews, we trained a binary Random
Forest classifier. The classifier used the following features:
unigram and bigram textual features, sentiment score of the
review based on SentiWordNet, review length, and overall
rating of the review. ChiSquare statistics and information gain
were used to select the textual features. The trained classifier
performed well with a precision of 1.00 and recall of 0.89 in
a 5-fold cross validation on this annotated data set.

B. Sentence-level annotations

Since we focus on sentence-level defect detection, it is
necessary to obtain sentence-level annotations for evaluation.
Because the number of sentences to be annotated is very large
in our collected data set, it is impossible to exhaustively label
all of them. Instead, we considered only the apps that contain
more than 40 reviews. We then applied the content-based
classifier to the reviews from these apps. For each app, we
sorted the reviews based on how likely a review mentions at
least one defect of the app. We then selected the top 5 reviews
with the highest prediction score, and then 5 random reviews
from the each quarter of the ranked list (except the top 5). This



stratified sampling method is to ensure that the selected 25
reviews are not biased toward positive or negative examples.

Fully labeled Partially labeled
# of Reviews 274 / 572 400 / 818(defect / non-defect)

# of Sentences 557 / 3917 84 / 441(defect / non-defect)
Unlabeled sentences 0 8968

TABLE II
BASIC STATISTICS OF ANNOTATED DATA SETS FOR MOBILE APP DEFECT

DETECTION.

We randomly selected 15 apps for each annotator, and every
review was assigned to 3 different annotators. The annotators
were asked to provide annotation for each sentence separately
together with a review-level defect label. We showed the
whole review with sentences in their original order to the
annotators, rather than the individual sentences. The annotators
were asked to annotate each sentence as “defect report”, “not
defect report”, or “unknown”. We took majority vote from the
three annotators as the final label of each sentence. We denoted
the reviews, in which every sentence had a determined label
either of “defect report” or “not defect report”, as fully labeled
reviews. Some sentences might not have a consented label due
to the “unknown” option for annotation. We put these reviews
together with the 1200 reviews that only contain review-level
annotations into one group, and denote them as partially
labeled reviews. As a result, the reviews in the partially
labeled data set contain at least one unlabeled sentence. The
statistics of reviews and sentences of our annotated data set is
demonstrated in Table II.

V. EXPERIMENT RESULTS

We conduct experiments to evaluate the effectiveness of
the proposed hSVM model on detecting sentences that report
mobile app defects from user-generated reviews. Standard
classification performance metrics, including precision, recall
and F1 score, are used in our evaluations. When reporting
the performances, we use the superscripts of R, L, J and S
to indicate the improvement over RF, LR, J48 and SVM is
statistically significant based on t-test, respectively.

A. Using review-level classifier for sentence-level prediction
The first set of experiments are designed to examine whether

a classifier trained from the review-level annotations is effec-
tive for the sentence-level detection.

Prec Recall F1
RF-R 0.651 0.544 0.593
LR-R 0.584 0.572 0.578

SVM-R 0.633 0.536 0.580
MIL-R 0.647L 0.572 0.607

hSVM-R 0.784R,L,S 0.641R,L,S 0.705R,L,S

TABLE III
PERFORMANCE OF REVIEW-LEVEL CLASSIFIERS ON SENTENCE-LEVEL

PREDICTION.

In addition to the review-level classifier described in Section
IV-A, we also trained logistic regression and SVM classifiers
for comparison. These three methods are denoted as RF-R,
LR-R and SVM-R respectively, where R indicates the classi-
fiers are trained only using the review-level annotations. We

also included a state-of-the-art multi-instance learning method
developed in [19], which ensembled the aforementioned three
review-level classifiers. And we refer to it as MIL-R. We also
trained our hSVM model with only review-level annotations
to understand how well our method could perform when only
review-level annotations are available. All these methods are
tested on the fully labeled reviews. We conducted 5-fold cross
validation and reported the results in Table III. It is clear
that directly applying a classifier trained for the review-level
detection cannot provide satisfactory performance for extract-
ing sentence-level defect descriptions. The best precision of
the baseline methods is only 0.651, which would introduce
too many false positives and increase unnecessary burden
for an end-user to digest the detection results. Our method
outperformed the baselines, with a precision of 0.784 and
a recall of 0.641, which indicates the necessity of exploring
dependency among sentences in this particular problem.

B. Performance comparison on fully annotated data
The second set of experiments is to compare the proposed

method against sentence-level classification baselines. All the
methods were trained with sentence-level annotations, and the
experiments were conducted over the fully-annotated reviews,
i.e., all the sentences in these reviews have been annotated.

The first baseline is a state-of-the-art sentence-level defect
detection method proposed in [3], denoted as J48-S. It used
a combined feature set including NLP features, text features
and sentiment features, with a J48 decision tree classifier.
The other baselines are similar to the methods described in
Section IV-A except they are trained with the sentence-level
annotations. These methods are denoted as RF-S, LR-S and
SVM-S accordingly.

Prec Recall F1
J48-S 0.716 0.863 0.783
LR-S 0.799 0.811 0.805

SVM-S 0.785 0.832 0.808
RF-S 0.882J ,L,S 0.947J ,L,S 0.913J ,L,S

hSVM 0.919J ,L,S 0.898L,S 0.908J ,L,S

TABLE IV
PERFORMANCE COMPARISON AMONG SENTENCE-LEVEL DEFECT

DETECTION METHODS.

We performed 5-fold cross-validation to reduce the random-
ness in training/testing split, and the average performance is
reported in Table IV. It is clear that our proposed hSVM model
outperformed most of the baseline methods. The improved
performance of hSVM stems from its capability in utilizing
not only content-based features but also structured features
that capture the consistency and transition patterns among
sentences. We also notice that RF-S achieved better recall
than hSVM model (and therefore its F1 score is better).
This is mostly due to the non-linearity of the random forest
model, which helps the model capture more complex relations
between sentence-level features and labels. However, as we
will show in the following experiments, RF-S relies heavily on
the availability of annotations and its performance degenerates
significantly when only partially labeled data is available.

As we emphasized in the introduction, the sentences in
mobile app reviews are usually very short (the average sen-
tence length in our collection is 13.72, with a median of 10).



Therefore, it is worth our effort to compare different models’
performance in recognizing defects among short sentences. We
reported the classification performance on the top 25% shortest
sentences in the fully annotated data set in Table V.

Prec Recall F1
J48-S 0.672 0.826 0.741
LR-S 0.761J 0.792 0.776

SVM-S 0.763J 0.814 0.781
RF-S 0.854J ,L,S 0.893J ,L,S 0.873J ,L,S

hSVM 0.912J ,L,S,R 0.931J ,L,S 0.921J ,L,S,R

TABLE V
PERFORMANCE COMPARISON AMONG SENTENCE-LEVEL DEFECT
DETECTION METHODS ON THE TOP 25% SHORTEST SENTENCES.

The results show that our hSVM model outperformed all the
baselines on those short sentences. As we discussed in our run-
ning example, short sentences usually suffer from insufficient
feature representation, such that independent sentence-level
classifiers can hardly make any reasonable prediction on them.
Our structured learning solution utilizes the consistency and
transition features to exploit the dependency among sentences.
The label of a short sentence is not solely inferred by the
sentence itself, but also the sentences surrounding it and in
the same review.

C. Performance comparison on partially annotated data

Our model is able to utilize partially annotated data for pa-
rameter estimation. This would lead to considerably reduction
of annotation effort in practice. This experiment verifies the
effectiveness of our model training in this scenario. We only
used 20% of the fully labeled reviews as our training set, and
left the remaining 80% for testing purpose. Then we grad-
ually added the partially annotated reviews into the training
set. For the sentence-level baselines, when the sentence-level
annotation is totally missing in a review, we will simply treat
review-level labels as the sentence-level labels. Otherwise,
if some sentences in a review are labeled, we will ignore
the other unlabeled ones in that review for model training.
To avoid any bias resulted from the data set separation, we
repeated the experiments 5 times by randomly shuffling the
fully labeled reviews for training and testing. The average F1
and the standard deviation of classification performance across
all sentence-level classifiers are reported in Figure 2.

From the results, we can clearly notice that hSVM model
could quickly converge to its optimal performance even with
limited training instances. This proves that our model could
utilize the structural dependency between sentence-level and
review-level labels to better estimate the model parameters. In
addition, the variance of our method was much smaller than
that in most of the baselines, which indicates that our learned
model is less likely to overfit to a particular training data set.

It is reported by our annotators that providing the review-
level labels and partial sentence-level labels is much easier
than the exhaustive sentence-level labels. Therefore, it is
worthwhile to further test different algorithms’ performance
with only the partially annotated data is available for training.
To be more specific, we trained our model only with the
partially annotated reviews (including both review-level labels
and partial sentence-level labels) in the same way as in the last

Fig. 2. Classification performance with gradually added partially labeled
reviews for model training. The error bar indicates the standard deviations.

experiment, and applied the trained model on the fully labeled
data set for testing. The fully labeled data set has been split
into 5 equal subsets only for the testing purpose. The average
precision, recall and F1 score are reported in Table VI.

Prec Recall F1
J48-S 0.641 0.775L 0.701L

LR-S 0.649 0.643 0.652
SVM-S 0.749L 0.804L 0.774L

RF-S 0.824J ,L,S 0.789L 0.806J ,L

hSVM 0.851J ,L,S 0.846J ,L,S,R 0.827J ,L,S

TABLE VI
PERFORMANCE COMPARISON TRAINED ON PARTIALLY ANNOTATED DATA

SET AND TESTED ON FULLY LABELED DATA SET.

We can clearly notice that our proposed method outper-
formed all the baselines. The major reason for this perfor-
mance improvement is that the baselines cannot fully utilize
the unlabeled sentences in model training, and in testing phase
the sentences are independently classified. On the contrary,
our method utilized the connection of between the sentences,
i.e., the first-order transition feature and consistency feature,
to propagate the label information for model training and
regularize the predictions in testing instances.

Since the partially annotated data contains two types of
annotations (i.e., the ones with only review-level annotations,
and those also with partial sentence-level annotations), we also
studied the effectiveness of different types of partially anno-
tated data for model training. Specifically, we first randomly
split the fully annotated data into 5 folds. Three folds were
used as the initial training set, and one fold was kept for
testing. For the remaining fold, we randomly removed some
sentence-level annotations, and gradually added these reviews
to the training set. To compare with this setting, we added the
same set of reviews with only review-level annotation to create
another training set (by removing their entire sentence-level
labels). We performed the experiments 5 times by switching
the folds for training and testing, and each time we randomly
created the partially annotated reviews to be added into the
training set. The mean and standard deviation of F1 score are
reported in Figure 3. The methods labeled with “-sentence”
indicate the models that used both review-level and sentence-
level annotations as the additional training instances, while the



ones with “-review” indicate those only used the review-level
annotations as their additional training instances.

Fig. 3. Classification performance improvement when adding different types
of partially labeled reviews for training. The error bar indicates the standard
deviations.

As we can expect that in all models the partially annotated
reviews with sentence-level annotations were more helpful
than those with only review-level annotations in boosting mod-
els’ classification performance. In particular, only our model
achieved consistent improvement from both types of partially
annotated reviews when increasing amount of such training
data became available, while the baselines’ performance varied
quite a lot. One major reason is that the performance of
baselines heavily depends on what types of sentences are fully
labeled and their annotation quality for model training. In
other words, they are more sensitive to the partially annotated
data set, and it therefore imposes more constraints on the
manual annotation process. Because our model is more robust
to such partially annotated data, it further reduces the manual
annotation cost. This is of particular importance for applying
our solution in practice.

D. Effectiveness of structured features

In order to better understand the contribution of different
features in our structured learning solution, we conducted ex-
periments to evaluate our model under different configurations
of features with repeated the five-fold cross validations. Table
VII summaries the results.

F1 Prec Recall
SLF only 0.904 0.912 0.897

Textual features only 0.451 0.621 0.354
SLF+Textual 0.874 0.915 0.837

SLF+Textual+Consistence 0.890 0.924 0.858
SLF+Textual+Transition 0.893 0.916 0.872

All features 0.908 0.919 0.898
TABLE VII

EFFECTIVENESS OF DIFFERENT FEATURE CONFIGURATIONS IN HSVM,
WHERE SLF STANDS FOR SENTENCE-LEVEL FEATURES.

Comparing the first two rows in Table VII, it demonstrates
that our model with our developed sentence-level features
could perform much better than that with the traditional textual
features. It suggests that not only the actual words used in the
review, but also the other associated signals, such as sentence

length and sentiment orientations, should also be considered
when estimating the model. When adding the consistency
feature and transition feature into the model (5th and 6th
rows in the table), they further improved the performance.
This shows that the dependency between the sentences helps
better predict sentence-level defect labels.

Comparing the first row and the last row in Table VII,
we could observe that only using the sentence-level features
already achieved satisfactory performance. Thus, it is nec-
essary to further analyze which sentence-level feature plays
the most important role in sentence-level defect prediction. In
order to get this level of understanding, we iteratively removed
one feature from the sentence-level feature set and test the
performance with the remaining features. We used the fully
labeled dataset with 5-fold cross validation in this experiment.
The difference of the F1 performance against the full feature
set is reported in Table VIII. The negative value means the
F1 score decrease when the corresponding feature is removed
from the feature set. Due to the space limit, we only list the
top five features that are most helpful (i.e., with the most F1
decrease when the feature is removed).

Feature F1(difference)
Φindicator(si, hi, y) -0.113

Φaspect(si, hi, y) -0.097
Φsentiment(si, hi, y) -0.071
Φconstrast(si, hi, y) -0.063
Φnegation(si, hi, y) -0.062

TABLE VIII
PERFORMANCE CHANGES WHEN ONE FEATURE IS REMOVED FROM THE

FULL FEATURE SET OF HSVM.

It is not surprising to observe that the performance de-
creased the most when the indicator words based feature is
removed from the feature set. This shows that our manually
compiled indicator words capture the most discriminative
pattern in users’ defect descriptions. The performance would
also decrease when the aspect feature was removed. This
confirms our assumption that users tend to be more specific on
particular aspect when reporting the defects in their reviews.
In addition, sentiment orientation is also a good indicator for
identifying the defect reporting sentences.

E. Qualitative studies

Identifying the defect reporting sentences and connect them
to the functions is a key step for solving the defects for
the developers. In Figure 4, we demonstrate how the de-
velopers could benefit from our system. Figure 4 shows
the update history, word cloud visualization of aggregated
review content, and detected defect reporting sentences of one
randomly selected app “Microsoft Tag”. In the word cloud,
we also highlighted the words that frequently appeared in
the recognized defect reporting sentences. The number of
total reviews for each version is labeled next to the word
cloud. In particular, based on the official description of this
app, three new functions were introduced in the version 5.5,
i.e., bar code scanning, QR code scanning, and save the
information from the scanned bar code and QR code. Based
on the identified defect-reporting sentences in user reviews,
we can notice that these three new features caused unexpected



Fig. 4. A visualization of identified sentence-level defect reports from hSVM. The word clouds summarize the reviews of the this app in each specific version.
The description of version 5.5 and the corresponding defect reporting sentences identified by hSVM model are shown at the bottom of the figure.

crash of the app. Our solution identified such defects from the
reviews, and based on it we can effectively summarize the
identified sentences for the developers to digest. In this study,
we first extracted the specific function descriptions from the
official app description, then we clustered the defect reporting
sentences with respect to these functions. In the bottom-right
part of Figure 4, we highlighted the identified sentence-level
defect reports with respect to each specific new feature of this
app. This clearly provides developers a more concrete and
comprehensive understanding of the functional defect of the
app, with different use case scenarios and error descriptions.

In addition, we can find that the recognized defect report
about this particular issue immediately emerged right after
the release of its version 5.5 and our method can accurately
recognized these defects. This clearly demonstrates our pro-
posed solution could recognize the defects from user reviews
in timely fashion. It took the developers 10 months to identify
and fix the defects in version 5.5, our method could shorten
this maintenance cycle by accelerating the defect identification
procedure for the developers.

VI. CONCLUSION AND FUTURE WORK

We proposed a structured learning solution to address the
problem of identifying sentence-level description of mobile
app defects in user reviews. Structured features and constraints
are developed to capture the dependency among sentences
in a review. This reduces our model’s dependency on fully
annotated training data and improves its extraction accuracy on
short sentences, which make a major portion of user-generated
review content.

Our work opens several interesting future directions. First, it
is meaningful to investigate how to incorporate unlabeled data
into model training, which can further reduce the manual effort
on providing the training instances. Second, summarizing the
extracted sentences and mapping them to the detailed features
of an app is desirable the end-users. As shown in the Figure 1,
assigning the defect reporting sentences to the corresponding
aspect would be more helpful. Last but not least, an app’s
version updating history can be used as remote signals for
model training.
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it a bug or an enhancement?: A text-based approach to classify change
requests,” in CASCON ’08, 2008.

[14] M. Gegick, P. Rotella, and T. Xie, “Identifying security bug reports via
text mining: An industrial case study,” in MSR 2010, 2010.

[15] M. J. Wainwright, T. S. Jaakkola, and A. S. Willsky, “Map estimation
via agreement on trees: message-passing and linear programming,” IEEE
Transactions on Information Theory, 2005.

[16] T. Hofmann, “Probabilistic latent semantic indexing,” in SIGIR 99, 1999.
[17] M.-W. Chang, V. Srikumar, D. Goldwasser, and D. Roth, “Structured

output learning with indirect supervision,” in Proceedings of ICML,
2010.

[18] I. Tsochantaridis, T. Joachims, T. Hofmann, and Y. Altun, “Large margin
methods for structured and interdependent output variables,” Journal of
machine learning research, vol. 6, no. Sep, pp. 1453–1484, 2005.

[19] Z.-H. Zhou and M.-L. Zhang, Ensembles of Multi-instance Learners,
2003.


