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Introduction: Motivation (1/2)

* Both content providers and consumers

— E.g., movie reviews and etc.

* There exists keyword extraction tools to digest
information

* Need more
— Highlighting the words that interest us/catch our eyes



Introduction: Motivation (2/2)

 Keywords !=words of interest

— Interesting words!=keywords

* Keywords: from authors’ perspectives

— |.e., the statistics of the article content alone

 Words of interest: need to combine readers’
perspectives



Introduction: Purpose (1/2)

* |n this paper

— Predict topic words catching readers’ eyes after article
reading

* |n prediction
— Social interaction data of great importance
* Reader information not public

— PageRank algorithm used to help

* Consider semantic features



Introduction: Purpose (2/2)

* These interesting words can be used
— As social tags
— In article recommendation
— In sentiment analysis



Introduction: Example Web Post
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* Keyword extractors find frequent words

* Feedback covers topics of less-frequent/single-occurrence
article words

 Combine article with feedback
— Single-appearance word given more attention



Method: PageRank on Web Pages

* PageRank introduced to find important web pages

— Nodes: web pages

— Edges: incoming and outgoing links ‘ ‘
— PageRank iterates to find the

—®
probability of a random walker ‘

@
landing on any web page
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Method: PageRank in Our Paper (1/5)

e Nodes: words in sentences
* Words within window size have edges

— Directed from words to words that follow

e |teration formula ‘ ‘

— PR(i) = (1 — d) X IntPref(i)+
! @
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Method: PageRank in Our Paper (2/5)

e Semantic features of word nodes used

— (1) word group:
* Intuition: content words (@) likely to be interests than
function words (@)

* a) slightly content word centered model
o—-1"->@

* b) moderately content word centered model
o—"->@ O O

* c) aggressively content word centered model
o1->@ @

~ ><(1/m). ~ X(l/m).



Method: PageRank in Our Paper (3/5)

e Semantic features of word nodes used

— (2) content source of a word pair:
* Word pairs from articles
. XQ ;.
* Word pairs from reader feedback

. x(1-a) 3

 Both authors’ and readers’ voice are heard



Method: PageRank in Our Paper (4/5)

e Semantic features of word nodes used

— (3) words’ degrees of reference:

* Intuition: highly referenced words among authors and
readers likely to be interests

* A node weighted by 1+DR(the node)
* DR(the node) defined as
num(reader response with the node) / num(reader response)

* Article counted as “a reader response”



Method: PageRank in Our Paper (5/5)

* Incorporate semantic features into PageRank

PR(i) = (1 — d) X IntPref(i)+
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Method: Interest Preference Model

Estimate topical interest preference score

1. Tfidf(w)

2. Pr(w]|t)=freq(w,t)/freq(*,t)

3. Pr(t|w)=freq(w,t)/freq(w,*)

4. entropy(w)= - ,Pr(t’|w)xlog(Pr(t’ | w))

5. Pr-Entropy(w|t)= Pr(w|t)/2¢entropy(w)

6. Pr-Entropy(t|w)= Pr(t|w)/2¢entropy(w)

While PageRank uses local info, these use global



Method: Informativity of Reader Feedback

* Not all interaction content responds to the article

— Check informativity of readers’ response sentence and
select informative ones

* 1) coverage:

— Compute ngram coverages
* To ensure the topic cohesion

— BLEU: coverages weighted and favor longer ngrams
e 2) focus:
— The percentage of words certain in topics

* To have more focused topic



Experiments: Data Sets

* 6,600 articles collected from www.wretch.cc
— Along with their feedback

* Most of the blog posts in Chinese

— CKIP segmenter used for segmentation

e 30 articles for testing (avg 17.6 responses)


http://www.wretch.cc/

Experiments: Gold Standards

 Two judges annotated interested words

* To evaluate our system on majority readers

— Judges related to the responding readers and found
their interests in their feedback

— Only % replies responded with reader interest info
and they covered one/two topic words in the articles



Evaluation (1/4)

* Top-N nDCG, P, MRR used for evaluation
* Content-word weighting mechanisms

nDCG P MRR
w/o 778 397 728
agr@m=2 .765 .390 .719
agr@m=4 .754 .370 .707
mod@m=2 .782 .390 747
mod@m=4 765 390 719
slg@m=2 .792 .397 .741
slg@m=4 792 .397 741
— Slightly performed the best; aggressive is too much



Evaluation (2/4)

e Different window sizes
WS=2 WS=3 WS=6 WS=10
nDCG §.765 792 774 .733
P 410 .397 .343 .350
MRR .736 741 741 .686

* |n blogosphere words bond in proximity

— In contrast to large window size in news articles



Evaluation (3/4)

* Estimation strategies for IntPref w/o reader feedback

@N=5 nDCG P MRR @N=3 nDCG P MRR
entropy 677 287 .659 entropy .667 .356 .644
tfidf 719 313 .676 tfidf .651 .389 .638
PR+tf .657 .310 .632 PR+tf .655 .350 .617
PR+Pr(w|tp) .631 .290 .583 PR+Pr(w|tp) 562 .328  .539
PR+Pr(tp|w) .673 317 .639 PR+Pr(tp|w) .659 .350 .622
PR+PrEntropy(w|tp) .636 > .283 .584 PR+PrEntropy(w|tp) 562  .328  .539
PR+PrEntropy(tp|w) .773 337 .725 PR+PrEntropy(tp|w) 757 .428 717
PR+tfidf 792 .397 741 PR+tfidf .767 .506 .728

* Entropy, tfidf beats PR+tf
* PR+tfidf achieves the best performance

* Entropy helps especially when better estimation is
used



Evaluation (4/4)

We trained tfidf and PR+tfidf with social interaction content

@N=5 # sentences in judges’ interest general readers’ interest
FB used nDCG hit rate nDCG MRR
tfidf+FB, .
tfidf+FB.
PR+tfidf+FB

(=tfidf)

(=PR+tfidf)

none

PR+tfidf+FBcoyerage 393 (=30%)

PR+tfidf+FB
PR+tfidf+FB

476 (=36%)
321 (=24%)

Focus

Coverage+Focus

Using all reader feedback is no better than using none

Coverage and Focus select useful data and contribute to interest
analysis

— Coverage boosts hit rate relatively by 240% and 79%
The combination filters out % reader sentences
— % of the social data still help



Future Work

* Word omission happens in blogosphere especially
in reader responses

— Recover these words

e Connection between reader sentiment and
reader interest

— Sentiment analysis on interaction content help
interest analysis?

— Interest analysis help on-topic sentiment detection?



Conclusion

* Propose a work that predicts reader interest using
— Semantic PageRank
— Social data

* They are simple but helpful

— Semantic features e.g., parts-of-speech and degrees of
reference

— Selection of informative reader responses
— Topical interest preference model



