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The Web is evolving through an era where the opinions of users are getting increasingly important and
valuable. The distillation of knowledge from the huge amount of unstructured information on the Web
can be a key factor for tasks such as social media marketing, branding, product positioning, and corporate
reputation management. These online social data, however, remain hardly accessible to computers, as
they are specifically meant for human consumption. The automatic analysis of online opinions involves
a deep understanding of natural language text by machines, from which we are still very far. To this end,
concept-level sentiment analysis aims to go beyond a mere word-level analysis of text and provide novel
approaches to opinion mining and sentiment analysis that enable a more efficient passage from (unstruc-
tured) textual information to (structured) machine-processable data. A recent knowledge-based technol-
ogy in this context is sentic computing, which relies on the ensemble application of common-sense
computing and the psychology of emotions to infer the conceptual and affective information associated
with natural language. Sentic computing, however, is limited by the richness of the knowledge base and
by the fact that the bag-of-concepts model, despite more sophisticated than bag-of-words, misses out
important discourse structure information that is key for properly detecting the polarity conveyed by
natural language opinions. In this work, we introduce a novel paradigm to concept-level sentiment anal-
ysis that merges linguistics, common-sense computing, and machine learning for improving the accuracy
of tasks such as polarity detection. By allowing sentiments to flow from concept to concept based on the
dependency relation of the input sentence, in particular, we achieve a better understanding of the
contextual role of each concept within the sentence and, hence, obtain a polarity detection engine that
outperforms state-of-the-art statistical methods.

� 2014 Elsevier B.V. All rights reserved.
1. Introduction

Between the dawn of the Internet through year 2003, there
were just a few dozens exabytes of information on the Web. Today,
that much information is created weekly. The opportunity to
capture the opinions of the general public about social events,
political movements, company strategies, marketing campaigns,
and product preferences has raised increasing interest both in
the scientific community, for the exciting open challenges, and in
the business world, for the remarkable fallouts in marketing and
financial prediction. Keeping up with the ever-growing amount
of unstructured information on the Web, however, is a formidable
task and requires fast and efficient models for opinion mining.
Hitherto, natural language processing (NLP) and online informa-
tion retrieval have been mainly based on algorithms relying on
the textual representation of web pages. Such algorithms are very
good at retrieving texts, splitting them into parts, checking the
spelling, and counting their words. But when it comes to interpret-
ing sentences and extracting meaningful information, their capa-
bilities are known to be very limited.

Early works aimed to classify entire documents as containing
overall positive or negative polarity, or rating scores of reviews.
Such systems were mainly based on supervised approaches relying
on manually labeled samples, such as movie or product reviews
where the opinionist’s overall positive or negative attitude was
explicitly indicated. However, opinions and sentiments do not
occur only at document-level, nor they are limited to a single
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valence or target. Contrary or complementary attitudes toward the
same topic or multiple topics can be present across the span of a
document. Later works adopted a segment-level opinion analysis
aiming to distinguish sentimental from non-sentimental sections,
e.g., by using graph-based techniques for segmenting sections of
a document on the basis of their subjectivity, or by performing a
classification based on some fixed syntactic phrases that are likely
to be used to express opinions. In more recent works, text analysis
granularity has been taken down to sentence-level, e.g., by using
presence of opinion-bearing lexical items (single words or n-
grams) to detect subjective sentences, or by exploiting association
rule mining for a feature-based analysis of product reviews. These
approaches, however, are still far from being able to infer the cog-
nitive and affective information associated with natural language
as they mainly rely on knowledge bases that are still too limited
to efficiently process text at sentence-level. Moreover, such text
analysis granularity might still not be enough as a single sentence
may contain different opinions about different facets of the same
product or service.

In a Web where user-generated content is drowning in its own
output, NLP researchers are faced with the same challenge: the
need to jump the curve [1] to make significant, discontinuous leaps
in their thinking, whether it is about information retrieval, aggre-
gation, or processing. Relying on arbitrary keywords, punctuation,
and word co-occurrence frequencies has worked fairly well so far,
but the explosion of web contents and the outbreak of deceptive
phenomena such as web-trolling and opinion spam, are causing
standard NLP algorithms to be increasing less efficient. In order
to properly extract and manipulate text meanings, a NLP system
must have access to a significant amount of knowledge about the
world and the domain of discourse.

In this work, we introduce a novel paradigm to sentiment anal-
ysis that merges linguistics, common-sense computing, and
machine learning for properly deconstructing natural language
text into concepts and opinion targets and, hence, for improving
the accuracy of polarity detection. By augmenting the sentic com-
puting framework [2] with dependency-based rules, in particular,
we achieve a better understanding of the contextual role of each
concept within a sentence and, hence, obtain a polarity detection
accuracy that exceeds the state of the art.

The rest of the paper is organized as follows: Section 2 presents
related work in the field of opinion mining and sentiment analysis;
Section 3 describes how the sentic computing framework is further
developed and applied for concept-level sentiment analysis; Sec-
tion 4 illustrates the dependency-based rules designed for sen-
tence-level polarity detection; Section 5 presents the machine
learning techniques developed to overcome the limitedness of
the common-sense knowledge base; Section 6 proposes an evalu-
ation and a discussion of the overall framework; finally, Section 7
concludes the paper and suggests directions for future work.

2. Related work

Existing approaches to sentiment analysis can be grouped into
four main categories: keyword spotting, lexical affinity, statistical
methods, and concept-level approaches. Keyword spotting is the
most naive approach and probably also the most popular because
of its accessibility and economy. Text is classified into affect cate-
gories based on the presence of fairly unambiguous affect words
like happy, sad, afraid, and bored. The weaknesses of this
approach lie in two areas: poor recognition of affect when negation
is involved and reliance on surface features. In relation to its first
weakness, while the approach can correctly classify the sentence
‘‘today was a happy day’’ as being happy, it is likely to fail on a sen-
tence like ‘‘today wasn’t a happy day at all’’. Regarding its second
weakness, the approach relies on the presence of obvious affect
words that are only surface features of the prose. In practice, a
lot of sentences convey affect through underlying meaning rather
than affect adjectives. For example, the text ‘‘My husband just filed
for divorce and he wants to take custody of my children away from
me’’ certainly evokes strong emotions, but uses no affect keywords,
and therefore, cannot be classified using a keyword spotting
approach.

Lexical affinity is slightly more sophisticated than keyword
spotting, as rather than simply detecting obvious affect words, it
assigns arbitrary words a probabilistic ‘affinity’ for a particular
emotion. For example, accident might be assigned a 75% proba-
bility of indicating a negative affect, as in car accident or hurt
by accident. These probabilities are usually learnt using linguis-
tic corpora. Though often outperforming pure keyword spotting,
there are two main problems with the approach. First, lexical
affinity, operating solely on the word-level, can easily be tricked
by sentences like ‘‘I avoided an accident’’ (negation) and ‘‘I met
my girlfriend by accident’’ (other word senses). Second, lexical
affinity probabilities are often biased towards text of a particular
genre, dictated by the source of the linguistic corpora. This makes
it difficult to develop a reusable, domain-independent model.

Statistical methods, such as Bayesian inference, support vector
machine (SVM) and artificial neural network (ANN), have been
popular for affect classification of texts. By feeding a machine
learning algorithm a large training corpus of affectively annotated
texts, it is possible for the system to not only learn the affective
valence of affect keywords (as in the keyword spotting approach),
but also to take into account the valence of other arbitrary key-
words (like lexical affinity), punctuation, and word co-occurrence
frequencies. However, traditional statistical methods are generally
semantically weak, i.e., with the exception of obvious affect
keywords, other lexical or co-occurrence elements in a statistical
model have little predictive value individually. As a result, statisti-
cal text classifiers only work with acceptable accuracy when given
a sufficiently large text input. So, while these methods may be able
to affectively classify user’s text on the page- or paragraph- level,
they do not work well on smaller text units such as sentences or
clauses.

Concept-based approaches to sentiment analysis focus on a
semantic analysis of text through the use of web ontologies or
semantic networks, which allow the aggregation of conceptual
and affective information associated with natural language
opinions. By relying on large semantic knowledge bases, such
approaches step away from blind use of keywords and word co-
occurrence counts, but rather rely on the implicit features associ-
ated with natural language concepts. Unlike purely syntactical
techniques, concept-based approaches are also able to detect sen-
timents that are expressed in a subtle manner, e.g., through the
analysis of concepts that do not explicitly convey any emotion,
but are implicitly linked to other concepts that do so.

The analysis at concept-level is intended to infer the semantic
and affective information associated with natural language opin-
ions and, hence, to enable a comparative fine-grained feature-
based sentiment analysis. Rather than gathering isolated opinions
about a whole item (e.g., iPhone5), users are generally more inter-
ested in comparing different products according to their specific
features (e.g., iPhone5’s vs Galaxy S3’s touchscreen), or even sub-
features (e.g., fragility of iPhone5’s vs Galaxy S3’s touchscreen).
In this context, the construction of comprehensive common and
common-sense knowledge bases is key for feature-spotting and
polarity detection, respectively. Common-sense, in particular, is
necessary to properly deconstruct natural language text into senti-
ments for example, to appraise the concept small room as negative
for a hotel review and small queue as positive for a post office, or
the concept go read the book as positive for a book review but neg-
ative for a movie review.
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Current approaches to concept-level sentiment analysis mainly
leverage on existing affective knowledge bases such as ANEW [3],
WordNet-Affect [4], ISEAR [5], SentiWordNet [6], and SenticNet
[7]. In [8], for example, a concept-level sentiment dictionary is built
through a two-step method combining iterative regression and
random walk with in-link normalization. ANEW and SenticNet
are exploited for propagating sentiment values based on the
assumption that semantically related concepts share common sen-
timent. Moreover, polarity accuracy, Kendall distance, and average-
maximum ratio are used, in place of mean error, to better evaluate
sentiment dictionaries. A similar approach is adopted in [9], which
presents a methodology for enriching SenticNet concepts with
affective information by assigning an emotion label to them.
Authors use various features extracted from ISEAR, as well as sim-
ilarity measures that rely on the polarity data provided in SenticNet
(specifically those based on WordNet-Affect) and ISEAR distance-
based measures, including point-wise mutual information, and
emotional affinity. Another recently reported work that builds
upon an existing affective knowledge base is that of [10], which
proposes the re-evaluation of objective words in SentiWordNet
by assessing the sentimental relevance of such words and their
associated sentiment sentences. Two sampling strategies are pro-
posed and integrated with SVM for sentiment classification. Their
experiments show that the proposed approach significantly outper-
forms the traditional sentiment mining approach, which ignores
the importance of objective words in SentiWordNet. In [11], the
main issues related to the development of a corpus for opinion min-
ing and sentiment analysis are discussed both by surveying existing
works in this area and presenting, as a case study, an ongoing pro-
ject in Italian, called Senti–TUT, where a corpus for the investiga-
tion of irony about politics in social media is developed.

Other works have explored the ensemble application of knowl-
edge bases and statistical methods. In [12], for example, a hybrid
approach to combine lexical analysis and machine learning is pro-
posed in order to cope with ambiguity and integrate the context of
sentiment terms. The context-aware method identifies ambiguous
terms that vary in polarity depending on the context and stores
them in contextualized sentiment lexicons. In conjunction with
semantic knowledge bases, these lexicons help ground ambiguous
sentiment terms to concepts that correspond to their polarity. Fur-
ther machine-learning based works include [13], which introduces
a new methodology for the retrieval of product features and opin-
ions from a collection of free-text customer reviews about a prod-
uct or service. Such methodologies rely on a language-modeling
framework that can be applied to reviews in any domain and lan-
guage provided with a seed set of opinion words. The methodology
combines both a kernel-based model of opinion words (learned
from the seed set of opinion words) and a statistical mapping
between words to approximate a model of product features from
which the retrieval is carried out.

Other recent works in the context of concept-level sentiment
analysis include tasks such as domain adaptation [14], opinion
summarization [15], and multimodal sentiment analysis [16,17].
In the context of domain adaptation, there are two distinct needs,
namely labeling adaptation and instance adaptation. However,
most of the current research focuses on the former attribute, whilst
neglecting the latter one. In [14], a comprehensive approach,
termed feature ensemble plus sample selection (SS-FE), is pro-
posed. SS-FE takes both types of adaptation into account: a feature
ensemble (FE) model is first adopted to learn a new labeling func-
tion in a feature re-weighting manner, and a PCA-based sample
selection (PCA-SS) method is then used as an aid to FE. A first step
towards concept-level summarization is performed by STARLET
[15], a novel approach to extractive multi-document summariza-
tion for evaluative text that considers aspect rating distributions
and language modeling as summarization features. Such features
encourage the inclusion of sentences in the summary that pre-
serves the overall opinion distribution expressed across the origi-
nal reviews and whose language best reflects the language of
reviews. The proposed method offers improvements over tradi-
tional summarization techniques and other approaches to multi-
document summarization of evaluative text.

A sub-field of sentiment analysis that is becoming increasingly
popular is multimodal sentiment analysis. [16], for example, consid-
ers multimodal sentiment analysis based on linguistic, audio, and
visual features. A database of 105 Spanish videos of 2–8 min length
containing 21 male and 84 female speakers was collected randomly
from the social media website, YouTube, and annotated by two
labellers for ternary sentiment. This led to 550 utterances and
approximately 10,000 words (authors have made the data available
upon request). The joint use of the three feature types leads to a sig-
nificant improvement over the use of each single modality. This is
further confirmed on another set of English videos. In [17], the
authors introduce the ICT-MMMO database of personal movie
reviews collected from YouTube (308 clips) and ExpoTV (78 clips).
The final set contains 370 of these (1–3 min) English clips in ternary
sentiment annotation with one to two coders. The feature basis is
formed by 2 k audio features, 20 video features, and different
textual features for selection. Then, different levels of domain-
dependence are considered: in-domain analysis, cross-domain anal-
ysis based on the 100 k textual Metacritic movie review corpus for
training, and use of on-line knowledge sources. This shows that
cross-corpus training works sufficiently well, and language-inde-
pendent audiovisual analysis is competitive with linguistic analysis.
3. Concept-level sentiment analysis through sentic computing

Sentic computing is a multi-disciplinary approach to sentiment
analysis at the crossroads between affective computing and com-
mon-sense computing, which exploits both computer and social
sciences to better recognize, interpret, and process opinions and
sentiments over the Web. In sentic computing, whose term derives
from the Latin sentire (root of words such as sentiment and sen-
tience) and sensus (intended both as capability of feeling and as
common-sense), the analysis of natural language is based on affec-
tive ontologies and common-sense reasoning tools, which enable
the analysis of text not only at document-, page- or paragraph-
level, but also at sentence-, clause-, and concept-level. In particu-
lar, sentic computing involves the inter-disciplinary use of artificial
intelligence and Semantic Web techniques, for knowledge repre-
sentation and inference; mathematics, for carrying out tasks such
as graph mining and multi-dimensionality reduction; linguistics,
for discourse analysis and pragmatics; psychology, for cognitive
and affective modeling; sociology, for understanding social
network dynamics and social influence; and finally ethics, for
understanding related issues about the nature of mind and the cre-
ation of emotional machines.

In this work, we further develop the sentic computing frame-
work by using a semantic parser for deconstructing text into natu-
ral language concepts (Section 3.1), which then get represented
and analyzed through a vector space of common-sense knowledge
(Section 3.2) by means of an emotion categorization model (Sec-
tion 3.3) and an ANN-based clustering technique (Section 3.4).
3.1. Semantic parsing

The aim of the semantic parser is to break text into clauses and,
hence, deconstruct such clauses into concepts, to be later fed to a
vector space of common-sense knowledge. For applications in
fields such as real-time human–computer interaction and big
social data analysis [18], deep natural language understanding is
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not strictly required: a sense of the semantics associated with text
and some extra information (affect) associated with such seman-
tics are often sufficient to quickly perform tasks such as emotion
recognition and polarity detection.
First, the semantic parser breaks text into clauses. Each verb
and its associated noun phrase are considered in turn, and one or
more concepts is extracted from these. As an example, the clause
‘‘I went for a walk in the park’’, would contain the concepts go

walk and go park. The Stanford Chunker [19] is used to chunk
the input text. A sentence like ‘‘I am going to the market to buy
vegetables and some fruits’’ would be broken into ‘‘I am going to
the market’’ and ‘‘to buy vegetables and some fruits’’. A general
assumption during clause separation is that, if a piece of text con-
tains a preposition or subordinating conjunction, the words pre-
ceding these function words are interpreted not as events but as
objects. The next step of the algorithm then separates clauses into
verb and noun chunks, as suggested by the parse trees shown
above.

Next, clauses are normalized in two stages. First, each verb
chunk is normalized using the Lancaster stemming algorithm
[20]. Second, each potential noun chunk associated with individual
verb chunks is paired with the stemmed verb in order to detect
multi-word expressions of the form ‘verb plus object’. Objects
alone, however, can also represent a common-sense concept. To
detect such expressions, a part-of-speech (POS) based bigram algo-
rithm checks noun phrases for stopwords and adjectives. In partic-
ular, noun phrases are first split into bigrams and then processed
through POS patterns, as shown in Algorithm 1. POS pairs are taken
into account as follows:

1. ADJ + NOUN: The adj + noun combination and noun as a stand-
alone concept are added to the objects list.

2. ADJ + STOPWORD: The entire bigram is discarded.
3. NOUN + ADJ: As trailing adjectives do not tend to carry suffi-

cient information, the adjective is discarded and only the noun
is added as a valid concept.

4. NOUN + NOUN: When two nouns occur in sequence, they are
considered to be part of a single concept. Examples include but-
ter scotch, ice cream, cream biscuit, and so on.

5. NOUN + STOPWORD: The stopword is discarded, and only the
noun is considered valid.

6. STOPWORD + ADJ: The entire bigram is discarded.
7. STOPWORD + NOUN: In bigrams matching this pattern, the
stopword is discarded and the noun alone qualifies as a valid
concept.
Algorithm 1. POS-based bigram algorithm

Data: NounPhrase
Result: Valid object concepts
Split the NounPhrase into bigrams;
Initialize concepts to Null;
for each NounPhrase do

while For every bigram in the NounPhrase do
POS Tag the Bigram;
if adj noun then

add to Concepts: noun, adj + noun
else if noun noun then

add to Concepts: noun + noun
else if stopword noun then

add to Concepts: noun
else if adj stopword then

continue
else if stopword adj then

continue
else

Add to Concepts: entire bigram
end
repeat until no more bigrams left;

end
end

The POS-based bigram algorithm extracts concepts such as
market, some fruits, fruits, and vegetables. In order to capture event
concepts, matches between the object concepts and the normal-
ized verb chunks are searched. This is done by exploiting a parse
graph that maps all the multi-word expressions contained in the
knowledge bases (Fig. 1). Such an unweighted directed graph helps
to quickly detect complex concepts, without performing an
exhaustive search through all the possible word combinations that
can form a common-sense concept.

Single-word concepts, e.g., house, that already appear in the
clause as a multi-word concept, e.g., beautiful house, in fact, are



Fig. 1. Example parse graph for multi-word expressions.

S. Poria et al. / Knowledge-Based Systems 69 (2014) 45–63 49
pleonastic (providing redundant information) and are discarded. In
this way, the Algorithm 2 is able to extract event concepts such as
go market, buy some fruits, buy fruits, and buy vegetables, represent-
ing the concepts to be fed to a common-sense reasoning algorithm
for further processing.

Algorithm 2. Event concept extraction algorithm
Data: Natural language sentence
Result: List of concepts
Find the number of verbs in the sentence;
for every clause do

extract VerbPhrases and NounPhrases;
stem VERB;
for every NounPhrase with the associated verb do

find possible forms of objects;
link all objects to stemmed verb to get events;

end
repeat until no more clauses are left;

end
3.2. The vector space model

The best way to solve a problem is to already know a solution
for it. If we have to face a problem we have never encountered
before, however, we need to use our intuition. Intuition can be
explained as the process of making analogies between the current
problem and the ones solved in the past to find a suitable solution.
Marvin Minsky attributes this property to the so called ‘difference-
engines’ [21]. This particular kind of agents operates by recogniz-
ing differences between the current state and the desired state,
and acting to reduce each difference by invoking K-lines that turn
on suitable solution methods. This kind of thinking may be the
essence of our supreme intelligence since in everyday life no two
situations are ever the same and we have to perform this action
continuously.

Human mind constructs intelligible meanings by continuously
compressing over vital relations [22]. The compression principles
aim to transform diffuse and distended conceptual structures to
more focused versions so as to become more congenial for human
understanding. To this end, principal component analysis (PCA)
has been applied on the matrix representation of AffectNet. In par-
ticular, truncated singular value decomposition (TSVD) has been
preferred to other dimensionality reduction techniques for its sim-
plicity, relatively low computational cost, and compactness. TSVD
is particularly suitable for measuring cross-correlations between
affective common-sense concepts as it uses an orthogonal transfor-
mation to convert the set of possibly correlated common-sense
features associated with each concept into a set of values of uncor-
related variables (the principal components of the SVD).

By using Lanczos’ method [23], the generalization process is rel-
atively fast (a few seconds), despite the size and the sparseness of
AffectNet. Applying TSVD on AffectNet causes it to describe other
features that could apply to known affective concepts by analogy:
if a concept in the matrix has no value specified for a feature
owned by many similar concepts, then by analogy the concept is
likely to have that feature as well. In other words, concepts and
features that point in similar directions and, therefore, have high
dot products, are good candidates for analogies.

After performing TSVD on AffectNet, hereby termed A for the
sake of conciseness, a low-rank approximation of it is obtained,
that is, a new matrix eA ¼ UMRMVT

M . This approximation is based
on minimizing the Frobenius norm of the difference between A
and eA under the constraint rankðeAÞ ¼ M. For the Eckart–Young
theorem [24], it represents the best approximation of A in the
least-square sense, in fact:

mineAjrankðeAÞ¼M

jA� eAj ¼ mineAjrankðeAÞ¼M

jR� U�eAV j ¼ mineAjrankðeAÞ¼M

jR� Sj ð1Þ

assuming that eA has the form eA ¼ USV�, where S is diagonal. From
the rank constraint, i.e., S has M non-zero diagonal entries, the
minimum of the above statement is obtained as follows:

mineAjrankðeAÞ¼M

jR� Sj ¼ min
si

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1
ðri � siÞ2

q
ð2Þ

min
si

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1
ðri � siÞ2

q
¼min

si

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXM

i¼1
ðri � siÞ2 þ

Xn

i¼Mþ1
r2

i

r

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼Mþ1
r2

i

q
ð3Þ

Therefore, eA of rank M is the best approximation of A in the
Frobenius norm sense when ri ¼ si ði ¼ 1; . . . ;MÞ and the corre-
sponding singular vectors are the same as those of A. If all but
the first M principal components are discarded, common-sense
concepts and emotions are represented by vectors of M
coordinates.

These coordinates can be seen as describing concepts in terms
of ‘eigenmoods’ that form the axes of AffectiveSpace, i.e., the basis
e0; . . . ; eM�1 of the vector space (Fig. 2). For example, the most sig-
nificant eigenmood, e0, represents concepts with positive affective
valence. That is, the larger a concept’s component in the e0 direc-
tion is, the more affectively positive it is likely to be. Concepts with
negative e0 components, then, are likely to have negative affective
valence. Thus, by exploiting the information sharing property of
TSVD, concepts with the same affective valence are likely to have
similar features – that is, concepts conveying the same emotion
tend to fall near each other in AffectiveSpace. Concept similarity
does not depend on their absolute positions in the vector space,
but rather on the angle they make with the origin. For example,
concepts such as beautiful day, birthday party, and make

person happy are found very close in direction in the vector
space, while concepts like feel guilty, be laid off, and shed

tear are found in a completely different direction (nearly opposite
with respect to the center of the space).



Fig. 2. A sketch of AffectiveSpace. Affectively positive concepts (in the bottom-left corner) and affectively negative concepts (in the up-right corner) are floating in the multi-
dimensional vector space.

Fig. 3. Pleasantness emotional flow. GðxÞ models how Pleasantness valence varies
with respect to arousal (x), which spans from emotional void (null value) to
heightened emotionality (unit value).
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The key to perform common-sense reasoning is to find a good
trade-off for representing knowledge. Since in reality two situa-
tions are never exactly the same, no representation should be too
concrete, or it will not apply to new situations, but, at the same
time, no representation should be too abstract, or it will suppress
too many details. Within AffectiveSpace, this knowledge represen-
tation trade-off can be seen in the choice of the vector space
dimensionality. The number M of singular values selected to build
AffectiveSpace is a measure of the trade-off between precision and
efficiency in the representation of the affective common-sense
knowledge base. The bigger M is, the more precisely AffectiveSpace
represents AffectNet’s knowledge, but generating the vector space
is slower, and so is computing dot products between concepts. The
smaller M is, on the other hand, the more efficiently AffectiveSpace
represents affective common-sense knowledge both in terms of
vector space generation and dot product computation. However,
too few dimensions risk not correctly representing AffectNet, as
concepts defined with too few features tend to be too close to each
other in the vector space and, hence, not easily distinguishable and
clusterable.

3.3. The emotion categorization model

The Hourglass of Emotions [2] is an affective categorization
model inspired by Plutchik’s studies on human emotions [25]. It
reinterprets Plutchik’s model by organizing primary emotions
around four independent but concomitant dimensions, whose
different levels of activation make up the total emotional state of
the mind. Such a reinterpretation is inspired by Minsky’s theory
of the mind, according to which brain activity consists of different
independent resources and that emotional states result from turn-
ing some set of these resources on and turning another set of them
off [26]. This way, the model can potentially synthesize the full
range of emotional experiences in terms of Pleasantness, Attention,
Sensitivity, and Aptitude, as the different combined values of the
four affective dimensions can also model affective states we do
not have a specific name for, due to the ambiguity of natural
language and the elusive nature of emotions.
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The primary quantity we can measure about an emotion we feel
is its strength. But, when we feel a strong emotion, it is because we
feel a very specific emotion. And, conversely, we cannot feel a spe-
cific emotion like fear or amazement without that emotion being
reasonably strong. For such reasons, the transition between
different emotional states is modeled, within the same affective
dimension, using the function GðxÞ ¼ � 1

r
ffiffiffiffi
2p
p e�x2=2r2 , for its symmet-

ric inverted bell curve shape that quickly rises up towards the unit
value (Fig. 3). In particular, the function models how valence or
intensity of an affective dimension varies according to different
values of arousal or activation (x), spanning from null value (emo-
tional void) to the unit value (heightened emotionality). Justifica-
tion for assuming that the Gaussian function (rather than a step
or simple linear function) is appropriate for modeling the variation
of emotion intensity is based on research into the neural and
behavioral correlates of emotion, which are assumed to indicate
emotional intensity in some sense. Nobody genuinely knows what
function subjective emotion intensity follows, because it has never
been truly or directly measured [27].

For example, the so-called Duchenne smile (a genuine smile
indicating pleasure) is characterized by smooth onset, increasing
to an apex, and a smooth, relatively lengthy offset [28]. More
generally, Klaus Scherer has argued that emotion is a process char-
acterized by non-linear relations among its component elements –
especially physiological measures, which typically look Gaussian
[29]. Emotions, in fact, are not linear [25]: the stronger the emo-
tion, the easier it is to be aware of it. Mapping this space of possible
emotions leads to a hourglass shape (Fig. 4). It is worth to note that,
in the model, the state of ‘emotional void’ is a-dimensional, which
contributes to determine the hourglass shape. Total absence of
emotion can be associated with the total absence of reasoning
Fig. 4. The 3D model and the net of the Hourglass of Emotions. Since affective states go
shape.
(or, at least, consciousness) [30], which is not an envisaged mental
state as, in human mind, there is never nothing going on. Each
affective dimension of the Hourglass model is characterized by
six levels of activation (measuring the strength of an emotion),
termed ‘sentic levels’, which represent the intensity thresholds of
the expressed or perceived emotion.

These levels are also labeled as a set of 24 basic emotions [25],
six for each of the affective dimensions, in a way that allows the
model to specify the affective information associated with text
both in a dimensional and a discrete form (Table 1). The dimen-
sional form, in particular, is termed ‘sentic vector’ and it is a
four-dimensional float vector that can potentially synthesize the
full range of emotional experiences in terms of Pleasantness,
Attention, Sensitivity, and Aptitude. In the model, the vertical
dimension represents the intensity of the different affective
dimensions, i.e., their level of activation, while the radial dimen-
sion represents K-lines [21] that can activate configurations of
the mind, which can either last just a few seconds or years. The
model follows the pattern used in color theory and research in
order to obtain judgments about combinations, i.e., the emotions
that result when two or more fundamental emotions are com-
bined, in the same way that red and blue make purple.

Hence, some particular sets of sentic vectors have special
names, as they specify well-known compound emotions (Fig. 5).
For example, the set of sentic vectors with a level of Pleasantness
2 [G (2/3), G (1/3)), i.e., joy, a level of Aptitude 2 [G (2/3), G (1/
3)), i.e., trust, and a minor magnitude of Attention and Sensitivity,
are termed ‘love sentic vectors’ since they specify the compound
emotion of love (Table 2). More complex emotions can be
synthesized by using three, or even four, sentic levels, e.g.,
joy + trust + anger = jealousy. Therefore, analogous to the way
from strongly positive to null to strongly negative, the model assumes a hourglass



Table 1
The sentic levels of the Hourglass model. Labels are organized into four affective dimensions with six different levels each, whose combined activity constitutes the ‘total state’ of
the mind.

Interval Pleasantness Attention Sensitivity Aptitude

[G (1), G (2/3)) Ecstasy Vigilance Rage Admiration
[G (2/3), G (1/3)) Joy Anticipation Anger Trust
[G (1/3), G (0)) Serenity Interest Annoyance Acceptance
(G (0), –G (1/3)] Pensiveness Distraction Apprehension Boredom
(–G (1/3), –G (2/3)] Sadness Surprise Fear Disgust
(–G (2/3), –G (1)] Grief Amazement Terror Loathing

Fig. 5. Hourglass compound emotions of second level. By combining basic emotions pairwise, it is possible to obtain complex emotions.

Table 2
The second-level emotions generated by pairwise combination of the sentic levels of
the Hourglass model. The co-activation of different levels gives birth to different
compound emotions.

Attention > 0 Attention < 0 Aptitude > 0 Aptitude < 0

Pleasantness > 0 Optimism Frivolity Love Gloat
Pleasantness < 0 Frustration Disapproval Envy Remorse
Sensitivity > 0 Aggressiveness Rejection Rivalry Contempt
Sensitivity < 0 Anxiety Awe Submission Coercion
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primary colors combine to generate different color gradations (and
even colors we do not have a name for), the primary emotions of
the Hourglass model can blend to form the full spectrum of human
emotional experience. Beyond emotion detection, the Hourglass
model is also used for polarity detection tasks. Since polarity is
strongly connected to attitudes and feelings, it is defined in terms
of the four affective dimensions, according to the formula:

p¼
XN

i¼1

PleasantnessðciÞþ jAttentionðciÞj� jSensitivityðciÞjþAptitudeðciÞ
3N

ð4Þ

where ci is an input concept, N the total number of concepts, and 3
the normalization factor (the Hourglass dimensions are defined as
float 2 [�1,+1]). In the formula, Attention is taken as an absolute
value since both its positive and negative intensity values corre-
spond to positive polarity values (e.g., surprise is negative in
the sense of lack of Attention, but positive from a polarity point of
view). Similarly, Sensitivity is taken as negative absolute value since
both its positive and negative intensity values correspond to nega-
tive polarity values (e.g., anger is positive in the sense of level of
activation of Sensitivity, but negative in terms of polarity). Besides
practical reasons, the formula is important because it shows a clear
connection between polarity (opinion mining) and emotions
(sentiment analysis).

3.4. Analogical reasoning in AffectiveSpace

In order to cluster AffectiveSpace with respect to the Hourglass
model (and, hence, reason on the semantic and affective related-
ness of natural language concepts), ANNs were recently found to
outperform standard clustering techniques, e.g., k-means or k-
medoids, for grasping the non-linearities of the vector space [31].
In particular, a new version of SenticNet is built by means of
extreme learning machine (ELM) [32] on account of its higher gen-
eralization performance (which can be useful for better matching
conceptual and affective patterns), faster learning speed (for con-
cept associations to be recalculated every time a new multi-word
expression is inserted in the common-sense knowledge base),
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and lower computational complexity (to facilitate big social data
analysis).

3.4.1. Extreme learning machine
The ELM approach was introduced to overcome some issues in

back-propagation network [33] training, specifically, potentially
slow convergence rates, critical tuning of optimization parameters
[34], and the presence of local minima that call for multi-start and
re-training strategies [35]. The ELM learning problem settings
require a training set, X, of N labeled pairs, where ðxi; yiÞ, where
xi 2 Rm is the ith input vector and yi 2 R is the associate expected
‘target’ value; using a scalar output implies that the network has
one output unit, without loss of generality.

The input layer has m neurons and connects to the ‘hidden’
layer (having Nh neurons) through a set of weights fŵj 2 Rm;

j ¼ 1; . . . ;Nhg. The jth hidden neuron embeds a bias term, b̂j, and
a nonlinear ‘activation’ function, uð�Þ; thus, the neuron’s response
to an input stimulus, x, is:

ajðxÞ ¼ uðŵj � xþ b̂jÞ ð5Þ

Note that (5) can be further generalized to a wider class of
functions [36] but for the subsequent analysis this aspect is not rel-
evant. A vector of weighted links, �wj 2 RNh , connects hidden neu-
rons to the output neuron without any bias [37]. The overall
output function, f ðxÞ, of the network is:

f ðxÞ ¼
XNh

j¼1

�wjajðxÞ ð6Þ

It is convenient to define an ‘activation matrix’, H, such that the
entry fhij 2 H; i ¼ 1; . . . ;N; j ¼ 1; . . . ;Nhg is the activation value of
the jth hidden neuron for the ith input pattern. The H matrix is:

H �
uðŵ1 � x1 þ b̂1Þ � � � uðŵNh

� x1 þ b̂Nh
Þ

..

. . .
. ..

.

uðŵ1 � xN þ b̂1Þ � � � uðŵNh
� xN þ b̂Nh

Þ

2
664

3
775 ð7Þ

In the ELM model, the quantities fŵj; b̂jg in (5) are set randomly
and are not subject to any adjustment, and the quantities f �wj;

�bg in
(6) are the only degrees of freedom. The training problem reduces
to the minimization of the convex cost:

min
f �w;�bg
kH �w� yk2 ð8Þ

A matrix pseudo-inversion yields the unique L2 solution, as
proven in [35]:

�w ¼ Hþy ð9Þ

The simple, efficient procedure to train an ELM therefore
involves the following steps:

1. Randomly set the input weights ŵi and bias b̂i for each hidden
neuron;

2. Compute the activation matrix, H, as per (7);
3. Compute the output weights by solving a pseudo-inverse

problem as per (9).

Despite the apparent simplicity of the ELM approach, the crucial
result is that even random weights in the hidden layer endow a
network with a notable representation ability [35]. Moreover, the
theory derived in [38] proves that regularization strategies can fur-
ther improve its generalization performance. As a result, the cost
function (8) is augmented by an L2 regularization factor as follows:

min
�w
fkH �w� yk2 þ kk �wk2g ð10Þ
3.4.2. The SenticNet framework
The emotion categorization framework is designed to receive as

input a natural language concept represented according to an M-
dimensional space and to predict the corresponding sentic levels
for the four affective dimensions involved: Pleasantness, Attention,
Sensitivity, and Aptitude. The dimensionality M of the input space
stems from the specific design of AffectiveSpace. As for the outputs,
in principle each affective dimension can be characterized by an
analog value in the range [�1,1], which represents the intensity
of the expressed or received emotion. Indeed, as discussed in Sec-
tion 3.3, those analog values are eventually remapped to obtain six
different sentic levels for each affective dimension.

The SenticNet framework spans each affective dimension sepa-
rately, under the reasonable assumption that the various dimen-
sions map perceptual phenomena that are mutually independent
[2]. As a result, each affective dimension is handled by a dedicated
ELM, which addresses a regression problem. Thus, each ELM-based
predictor is fed by the M-dimensional vector describing the con-
cept and yields as output the analog value that would eventually
lead to the corresponding sentic level. Fig. 6 provides the emotion
categorization scheme; here, gX is the level of activation predicted
by the ELM and lX is the corresponding sentic level.

In theory, one might also implement the emotion categorization
scheme showed in Fig. 6 by using four independent predictors
based on a multi-class classification schema. In such a case, each
predictor would directly yield as output a sentic level out of the
six available. However, two important aspects should be taken into
consideration. First, the design of a reliable multi-class predictor is
not straightforward, especially when considering that several
alternative schemata have been proposed in the literature without
a clearly established solution. Second, the emotion categorization
scheme based on sentic levels stem from an inherently analog
model, i.e., the Hourglass of Emotions. This ultimately motivates
the choice of designing the four prediction systems as regression
problems.

In fact, the emotion categorization scheme shown in Fig. 6
represents an intermediate step in the development of the final
emotion categorization system. One should take into account that
every affective dimension can in practice take on seven different
values: the six available sentic levels plus a ‘neutral’ value, which
in theory correspond to the value Gð0Þ in the emotion categoriza-
tion model discussed in Section 3.3. In practice, though, the neutral
level is assigned to those concepts that are characterized by a level
terms of the four Hourglass model’s dimensions.
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activation that lies in an interval around Gð0Þ in that affective
dimension. Therefore, the final framework should properly manage
the eventual seven-level scale. To this end, the complete categori-
zation system is set to include a module that is able to predict if an
affective dimension is present or absent in the description of a con-
cept. In the latter case, no sentic level should be associated with
that affective dimension (i.e., Ix ¼ null).

This task is addressed by exploiting the hierarchical approach
presented in Fig. 7. Hence, given a concept and an affective dimen-
sion, first a SVM is entitled to decide if a sentic level should be
assessed. Accordingly, the ELM-based predictor is asked to assess
the level of activation only if the SVM-based classifier determines
that a sentic level should be associated with that concept. Other-
wise, it is assumed that the neutral level should be associated with
that concept (i.e., the corresponding affective dimension is not
involved in the description of that concept). Obviously, such a
structure is replicated for each affective dimension. Fig. 8 schemat-
izes the complete SenticNet framework for classifying emotional
concepts in terms of Pleasantness, Attention, Sensitivity, and Apti-
tude (from which a polarity value can also be inferred according to
Formula (4)).
4. Sentic patterns

Despite being more effective than word-based methods, sentic
computing is limited by the fact that does not take into account
discourse structure. The bag-of-concepts model [2] can represent
the semantics associated to a natural language sentence much
better than bags of words. In the bag-of-words model, in fact, a
concept such as cloud computing would be split into two sepa-
rate words, disrupting the semantics of the input sentence (in
which, for example, the word cloud could wrongly activate con-
cepts related to weather). The bag-of-concepts model, however,
would not be able to correctly infer the polarity of a sentence such
as ‘‘the phone is nice but slow’’, in which it would just extract the
concepts phone, nice, and slow (which would hardly result in a
negative polarity because nice and slow bear antithetic polarity
values that annul each other).
Fig. 7. The hierarchical scheme in which a SVM-based classifier first filters out
unemotional concepts and an ELM-based predictor then classifies emotional
concepts in terms of the involved affective dimension.
To this end, we further develop and apply linguistic patterns
that were initially developed for affective common-sense knowl-
edge acquisition [39]. Such patterns, termed sentic patterns, allow
sentiment to flow from concept to concept based on the depen-
dency relation of the input sentence and, hence, to generate a bin-
ary (positive or negative) polarity value reflecting the feeling of the
speaker. It should be noted that, in some cases, the emotion attrib-
uted to a speaker can differ from his/her opinion. For example, (1)
conveys a negative sentiment, even though the speaker conveys
that he/she is satisfied. There is a gap between the informational
and emotional contents of the utterance and we are interested in
the latter.
(1)
 I am barely satisfied.
Similarly, a speaker can convey an objectively negative fact by
presenting it in a positive way, as in (2).
(2)
 It is fortunate that Paul died a horrible death.
Irrespective of Paul’s fate, the (possibly psychotic) speaker pre-
sents it as a good thing. Hence, the inferred polarity is positive.
Nevertheless, in most product or service reviews, the sentiment
attributed to the speaker coincides with the opinion expressed.
For example, if a sentence attributes a positive property to an
object (e.g., ‘‘The battery is very good’’), the sentiment of the
speaker is considered corresponding to his/her evaluation.

In order to compute polarity, sentic patterns leverage on the
SenticNet framework (Section 3.4.2) and on the syntactic depen-
dency relations found in the input sentence. It is therefore an expli-
cit approach that rests on linguistic considerations rather than on
less interpretable models, such as those produced by most
machine learning approaches. The upshot of this approach is that,
besides being interpretable, it can take into account complex lin-
guistic structures in a straightforward manner and can easily be
modified and adapted.

To the best of our knowledge, the ensemble application of lin-
guistics and common-sense computing has never been explored
before in this context. The literature on discourse structure for
opinion mining only reports a few techniques based on the propa-
gation of the polarity of seed words according to simple ‘opposition
constraints’ or syntactic dependency relations indicating twists
and turns in documents [40–43].

The general template we propose for sentence-level polarity
detection is illustrated in Section 4.1, notably by describing how
polarity gets inverted (Section 4.1.2) and the way the calculus of
polarity takes advantage of the discursive structure of the sentence
(Section 4.1.3). The rules associated with specific dependency types
are given in Section 4.2. A concrete example is given in Section 4.3.

4.1. General rules

4.1.1. Global scheme
The polarity score of a sentence is a function of the polarity

scores associated to its sub-constituents. In order to calculate those
polarities, sentic patterns consider each of the sentence’s tokens by
following their linear order and look at the dependency relations
they entertain with other elements. A dependency relation is a bin-
ary relation characterized by the following features:

� The type of the relation that specifies the nature of the (syntac-
tic) link between the two elements in the relation.
� The head of the relation: this is the element that is the pivot of

the relation. Core syntactic and semantics properties (e.g.,
agreement) are inherited from the head.
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� The dependent is the element that depends on the head and
which usually inherits some of its characteristics (e.g., number,
gender in the case of agreement).

Most of the times, the active token is considered in a relation if
it acts as the head of the relation, although some rules are an
exception. Once the active token has been identified as the trigger
for a rule, there are several ways to compute its contribution,
depending on how the token is found in SenticNet. The preferred
way is to consider the contribution not of the token alone, but in
combination with the other element in the dependency relation.

This crucially exploits the fact that SenticNet is not just a polar-
ity dictionary, but also encodes the polarity of complex concepts.
For example, in (3), the contribution of the verb watch will prefer-
ably be computed by considering the complex concept watch

movie rather than the isolated concepts watch and movie.
(3)
 I watched a movie.
If SenticNet has no entry for the multi-word concept formed by
the active token and the element related to it, then the way indi-
vidual contributions are taken into account depends on the type
of the dependency relation. The specifics of each dependency type
are given in 4.2.

Since SenticNet sometimes encodes sentiment scores for a
token and a specific categorization frame, sentic patterns also
check whether there is an entry for a frame corresponding to the
active token and the part of speech of the other term in the depen-
dency relation.

4.1.2. Polarity inversion
Once the contribution of a token has been computed, sentic pat-

terns check whether the token is in the scope of any polarity
switching operator. The primary switching operator is negation:
the use of negation on a positive token (4-a) yields a negative
polarity (4-b).
(4)
 a.
 I liked the movie.

b.
 I did not like the movie.
However, double negation can keep the polarity of the sentence
intact by flipping the polarity twice. For example, (5-a) is positive

and (5-b) inverts its polarity. However, (5-c) keeps the polarity of
(5-a) identical because in (5-c) dislike conveys negative polarity
and, hence, nullifies the negation word not.

nal concepts in terms of the four affective dimensions of the Hourglass model.
(5)
 a.
 I like it.

b.
 I do not like it.

c.
 I do not dislike it.
Besides negation, other polarity switching operators include:
� exclusives such as only, just, merely. . .([44,45])
� adverbs that type their argument as being low, such as barely,

hardly, least. . .
(6)
 Paul is the least capable actor of his time.
� upper-bounding expressions like at best, at most, less than. . .
� specific constructions such as the use of past tense along with a
comparative form of an adjective as in (7) or counter-factuals
expressed by expressions like would/could have been
(7)
 a.
 My old phone was better. [Negative

b.
 My old phone was slower. [Positive
Whenever a token happens to be in the scope of such an ele-
ment, its polarity score is inverted. Finally, inversion also happens
when some specific scopeless expressions occur in a sentence, such
as except me.

A shortcoming of our treatment of negation is that it does not
take into account the different effects of negation on various layers
of meaning. It is a well known fact in linguistics that some items
convey complex meanings on different layers. Presupposition is
probably the most studied phenomenon of this kind: both versions
of (8) convey that John killed his wife, even though the second ver-
sion is the negation of the first one ([46,47]).
(8)
 a.
 John regrets killing his wife.

b.
 John does not regret killing his wife.
In the domain of sentiment related expressions, the class of

expressives has a comparable behavior, even though these elements



Table 3
Adversative sentic patterns.

Left conjunct Right conjunct Total sentence

Pos. Neg. Neg.
Neg. Pos. Pos.
Pos. Undefined Neg.
Neg. Undefined Pos.
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have been analyzed as conventional implicatures rather than pre-
suppositions ([48]). For example, a verb like waste can be analyzed
as conveying two distinct pieces of meaning: an event of money
spending and a negative evaluation regarding this spending. In
some cases, this negative component is not affected by negation:
(9) convey that the phone is not worth the money, even though
the verb waste is embedded under a negation.
Undefined Pos. Pos.
Undefined Neg. Neg.
(9)
 a.
 I will not waste my money on this phone.

Pos. Pos. Pos.
Neg. Neg. Neg.
b.
 I do not want to waste my money on this phone.

c.
 I did not waste my money on this phone.
Therefore, the current treatment of negation needs to be sup-
plemented by a classification of expressions indicating whether
their negative (or positive) character has to be analyzed as a main
content, affected by negation and other operators, or as a projective
content, i.e., content that ‘survives’ or is non-canonically affected by
an embedding under operators that usually affect truth-condi-
tional content. It might prove difficult to be exhaustive in our
description since projection is not a purely semantic problem but
is also affected by pragmatic contextual factors [49]. Nevertheless,
it is conceivable to rely on a list of elements which convey senti-
ment on a clearly non-main level and to tune the algorithm to deal
with them.

4.1.3. Coordinated and discourse structures
Coordination is an informationally rich structure for which sen-

tic patterns have rules that do not specify which elements should
be looked for in SenticNet, rather they indicate how the contribu-
tions of different elements should be articulated.

In some cases, a sentence is composed of more than one ele-
mentary discourse unit (in the sense of Asher and Lascarides
[50]). In such cases, each unit is processed independently and the
discourse structure is exploited in order to compute the overall
polarity of the sentence, especially if an overt discourse cue is
present.

At the moment, we only consider structures that use an overt
coordination cue and limit ourselves to adversative markers like
but and to the conjunctions and and or.

But and adversatives. Adversative items like but, even though,
however, although, etc. have long been described as connecting
two elements of opposite polarities. They are often considered as
connecting two full-fledged discourse units in the majority of cases
even when the conjuncts involve a form of ellipsis [51,52].

It has also long been observed that, in an adversative structure,
the second argument ‘‘wins’’ over the first one [53,54]. For example
in (10-a) the overall attitude of the speaker goes against buying the
car, whereas just inverting the order of the conjuncts yields the
opposite effect (10-b) while keeping the informational content
identical.
(10)
 a.
 This car is nice but expensive.

b.
 This car is expensive but nice.
Therefore, when faced with an adversative coordination, sentic
patterns primarily consider the polarity of the right member of the
construction for the calculation of the polarity of the overall sen-
tence. If it happens that the right member of the coordination is
unspecified for polarity, sentic patterns invert the polarity of the
left member. The various possibilities are summarized in Table 3.

As shown in the Table, the information retrieved from SenticNet
overrides the semantics of adversative constructions when there is a
conflict. If an adversative sentic pattern retrieves the same polarity
for both conjuncts from SenticNet, it attributes this polarity to the
overall sentence, ignoring the opposition marked by the adversative.

Specific heuristics triggered by tense are added to this global
scheme. Whenever the two conjuncts share their topic and the sec-
ond conjunct is temporally anterior to the first one, the overall
polarity will be that of the first conjunct. Thus, in (11) since both
conjuncts are about the director and since the first one is posterior,
the first one drives the polarity calculus.
(11)
 This director is making awful movies now, but he used
to be good.
Another specific rule is implemented to deal with structures
combining not only and but also, as in (12).
(12)
 The movie is not only boring but also offensive.
In such cases, but cannot be considered an opposition marker.
Rather, both its conjuncts argue for the same goal. Therefore, when
this structure is detected, the rule applied is the same as for con-
junctions using and (cf. infra).

And. The conjunction and has been described as usually con-
necting arguments that have the same polarity and are partly inde-
pendent [55]. Therefore, when a coordination with and is
encountered, the overall polarity score of the coordination corre-
sponds to the sum of both conjuncts. If only one happens to have
a polarity score, this score is used with the addition of a small
bonus to represent the fact that and connects independent argu-
ments (i.e., the idea that speakers using and stack up arguments
for their conclusions). In case of conflicts, the polarity of the second
conjunct is used.

Or. A disjunction marked by or is treated in the same way as the
and disjunction, i.e., by assuming that in the case one of the con-
juncts is underspecified, its polarity is determined by the other.
However, there is no added bonus to the polarity score since the
semantics of disjunction do not imply independent arguments.

4.2. Dependency rules

In this section, we go over all of the rules that have been imple-
mented to deal with specific dependency patterns. The main goal
of these rules is to drive the way concepts are searched in Sentic-
Net. One can roughly distinguish between two classes of
dependencies:

� Relations of complementation where the dependent is an essen-
tial argument of the head.
� Relations of modification where the dependent is not sub-cate-

gorized by the head and acts as an adjunct.

We begin by focusing on essential arguments of verbs (Sec-
tion 4.2.1), then move to modifiers (Section 4.2.2) and describe
the rest of the rules in Section 4.2.3.

The default behavior of most rules is to build a multi-word con-
cept formed by concatenating the concepts denoted by the head
and the dependent of the relation (as exemplified in (3)). This
multi-word concept is then looked for in SenticNet. If this is not
found, the behaviors of the rule differ.
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Therefore, in our descriptions of the rules, we systematically
indicate:

� what triggers the rule,
� the behavior of the rule, i.e., the way it constructs complex con-

cepts from the parts of the dependency relation that is under
scrutiny.

To simplify the notation, we will use the following notation:

� R denotes the relation type,
� h the head of the relation,
� d the dependent of the relation.

Therefore, writing Rðh; dÞ means that the head h entertains a
dependency relation of type R with the dependent d. We use type-
writer font to refer to the concept denoted by a token, e.g., movie is
the concept denoted by both tokens movie and movies. The con-
cepts are the elements we look for in SenticNet.

4.2.1. Relations of complementation
We consider four relations of complementation, all centered on

the verb as the head of the relation. One rule deals with the subject
of the verb, the other three cover the different types of object a
verb can take: noun phrases, adjective or full clauses.

4.2.1.1. Subject nouns.
Trigger: when the active token is found to be the syntactic sub-
ject of a verb.
Behavior: if the multi-word concept (h,d) is found it is used to
calculate the polarity of the relation, otherwise nothing is done:
subsequent relations will be activated later.
Example 1: In (13), movie is in a subject relation with boring.
(13)
 The movie is boring.
If the concept (movie, boring) is in SenticNet, its polarity will be

used. Otherwise, sentic patterns perform a detailed analysis of the
relation to obtain the polarity. In this case, sentiment of the h is
treated as the sentiment of the relation. For example

Example 2: In (14), relieved is in a subject relation with relieved.
Here, the polarity of trouble is negative and the polarity of relieve
is positive. According to our rule sentiment is carried by the
relieve. So, here the sentence expresses a positive sentiment.
(14)
 His troubles were relieved.
1 Usually the token will be a verb, although when the tensed verb is a copula, the
head of the relation is rather the complement of the copula.
4.2.1.2. Direct nominal objects. This complex rule deals with direct
nominal objects of a verb. Its complexity is due to the fact that
the rule attempts to determine the modifiers of the noun in order
to compute the polarity.

Trigger: when the active token is head verb of a direct object
dependency relation.
Behavior: rather than searching directly for the binary concept
(h,d) formed by the head and dependent, the rule first tries to
look for richer concepts by including modifiers of the nominal
object. Specifically, the rule looks for relative clauses and
prepositional phrases attached to the noun and if these are
found, it looks for multi-word concepts built with these ele-
ments. Thus, if the dependent d is head of a relation R0ðd; xÞ
where R0 is a relation of modification, then sentic patterns will
consider the ternary concept (h,d,x). If all fails and the binary
concept (h,d) is not found either, the sign of the polarity is
preferably driven by the head of the relation and in last resort
by the dependent.
Example 1: In (15), sentic patterns first look for (see,mo-

vie,in 3D) and, if this is not found, they will look for (see,-
movie) and then (see, in 3D).
(15)
 Paul saw the movie in 3D.
(movie,in 3D) will not be treated at this stage since it will later be
treated by the standard rule for prepositional attachment. If this
fails, then the polarity will be that of see and eventually movie

assuming that see has not been found.

4.2.1.3. Adjective and clausal complements. These rules deal with
verbs having as complements either an adjective or a closed clause
(i.e., a clause, usually finite, with its own subject).

Trigger: when the active token is head verb of one of the com-
plement relations.
Behavior: first, sentic patterns look for the binary concept
(h,d). If it is found, the relation inherits its polarity properties.
If not found:
� if both elements h and d are independently found in Sentic-

Net, then we take sentiment of d as the sentiment of the
relation.

� if the dependent d alone is found in SenticNet, its polarity is
attributed to the relation

Example: in (16), smells is the head of a dependency relation
with bad as the dependent.
(16)
 This meal smells bad.
The relation inherits the polarity of bad.
4.2.1.4. Open clausal complements. Open clausal complements are
clausal complements of a verb that do not have their own subject,
meaning that they (usually) share their subjects with that of the
matrix clause. The corresponding rule is complex in the same
way as the one for direct objects.

Trigger: when the active token is the head predicate of the
relation1

Behavior: as for the case of direct objects, sentic patterns try to
determine the structure of the dependent of the head verb. Here
the dependent is itself a verb, therefore, sentic patterns attempt
to establish whether there is a relation R0 such that R0ðd; xÞ and
where x is a direct object or a clausal complement of d. Sentic
patterns are therefore dealing with three elements: the head/
matrix verb (or predicate) h, the dependent predicate d, and
the (optional) complement of the dependent predicate x. Once
these have been identified, sentic patterns first test the exis-
tence of the ternary concept (h,d,x). If this is found in Sentic-
Net, the relation inherits its properties. If not found, sentic
patterns then check for the presence of individual elements in
SenticNet.
� If (d,x) is found as well as h or if all three elements h, d and

x are independently found in SenticNet, then the final senti-
ment score will be that of (d,x) or that calculated from d

and x by following the appropriate rule. The head verb then
affects the sign of this score. The rules for computing the sign
are summarized in Table 4 by indicating the final sign of the
score in the function of the signs of individual scores of each
of the three relevant elements.

� If the dependent verb d is not found in SenticNet but the
head verb h and the dependent’s complement x can be



Table 4
Polarity algebra for open clausal complements.

Matrix predicate (h) Dependent predicate (d) Dep. comp. (x) Overall polarity Example

Pos. Pos. Pos. Pos. (17-a)
Pos. Pos. Neg. Neg. (17-b)
Pos. Neg. Pos. Neg. (17-c)
Pos. Neg. Neg. Pos. (17-d)
Neg. Pos. Pos. Neg. (17-e)
Neg. Pos. Neg. Neg. (17-f)
Neg. Neg. Pos. Neg. (17-g)
Neg. Neg. Neg. Neg. (17-h)
Pos. Neutral Pos. Pos. (17-i)
Pos. Neutral Neg. Neg. (17-j)
Neg. Neutral Pos. Neg. (17-k)
Neg. Neutral Neg. Neg. (17-l)
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found, then they are used to produce a score with a sign
again corresponding to the rules stated in Table 4.

Example: In order to illustrate every case presented in Table 4, we
use the paradigm in (17). For each example, the final sign of the
polarity is the one mentioned in Table 4. The examples assume
the following:

� h, the matrix predicate, is either:
– perfect, which has a positive polarity,
– useless, which has negative polarity.
� d, the dependent verb, is either:

– gain, which has a positive polarity,
– lose, which has a negative polarity,
– talk, which is not found isolated in SenticNet, i.e., is consid-

ered neutral here.
� x, the complement of the dependent verb, is either:

– money, which has a positive polarity,
– weight, which has a negative polarity2

It must be remembered that for such examples, we assume that the
sentiment expressed by the speaker corresponds to his/her opinion
on whatever this refers to in the sentence: if the speaker is positive
about the thing he/she is talking about, we will consider that he/she
is expressing positive sentiments overall.
th
au
ap
th
(17)
2 The ne
e meani
tomatic
pear ne
e negati
a.
gativ
ng of
ally c
gative
ve.
This is perfect to gain money.

b.
 This is perfect to gain weight.

c.
 This is perfect to lose money.

d.
 This is perfect to lose weight.

e.
 This is useless to gain money.

f.
 This is useless to gain weight.

g.
 This is useless to lose money.

h.
 This is useless to lose weight.

i.
 This is perfect to talk about money.

j.
 This is perfect to talk about weight.

k.
 This is useless to talk about money.

l.
 This is useless to talk about weight.
4.2.2. Modifiers
Modifiers, by definition, affect the interpretation of the head

they modify. This explains why in most of the following rules the
dependent is the guiding element for the computation of polarity.
e score associated with weight does not reflect a deliberate opinion on
term. This score is extracted from Senticnet and as such has been

omputed as explained in [7]. Thus, even though the term might not
at first glance, its sentiment profile is nevertheless biased towards
4.2.2.1. Adjectival, adverbial and participial modification. The rules
for items modified by adjectives, adverbs or participles all share
the same format.

Trigger: these rules are activated when the active token is
modified by an adjective, an adverb or a participle.
Behavior: first, the multi-word concept (h,d) is looked for in
SenticNet. If not found, then polarity is preferably driven by
the modifier d if it is found in SenticNet, and h as a last resort.
Example: in (18) both sentences involve elements of opposite
polarities. The rule ensures that the polarity of the modifiers
is the one that is used and not that of the head of the relation:
e.g., in (18-b) beautifully takes precedence over depressed.
(18)
 a.
 Paul is a bad loser.

b.
 Mary is beautifully depressed.
Unlike other NLP tasks such as emotion recognition, in fact, the
main aim of sentiment analysis is to infer the polarity expressed
by the speaker (i.e., the person who writes the review of a hotel,
product, or service). Hence, a sentence such as (18-b) would be
positive as it reflects the positive sentiment of the speaker.

4.2.2.2. Relative clauses.
Trigger: the rule is activated when the active token is modified
by a relative clause, restrictive or not. The dependent usually is
the verb of the relative clause.
Behavior: if the binary concept (h,d) is found in SenticNet, it
assigns polarity to the relation, otherwise the polarity is
assigned (in order of preference):
� By the value of the dependent verb d if it can be found.
� By the value of the active token h if it is found in SenticNet.
Example: in (19) is in relation with love which acts as a modi-
fier in the relative clause.
(19)
 I saw the movie you love.
Assuming (love, movie) is not in SenticNet and that love is, then
the latter will contribute to the polarity score of the relation. If
neither of these two is in SenticNet, then the dependency will
receive the score associated with movie. In the case of (19), the
polarity will be inherited at the top level because the main verb
see is neutral. However, the overall polarity of a sentence like (20)
is positive since, in case the subject is a first person pronoun, the
sentence directly inherits the polarity of the main verb, here like
(see Section 4.2.3 for more details).
(20)
 I liked the movie you love.
Similarly, (21) will bear an overall negative sentiment because the
main verb is negative.
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(21)
 I disliked the movie you love.
4.2.2.3. Prepositional phrases. Although prepositional phrases (PPs)
do not always act as modifiers, we introduce them in this section
as the distinction does not really matter for their treatment (and
also because the Stanford dependency parser on which we rely
does not differentiate between modifier and non-modifier PPs).

Trigger: the rule is activated when the active token is recog-
nized as typing a prepositional dependency relation. In this
case, the head of the relation is the element to which the PP
attaches, and the dependent is the head of the phrase embed-
ded in the PP. This means that the active element is not one
of the two arguments of the relation but participates in defining
the type of the relation.
Behavior: instead of looking for the multi-word concept formed
by the head h and dependent d of the relation, sentic patterns
use the preposition prep (corresponding to the active token) to
build a ternary concept (h, prep, d). If this is not found, then
they look for the binary concept (prep, d) formed by the prep-
osition and the dependent and use the score of the dependent d
as a last resort. This behavior is overridden if the PP is found to
be a modifier of an NP that acts as the direct object.
Example 1: in (22), the parser yields a dependency relation
typed prep_with between the verb hit and the noun hammer
(=the head of the phrase embedded in the PP).
(22)
 Bob hit Mary with a hammer.
Therefore, sentic patterns first look for the multi-word concept
(hit, with, hammer) and, if this is not found, they look for (with,
hammer) and finally hammer itself.

Example 2: in (23), the PP headed by in is a modifier of the verb
complete which is positive in SenticNet. Terrible way is however
negative and because it directly modifies the verb, it is this ele-
ment which gives the overall polarity.
(23)
 Paul completed his work in a terrible way.
Example 3: in (24), the PP introduced by in is attached to the
direct object of the predicate is a failure.
(24)
 This actor is the only failure in an otherwise brilliant
cast.
Here, sentic patterns will ignore the contribution of the PP since the
main sentiment is carried by the combination of the verb and its
object, i.e., it is negative.

4.2.2.4. Adverbial clause modifier. This kind of dependency concerns
full clauses that act as modifiers of a verb. Standard examples
involve temporal clauses and conditional structures.

Trigger: the rule is activated when the active token is a verb
modified by an adverbial clause. The dependent is the head of
the modifying clause.
Behavior: if the binary concept (h,d) is found in SenticNet it is
used for calculating the score. Otherwise, the rule assigns polar-
ity by considering first the dependent d then the head h.
Example: in (25), playing modifies slows, if the multi-word con-
cept (slow, play) is not in SenticNet, then play will be con-
sidered and finally slow.
(25)
 The machine slows down when the best games are
playing.
4.2.2.5. Untyped dependency. Sometimes the dependency parser

that we use detects two elements entertaining a dependency rela-
tion but is unable to type it properly. In this case, if the multi-word
concept (h,d) is not found, then the polarity is computed by con-
sidering the dependent d alone.

4.2.3. Other rules
4.2.3.1. First person heuristics. On top of the rules presented so far,
we implemented a specific heuristic when the subject of a sentence
is the first person pronoun. When this is the case, the sentiment is
essentially carried by the head verb of the relation. This is moti-
vated by a contrast as the one in (26):
(26)
 a.
 Paul likes bad movies.

b.
 I like bad movies.
Whereas (26-a) is a criticism of Paul and his tastes, (26-b) is
speaker-oriented as he/she conveys his/her (maybe peculiar)
tastes. What matters is that the speaker of (26-b) is being positive
and uses the verb like. This overrides the calculus that would yield
a negative orientation as in (26-a) by considering the combination
of like and bad movies.

Similarly, in (27) the use of the first person overrides the effect
produced by the relative clause which you like. The overall senti-
ment is entirely driven by the use of the verb hate which is
negative.
(27)
 I hate the movie which you like.
4.3. Walking through an example

Here we describe how the global sentiment for a complex
example is computed. This is made in order to show how the sen-
timent flows in the treatment of a sentence. We will base our pre-
sentation on the (artificial) case of (28).
(28)
 The producer did not understand the plot of the movie
inspired by the book and preferred to use bad actors.
The relevant dependency relations here are (with the concept
arguments given between parentheses):

1. A general coordination with and (understand, preferred).
2. Two subject relations (understand, producer) and (preferred,

producer).
3. A direct object relation (understand, plot).
4. A prepositional attachment typed by of (plot, movie).
5. A participial modification (plot, inspired).
6. A open clausal complement relation (preferred, use).
7. Another direct object relation (use, actors).
8. An adjective modifying a noun (actors, bad).

First, the discourse structure parser detects that the sentence
has two discourse units conjoined by and. The final polarity will
thus be a function of the elements p1 = The producer did not under-
stand the plot of the movie based on the book and p2 = [the producer]
preferred to use bad actors.

The computation of p1 entails checking the relations in the fol-
lowing order:

� The subject relation (understand, producer) is treated to check
whether the multi-word concept (producer understand)

can be found in SenticNet. This is not the case so nothing is done.
� The relations having the verb understand as their head are

looked at. Here there is only the direct object relation. In this
relation the dependent object is modified in two ways:



60 S. Poria et al. / Knowledge-Based Systems 69 (2014) 45–63
– by a prepositional phrase,
– by a participial modifier.

Thus, sentic patterns will first try to find the multi-word concept
(understand, plot, of, movie). Since this one is not found, they
will try (understand, plot, inspired) which is not in Sentic-
Net either. In the end, sentic patterns fall back on the concept
(understand, plot) which is found in SenticNet. Therefore, the
polarity stack is set at the corresponding positive value.
� Since the previous polarity is in the scope of a sentential nega-

tion, the sign of the previous score is switched to give a negative
value.

All relations having been used in the first conjunct, sentic pat-
terns move on to p2.

� The open clausal modification rule determines the dependent of
the dependent. This case means identifying actors as the direct
object of use.
� Since actors is modified by bad, it will inherit its negative

orientation.
� The only relevant elements for the computation of the polarity

due to the open clausal complement are prefer (which is posi-
tive) and actor (negative because of its adjectival modification).
Therefore, the final polarity score is also negative.

In the end, both of the and conjuncts are negative meaning that
the overall polarity of the sentence is also negative with a value
equal to the sum of the scores of each conjunct.
5. Machine learning aid

Despite much more efficient than bag-of-words and bag-of-
concepts models, the proposed approach is still limited by the rich-
ness of the knowledge base and the set of dependency-based rules.
In order to be able to make a good guess even when no sentic pat-
tern is matched or SenticNet entry found, we resort to machine
learning. In particular, we use two well-known sentiment analysis
datasets (Section 5.1), a set of four features per sentence (Sec-
tion 5.2) and an ELM classifier (Section 5.3) to label stretches of
text as positive or negative.

5.1. Datasets used

5.1.1. Movie review dataset
We used a dataset derived from the corpus developed by Pang

and Lee [56]. This corpus includes 1000 positive and 1000 negative
movie reviews authored by expert movie reviewers, collected from
rottentomatos.com, with all text converted to lowercase and lem-
matized, and HTML tags removed. Originally, Pang and Lee manu-
ally labeled each review as positive or negative. Later, Socher et al.
[57] annotated this dataset at sentence level. They extracted 11855
sentences from the reviews and manually labeled them using a fine
grained inventory of five sentiment labels: strong positive, positive,
neutral, negative, and strong negative.

Since in this work we considered only binary classification, we
removed from the dataset the sentences marked as neutral and
reduced the labels on the remaining sentences to positive or nega-
tive. Thus, our final movie dataset contained 9613 sentences, of
which 4800 were labeled as positive and 4813 negative. We
divided this dataset into 6920 sentences for training and 2693
for testing.

5.1.2. Blitzer dataset
We also used the dataset introduced by Blitzer et al. [58], which

consists of product reviews in seven different domains. For each
domain there are 1000 positive and 1000 negative reviews. We
only used reviews under the electronics category. We randomly
extracted from them 7210 non-neutral sentences, 3505 from posi-
tive reviews and 3505 from negative ones, and manually annotated
them as positive or negative. Note that the polarity of individual
sentences does not always coincide with the overall polarity of
the review: for example, in a negative review we found sentences
such as ‘‘This is a good product – sounds great’’, ‘‘gets good battery
life’’, ‘‘everything you ’d hope for in an iPod dock’’ or ‘‘It is very
cheap’’, which we labeled as positive. Specifically, we obtained
3800 sentences marked as positive and 3410 as negative.

5.2. Feature set

5.2.1. Common-sense knowledge features
Common-sense knowledge features consist of concepts repre-

sented by means of AffectiveSpace. In particular, concepts extracted
from text through the semantic parser are encoded as 100-dimen-
sional real-valued vectors and then aggregated into a single vector
representing the sentence by coordinate-wise summation:

xi ¼ m
N

j¼1
xij;

where xi is the ith coordinate of the sentences feature vector,
i ¼ 1; . . . ;100; xij is the ith coordinate of its jth concepts vector,
and N is the number of concepts in the sentence.

5.2.2. Sentic features
The polarity scores of each concept extracted from the sentence

were obtained from SenticNet and summed up to produce a single
scalar feature.

5.2.3. Part of speech features
This feature was defined by number of adjectives, adverbs, and

nouns in the sentence, which gave three distinct features.

5.2.4. Modification features
This is a single binary feature. For each sentence, we obtained its

dependency tree from the dependency parser. We analyzed this tree
to determine whether there is any word modified by a noun, adjec-
tive, or adverb. The modification feature was set to 1 if we found any
modification relation in the sentence; it was set to 0 otherwise.

5.2.5. Negation features
Similarly, the negation feature was a single binary feature

determined by whether there was any negation in the sentence.
It is important because the negation can invert the polarity of
the sentence.

5.3. Classification

A SVM and a ELM classifiers are trained, over the training por-
tion of the movie review dataset, using the sentence feature set
described above. We found that ELM outperformed SVM in terms
of both accuracy and training time. Specifically, on the testing por-
tion of the movie review dataset, we obtained 67.35% accuracy
with ELM and 65.67% with SVM. The same model trained on the
movie dataset sentences but applied to our Blitzer-based dataset
described in Section 5.1.2, achieved 72.00% accuracy with ELM
but a much lower accuracy with SVM. Conversely, we trained the
model on our Blitzer-derived dataset and evaluated it on our movie
test set, obtaining 66.25% accuracy with ELM and 61.00% with SVM.

Hence, whenever we are unable to process a sentence through
SenticNet and sentic patterns, we use the trained ELM classifier
to make a good guess on the sentence polarity, based on the avail-
able features.



Table 5
Results obtained using different algorithms on our movie review dataset.

Algorithm Precision (%)

Sentic patterns 84.15
Machine learning 67.35
Ensemble classification 86.21

Table 6
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6. Experimental results and discussion

The proposed approach (available as a demo at http://sen-
tic.net/demo) was tested on two datasets: the movie review
dataset described in Section 5.1.1 and the Blitzer-derived dataset
described in Section 5.1.2. As shown by results below, the best
accuracy is achieved when applying an ensemble of knowledge-
based analysis (Section 4) and machine-learning classification
(Section 5), as the latter can act as reserve for the former when
no match is found in SenticNet (Fig. 9).
Comparison with the state of the art.

System Precision (%)

Socher et al. [59] 80.00
Socher et al. [57] 85.40
Proposed method 86.21
6.1. Results

6.1.1. Results on the movie review dataset
We evaluated our approach on the Movie Review Dataset and

obtained an accuracy of 86.21%, which is better than the state-of-
the-art accuracy reported by Socher et al. [57] (85.40%). Table 5
shows our results with ensemble classification and without
ensemble classification.

Table 6 presents the comparison of the proposed system with
well-known state of the art.
6.1.2. Results on the Blitzer-derived dataset
On our Blitzer-derived dataset described in Section 5.1.2, an

accuracy of 87.00% was achieved at sentence level (see Table 7).
Since we developed this corpus in frame of the present work, there
are no available results for comparative evaluation with other
systems. However, the accuracy achieved is superior to the average
results reported by state-of-the-art systems on other corpora.
Fig. 9. Flowchart of the sentence-level polarity detection system. Natural language text is
applied. If none of the concepts are available in SenticNet, the ELM classifier is employe
6.2. Discussion

The proposed approach outperforms state-of-the-art methods
on the movie dataset and shows even better results on the
Blitzer-derived dataset, which proves that our system is robust
and not biased towards a particular domain.

It is worth noting that the accuracy of the system crucially
depends on the quality of the output of the dependency parser,
which relies on grammatical correctness of the input sentence.
Both datasets, however, contain ungrammatical sentences which
penalize results.

Next, we discuss the performance of the proposed architecture
on various linguistic patterns and types of sentence structure.
first deconstructed into concepts. If these are found in SenticNet, sentic patterns are
d.

http://sentic.net/demo
http://sentic.net/demo


Table 7
Results obtained using different algorithms on
our Blitzer-derived dataset.

Algorithm Precision (%)

Sentic patterns 85.15
Machine learning 72.00
Ensemble classification 87.00

Table 8
Performance of the proposed system on sentences with
conjunctions and comparison with state of the art.

System AND BUT

Socher et al. [57] N/A 41.00%
Proposed method 88.15% 83.67%

Table 9
Comparison of the performance between the proposed system and state-of-the art
systems on different sentence structures.

Sentence Socher
et al.
[57]

Proposed
system

Correct
polarity

The room is so small to stay Neutral Negative Negative
The tooth hit the pavement and broke Positive Negative Negative
I am one of the least happy people in the

world
Neutral Negative Negative

I love starbucks but they just lost a
customer

Neutral Negative Negative

I doubt that he is good Positive Negative Negative
Finally, for the beginner there are not

enough conceptual clues on what is
actually going on

Positive Negative Negative

I love to see that he got injured badly Neutral Positive Positive
I love this movie though others say it’s

bad
Neutral Positive Positive

Nothing can be better than this Negative Positive Positive
The phone is very big to hold Neutral Negative Negative

Table 10
Performance of the system on the sentences bearing same meaning but with different
words.

Sentence Socher et al.
[57]

Proposed
system

Correct
polarity

I feel bad when Messi scores
fantastic goals

Neutral Negative Negative

I feel bored when Messi scores
fantastic goals

Negative Negative Negative

I feel upset when Messi scores
fantastic goals

Positive Negative Negative
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6.2.1. Effect of conjunctions
Sentiment is often very hard to identify when sentences have

conjunctions. We tested the performance of the proposed system
on two types of conjunctions: and and but. High accuracy was
achieved for both conjunctions. However, the accuracy on
sentences containing but was somewhat lower because some such
sentences do not match sentic patterns.

Table 8 shows the accuracy of the proposed system on sen-
tences containing but and and and compares it with the state of
the art. To the best of our knowledge, no state-of-the-art system
reports accuracy on sentences containing and.

6.3. Effect of discourse markers

We used a discourse parser developed by Lin et al. [60] to ana-
lyze the discourse structure of sentences. Of the 251 sentences in
the movie review and the Blitzer dataset that contain discourse
markers (though, although, despite), we have correctly identified
sentiment in 83.41% sentences. In some cases, the discourse parser
failed to detect the discourse structure of sentences such as So,
although the movie bagged a lot, I give very low rating.

6.4. Effect of negation

Through the linguistic rules described in Section 4.1.2, we
detected negation and studied its impact on sentence polarity.
Overall, we achieved 91% accuracy on polarity detection from
sentences with negation.
Socher et al. [57] state that negation does not always reverse
the polarity. According to their theory, the sentence ‘‘I do not like
the movie’’ does not bear any negative sentiment but rather is neu-
tral. Another example: ’’The movie is not terrible’’; their theory
suggests that this sentence does not say that the movie is good
but rather says that it is less bad, so this sentence bears negative
sentiment. However, in our annotation we did not follow this the-
ory. We believe that the expression ‘‘not bad’’ implies satisfaction;
thus, we annotated such a sentence as positive. Conversely, ‘‘not
good’’ implies dissatisfaction and, thus, bears negative sentiment.
Based on this argument, we consider the sentence ‘‘The movie is
not terrible’’ to be positive.

6.5. Examples of differences between the proposed system and state-
of-the-art systems

Table 9 shows examples of various linguistic patterns and the
performance of our system across different sentence structures.

Examples in Table 10 show that the proposed system gives con-
sistent results on sentences carrying the same meaning although
they use different words. In this example, we change the negative
sentiment bearing word in the sentence: in the first variant it is
bad, in the second variant it is bored, and in the third variant it
is upset. In each case, our system detects the sentiment correctly.
This analysis also illustrates inconsistency of the state-of-the-art
approaches, given that the system [57] achieves the highest accu-
racy compared with other existing state-of-the-art systems.

7. Conclusion

Between the dawn of civilization through 2003, there were just
a few dozens exabytes of information on the Web. Today, that
much information is created weekly. The advent of the Social
Web has provided people with new tools for creating and sharing,
in a time and cost efficient way, their own contents, ideas, and
opinions with virtually the millions of people connected to the
World Wide Web. This huge amount of useful information, how-
ever, is mainly unstructured as specifically produced for human
consumption and, hence, it is not directly machine-processable.

Concept-level sentiment analysis can help with this as, unlike
other word-based approaches, it focuses on a semantic analysis
of text through the use of web ontologies or semantic networks
and, hence, allows for the aggregation of conceptual and affective
information associated with natural language opinions. Concept-
level sentiment analysis, however, is limited by the richness of
the knowledge base and by the fact that the bag-of-concepts
model, despite more sophisticated than bag-of-words, misses out
important discourse structure information that is key for properly
detecting the polarity conveyed by natural language opinions.

In this work, we introduced a novel paradigm to concept-level
sentiment analysis that merges linguistics, common-sense comput-
ing, and machine learning for improving the accuracy of polarity
detection. By allowing sentiments to flow from concept to concept
based on the dependency relation of the input sentence, in particu-
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lar, we achieve a better understanding of the contextual role of each
concept within the sentence and, hence, obtain a polarity detection
engine that outperforms state-of-the-art statistical methods.

There are a number of possible extensions of this work. One is
to further develop sentic patterns, which we showed to play a
key role in concept-level sentiment analysis. Another direction is
to expand the common-sense knowledge base, as well as the accu-
racy of discourse and dependency parsing techniques.

In general, in fact, the accuracy of the ELM classifier is lower
than the one obtained by means of sentic patterns because these
better grasp the semantics conveyed by the input sentence. In
the future, we aim to limit the use of machine learning techniques
as much as possible, in order to shift to the exclusive use of seman-
tics and, hence, better mimic the way we process language as
human text processors.
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