
 

In the Extreme Learning Machine (ELM) model [1], a 
Single-hidden-Layer Feedforward Network (SLFN) 
implements inductive supervised learning by combining 
two distinct components. A hidden layer performs an 
explicit mapping of the input space to a feature space; 
the mapping is not subject to any optimization, since all 
the parameters in the hidden nodes are set randomly. 
The output layer includes the only degrees of freedom, 
i.e., the weights of the links that connect hidden neurons 
to output neurons. Thus, training just requires one to 
solve a linear system by a convex optimization problem. 
The literature proved that the ELM approach can attain a 
notable representation ability [1].  
According to the ELM scheme, the configuration of the 
hidden nodes ultimately defines the feature mapping to 
be adopted. Actually, the ELM model can support a 
wide class of activation functions. Indeed, an extension 
of the ELM approach to kernel functions has been 
discussed in the literature [1].  

This paper addresses the specific role played by 
feature mapping in ELM. The goal is to analyze the 
relationships between such feature mapping schema and 
the paradigm of random projections (RP) [2]. RP is a 
prominent technique for dimensionality reduction that 
exploits random subspaces. This research shows that RP 
can support the design of a novel ELM approach, which 
combines generalization performance with 
computational efficiency. The latter aspect is attained by 
the RP-based model, which always performs a 
dimensionality reduction in the feature mapping stage, 
and therefore shrinks the number of nodes in the hidden 
layer.     
 
ELM feature mapping 

Let x∈ℜd denote an input vector. The function, f(x), of 
an output neuron in an ELM that adopts L 'hidden' units 
is written as 
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Thus, a set of random weights {rj∈ℜ
d; j=1,..,L} 

connects the input to the hidden layer; the j-th hidden 
neuron embeds a random bias term, bj, and a nonlinear 
activation function, a(⋅). A vector of weighted links, 
w∈ℜL, connects the hidden layer to the output neuron. 

The vector quantity w = [w1, .., wL] embeds the 
degrees of freedom in the ELM learning process, which 
can be formalized after introducing the following 
notations:  
• X is the N × (d+1) matrix that originates from the 

training set. X stems from a set of N labeled pairs 
(xi,yi), where xi is the i-th input vector and yi∈ℜ is 
the associate expected 'target' value. 

• R is the (d+1) × L matrix with the random weights. 
Here, by using a common trick, both the input vector, 

x, and the random weights, rj, are extended to x: =[x1,.., 
xd, 1] and rj ∈ℜ

d+1 to include the bias term. 
Accordingly, the ELM learning process requires one 

to solve the following linear system 

Hwy =  (2) 

where H is the hidden layer output matrix obtained by 
applying the activation function, a(), to every element of 
the matrix:   

XR  (3) 

Expression (3) clarifies that in the ELM scheme (1) 
the hidden layer performs a mapping of the original d-
dimensional space into a L-dimensional space through 
the random matrix R, which is set independently from 
the distribution of the training data. In principle, the 
feature mapping phase may either involve a reduction in 
dimensionality (L < d) or, conversely, remap the input 
space into in an expanded space (L > d).  

Both theoretical and practical criteria have been 
proposed in the literature to set the parameter L [1, 3]. 
This quantity is crucial because it determines the 
generalization ability of the ELM. At the same time, it 
affects the eventual computational complexity of both 
the learning machine and the trained model. These 
aspects become critical in hardware implementations of 
the ELM model, where resource occupation is of 
paramount importance.  

A few pruning strategies for the ELM model have 
been proposed in the literature to balance generalization 
performance and computational complexity [3]. The 
present work tackles this problem from a different 
perspective and proposes to exploit the fruitful 
properties of random projections.  
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The approach discussed here applies RP to reduce the 
dimensionality of data; the study, however, opens 
interesting vistas on using RP to tune the basic quantity, 
L, as well. 

 
Dimensionality reduction by using RP 

RP is a simple and powerful dimension reduction 
technique that uses a suitably scaled random matrix with 
independent, normally distributed entries to project data 
into low-dimensional spaces. The procedure to get a 
random projection is straightforward and arises from the 
Johnson-Lindenstrauss (JL) lemma [2]. The lemma 
states that any N point set lying in d-dimensional 
Euclidean space can be embedded into a r-dimensional 
space, with r ≥ O(ε−2ln(N)), without distorting the 
distances between any pair of points by more than a 
factor 1±ε, where ε ∈ (0, 1). 

Over the years, the use of probabilistic methods 
greatly simplified the original proof of Johnson and 
Lindenstrauss, and at the same time lead to 
straightforward randomized algorithms for 
implementing the transformation. In matrix notation, the 
embedding operation is expressed as 

XPK =  (4) 

where X is the original set of N, d-dimensional 
observations, K is the projection of the data into a lower, 
r-dimensional subspace, and P is the random matrix 
providing an embedding that satisfies the JL lemma. 

In principle, (4) is a projection only if P is orthogonal; 
this ensures that similar vectors in the original space 
remain close to each other in the low-dimensional space. 
In very high-dimensional spaces, however, bypassing 
orthogonalization saves computation time without 
affecting the quality of the projection matrix 
significantly. In this regard, the literature provides a few 
practical criteria to build P [2].  

 
RP-ELM 

The ability of RP to preserve, approximately, the  
distances between the N data vectors in the r-
dimensional subspace is a valuable property for machine 
learning applications in general [4]. Indeed, this 
property is the conceptual basis of the novel approach 
that connects the ELM feature mapping scheme (3) to 
the RP paradigm.  

A new ELM model can be derived from (1) if one set 
as hypotheses that 1) L should be smaller than d and 2) 
the mapping implemented by the weights rj satisfies the 
JL lemma. Under these assumptions, the mapping 
scheme (3) always implements the dimensionality 

reduction process (4). In practice, one takes advantage 
of the properties of RP to obtain an ELM model that 
shrinks the size L of the hidden layer and reduces the 
computational overhead accordingly. The eventual 
model will be denoted as “RP-ELM.” The crucial point 
is that the JL lemma guarantees that the original 
geometry of the data is only slightly perturbed by the 
dimensionality reduction process [2]; indeed, the 
degradation grows gradually as L decreases (given d and 
N) [2].  

In principle, the literature provides several criteria for 
the construction of a random matrix that satisfies the JL 
lemma. The present work focuses on matrices where the 
entries are independent realizations of ±1 Bernoulli 
random variables [2]; hence, matrix R (3) is generated 
as follows: 
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Baraniuk et al. [2] has showed that this kind of 
random matrices actually satisfies both the JL lemma 
and the restricted isometry property, thus bringing out a 
connection between RP and compressed sensing.  
 
Experimental Results 

The performance of the proposed RP-ELM model has 
been tested on two binary classification problems [5]: 
Colon Cancer and Leukemia. The former dataset 
contains expression levels of 2,000 genes taken in 62 
different samples; 40 samples refer to tumour samples. 
The latter dataset provides the expression levels of 7,129 
genes taken over 72 samples; 25 samples refer to “acute 
lymphoblast leukemia” and 47 samples refer to “acute 
myeloid leukemia.” The datasets share two interesting 
features: 1) the number of patterns is very low, and 2) 
the dimensionality of data is very high as compared with 
the number of patterns. In both cases, data are quite 
noisy, since gene expression profiles are involved.  

The experimental session aimed to evaluate the ability 
of the RP-ELM model to suitably trade-off 
generalization performance and computational 
complexity (i.e., number of nodes in the hidden layer). It 
is worth noting that the experiments did not address 
gene selection. Table 1 reports on the results of the two 
experiments, and gives the error rates attained for ten 
different settings of L. In both cases, the highest values 
of L corresponded to a compression ratio of 1:20 in the 
feature-mapping stage. The performances were assessed 
by adopting a Leave-One-Out (LOO) scheme, which 
yielded the most reliable estimates in the presence of 
limited-size dataset. Error rates were worked out as the 
percentage of misclassified patterns over the test set. 



 

The table compares the results of the RP-ELM model 
with those attained by the standard ELM model. Results 
showed that, in both experiments, RP-ELM attained 
lower error rates than standard ELM. Moreover, the RP-
ELM performed comparably with approaches reported 
in the literature, in which ELM models included 1,000+ 
neurons and did not adopt a LOO validation procedure.     
 
Conclusions 

The paper introduced a novel model for ELMs that 
exploits RP techniques. Theory showed that, by a direct 
implementation of the JL lemma, one can sharply reduce 
the number of neurons in the hidden node without 
affecting the generalization performance in prediction 
accuracy. As a result, the eventual learning machine 
always benefits from a considerable simplification in the 
feature-mapping stage. This allows the RP-ELM model 
to properly balance classification accuracy and resource 
occupation.   The experiments showed that the proposed 
model can attain satisfactory performance. Further 
investigations will aim to confirm the effectiveness of 
the RP-ELM scheme by additional theoretical insights 
and a massive campaign of experiments.       
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Table 1. Error rates scored by RP-ELM and standard ELM on the two binary classification problems 
 

Colon Cancer Leukemia 

 Error Rate (%)  Error Rate (%) 

L RP-ELM ELM L RP-ELM ELM 

10 38.7 38.7 35 25.0 40.3 

20 40.3 35.5 70 27.8 31.9 

30 43.5 45.2 105 47.2 27.8 

40 32.3 45.2 140 30.6 33.3 

50 29.0 50.0 175 37.5 37.5 

60 37.1 48.4 210 25.0 37.5 

70 37.1 40.3 245 27.8 40.3 

80 29.0 37.1 280 31.9 36.1 

90 29.0 43.5 315 31.9 30.6 

100 25.8 40.3 350 38.9 33.3 

 


