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Abstract—This work tackles the seldom discussed task of
predicting chaotic time series generated by dynamic systems with
evolving parameters. Representative chaotic time series produced
by different system dimensions are introduced with a critical
parameter linearly depending on time. The evolving character
of systems are qualitatively studied by phase portraits. We
assess the predictability of different fuzzy neural network (FNN)
architectures on several evolving chaotic time series. Experiments
illustrate that FNN models can generally better approximate
evolving chaotic systems comparing to the autoregression method
as a benchmark. The main contribution of our work is that
we found out certain FNN types, e.g., NEFCON and DENFIS,
are more robust to changing system parameters. In spite of the
performance, some FNN models are more vulnerable and incline
to be destabilized by high order chaotic systems. This work also
casts light on composing FNN structures to capture evolving
characters of chaotic time series in the future.

I. INTRODUCTION

Time series prediction comprises diversified methods to

formulate a broad range of forecasting problems, such as fi-

nancial modeling, weather forecasting, transportation planning

and production management to name a few [31]. Based on

historical observations of a sequence of variables xt depending

on time t, a hidden process P is believed to exist, and

preserves its characteristics at least for a period as the cause

of patterns presented in xt. For a long period in the history

of time series analysis, linear model is believed capable of,

and applied for approximating the hidden stochastic process

P . Specific techniques are developed, either autoregressive

or depending on impact factors, either scalar or assuming

vectorial correlation of several variables, or including doubly

modeling of heteroscedasticity [7].

Whereas from the last century, a large amount of chaotic

systems have been discovered. Some recognized attributes of

chaotic system include the sensitive dependency on initial

conditions and densely distributed periodic points [21]. These

effects, along with the inevitable noise during data collection,

make the long term prediction of a chaotic system impossible.

However, by estimating Maximal Lyapunov Exponent (MLE),

many empirical studies suggest that chaos is ubiquitous in real

life time series, such as stock index [28], exchange rate [6],

and climate change [10]. This fact proposes the necessity for

modeling chaotic time series.

A popular method to model chaotic systems is to reconstruct

the original state space and adapt to the local quasi-linearity

with a linear system [3], [4]. If we further expand this approx-

imation idea to a higher dimension, the problem of adaptating

to a nonlinear system with linear or Gaussian function will

be equivalent to another regularly employed method named

Fuzzy Neural Network (FNN). FNN is a rather inclusive

terminology that covers several variants of combination of

fuzzy logic and Artificial Neural Network, such as linguistic

fuzzy [30], type-2 fuzzy [15], and high order fuzzy [1], [5].

Ensembled FNNs, or an integration of them are applied to time

series prediction as well [32]. Due to the fact that fuzzy logic

is good at representing structural knowledge and embedding

experience with linguistic rules, FNN is surmised to combine

and take advantages of both the learning characters of neural

networks [27], [29] and the interpretability of fuzzy logic [36].

In addition, the training process of FNN is usually fast and

suitable for real time applications. Historical records cannot

provide enough data to train deep neural networks in many

cases. As a result, numerous studies have employed FNN to

predict time series. Previous research [23], [31] also indicate

that FNN can better depict the statistics of chaotic systems.

The contrast between the satisfying performance reported

in the literature and the constrained predicability of FNNs

in practice leads us to question whether the real world time

series can be formulated as an observation of static chaotic

systems. In other words, the hidden chaotic process P , which

is often assumed to be a set of differential equations with

physical meaning, may not be time independent. Therefore,

we investigate some computer generated time series depending

on an evolving setting of equation parameters. The reason for

using this setting is that we believe the changing of parameter

is more frequent than of the paradigm itself.

The main contribution of this work is that we investigate the

impact of evolving parameter on the predicting performance of

different type of FNN architectures. Although evolving chaotic

time series are rarely studied before due to their complexity,

they are more flexible for modeling real world time series.

This attempt helps to better understand the dynamics of

FNN learning process. Furthermore, the influence of system

dimension on predictability is also never explicitly reported

before to the best of our knowledge.
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We discover this phenomenon through conducting experi-

ments on different types of Fuzzy Inference System. In this

proposed work, we formulate the problem of predicting evolv-

ing chaotic time series. Paradigm shift is not discussed for

the sake of conciseness. The rest of this paper is organized as

follows: Section II provides the conception of evolving chaotic

time series and an example of the archetypal chaos derived

from logistic map; Section III introduces some fundamental

architecture types of FNN, their working mechanisms and

learning algorithms; Section IV discusses the predicting per-

formance of FNN on some evolving benchmark chaotic time

series. Comparison with autoregression models is presented at

the same time; Section V summaries.

II. EVOLVING CHAOTIC TIME SERIES

Chaotic time series [22] can either take the discrete form

as xn+1 = f(xn), or continuous form as
dx(t)
dt = F (x(t)).

If x is a scalar representation, this time series can also be

regarded as one dimensional projection of some certain aspects

from chaotic systems, which are featured by infinite unstable

periodic orbits. This character brings out extremely difficulty

in analyzing patterns of chaotic time series. After a small

perturbation, the future values for the same system deviate

fast. To illustrate, Fig. 1 provides a deviation example for time

series generated by the same chaotic system with a less than

5% random error on timestep 50. The values after timestep

250 are scarcely relevant.

Previous studies, for instance [8], usually indicate recon-

struction of state space as a necessary step. Some proper-

ties, such as trajectory topology and strange attractors, and

statistics, such as Lyapunov exponent, Kolmogorov entropy

and fractal dimensions, are believed to be preserved in both

embedded space and the real phase space with a subtle

selection of parameters. According to Takens [34], embedding

dimension m should theoretically satisfy m � 2d+1 to enable

a well-formed reconstruction, where d denotes the dimension

of strange attractor of original dynamic system. Though in

practice, neither identifying attractor nor calculating system

dimension is easy.

We define evolving chaotic time series as chaotic time series

that take a set of parameters that are functions of time t.
Consider logistic map as a simple polynomial mapping case

that can generate complicated behavior,

Fig. 1. Deviation of future values after a small perturbation on step 50

Fig. 2. Phase portrait of logistic maps, to the left with a static parameter, to
the right with a linearly evolving parameter

xt+1 = r(t)xt(1− xt) (1)

Eq. 1 produces chaotic time series for the single parameter

r in range 3.57 < r < 1 +
√
8. If r increases linearly

along time, while stay in this chaotic range, for example,

r(t) = 3.6+0.002t, the phase portrait of x will become more

complicated. Fig. 2 gives a comparison between phase portrait

of a static r and an evolving r. We can notice from Fig. 2 that

the moving trajectory of attractor is not linear (parabolic). For

the remainder of this section, we investigate into three well-

known chaotic systems ordered by dimensionality. Details

about how the evolving chaotic time series are generated are

described.

A. Duffing Chaotic Time Series

Duffing equation (Eq. 2) is a nonlinear second-order differ-

ential equation used for modeling damped and driven oscilla-

tors, which do not obey Hooke’s law.

d2x(t)

dt2
+ 2γ

dx(t)

dt
+ αx(t) + βx3(t) = δ cos(ωt) (2)

On the other hand, this equation is occasionally formulated

as simultaneous equations to exhibit physical meanings more

explicitly,

{
ẋ1 = x2 (3)

ẋ2 = −αx1 − 2γx2 − βx1
3 + δ cos(ωt) (4)

where x1 stands for the length of a spring, x2 is the first

order derivative of x1 that stands for velocity, γ denotes the

friction coefficient for the spring, δ represents the exogenic

driven force. This expression also makes constructing training

samples convenient, as the discrete form (xt, yt) = (x2(t −
1), x1(t − 1), t, x2(t)). The parameter settings to generate a

chaotic Duffing system are discrete. The method to determine

exact parameter values and to truncate initial transient is

called Poincaré selection, which cannot be elaborated here. We

consider a simplified case with parameters other than δ fixed:

α = −1, β = 1, γ = 0.05, ω = 1.4. Fig. 3 shows the phase

portrait of (ẋ1, ẋ2) when δ = 0.35. Let δ(t) = 0.35 − 0.01t,
the system will produce evolving chaotic time series.
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Fig. 3. Phase portrait of chaotic Duffing system (δ = 0.35)

B. Mackey-Glass Chaotic Time Series

The Mackey-Glass (MG) Differential Equation is one of

the most referred benchmark nonlinear time-delay system that

generates chaotic time series with the following parameter:

β = 0.2, γ = 0.1, n = 10, and τ > 16.8,

dx(t)

dt
= β

x(t− τ)

1 + xn(t− τ)
− γx(t) (5)

Let τ(t) = 17 + �0.01t�, the system will produce evolving

chaotic time series. The fourth-order Runge-Kutta method is

employed to calculate the numerical value of x(t) for discrete

integer t using Eq. 5. Notation �x� stands for the largest integer

less than or equal to x, so periodic delay τ will jump after

equal time interval. This setting is to preserve the physical

meaning of periodic delay τ .

C. Lorenz Chaotic Time Series

The Lorenz system is a famous climate model consists of

three ordinary differential equations (ODE).

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

dx(t)

dt
= σ[y(t)− x(t)] (6)

dy(t)

dt
= x(t)[ρ− z(t)]− y(t) (7)

dz(t)

dt
= x(t)y(t)− βz(t) (8)

The three equations are derived from Navier-Stokes equation,

which is used to describe fluid mechanics. Lorenz firstly used

the parameter setting σ = 10, β = 8/3, ρ = 28 to exhibit

chaotic behavior [10]. It is then testified when ρ � 25, chaotic

phase portrait (Fig. 4) with two strange attractors is observed.

Let ρ(t) = 25 + 0.1t, the system will produce evolving

chaotic time series. Especially, we find out that not any ρ(t) �
25 can lead the system to chaos. Consequently, we set the

coefficient in front of t to 0.1. Our experiments suggest that

when
dρ(t)
dt is a very large number, the Lorenz system will

escape from chaotic state and fall into a periodic movement

that resembles a limit cycle.

III. FUZZY NEURAL NETWORKS

Fuzzy Neural Networks, or Neuro-Fuzzy Systems, are a

group of models that apply fuzzy logic and neural network

together. The idea behind fuzzy logic is that, by providing a

set of linguistic rules with the form of:

IF x1 = A1j and x2 = A2j ... and xn = Anj

THEN yj = f(x1, x2, ..., xn)

the fuzzy aggregation of yj can approximate nonlinear func-

tion y = f ′(x). Traditionally, these rules in fuzzy control

systems are manually tuned by experts. However, rules can

also be produced from a learning perspective.

Depending on the stage where neural networks are used,

FNN can either be cooperative, concurrent, or hybrid [16].

For cooperative FNN, neural networks are removed once the

fuzzy rules are generated, while for concurrent FNN, they take

the output from each other.

Only hybrid FNN is a thorough combination of fuzzy logic

and neural network in the strict sense. Therefore, we will

investigate into four different while popular types of hybrid

FNN, as well as their performance on predicting evolving

chaotic time series. To allow comparison between different

architectures, we focus on the fundamental form of each type.

Modified and integrated models are not taken into account.

A. Artificial Neuro-Fuzzy Inference System

Artificial Neuro-Fuzzy Inference System (ANFIS) [17] con-

tains first-order Takagi-Sugeno-Kang (TSK) type fuzzy rules,

while assume the form of f(·) to be first-order polynomial:

f(x1, x2, ..., xn) =
n∑

i=1

bixi + ci, (9)

where bi and ci are parameters to be estimated. In the five-

layer architecture shown in Fig. 5. Input x is mapped through

stiff membership functions Aj = μij(xi), which require prior

knowledge to craft.

Fig. 4. Phase portrait of chaotic Lorenz system (ρ = 28)
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The weights of output variable components are calculated

with a product t-norm �prod(a, b) = a · b, hence we have:

wj =
n∏

i=1

μij(xi) (10)

Each node in the rule layer denotes a piece of rule with a

certain degree that should be applied to x. The final output

is a weighted average of all rule outputs. Because the output

values of TSK rules are crisps, defuzzification process is not

required here.

y =

r∑
j=1

wjyj

r∑
j=1

wj

(11)

Our implementation of ANFIS learns function parameters by

back propagation and iteratively modification to minimize the

error function, which is defined as a least mean square:

Error =
1

2

n∑
k=1

[yk(w)− y∗k(w)]
2 (12)

the iteration for updating weights w = (w1, w2, ..., wn):

w(k) = w(k − 1)− ηΔw (13)

where η is the learning rate. The convergence of this algorithm

is mathematically guaranteed [26].

B. Neural Fuzzy Controller

The architecture of Neural Fuzzy Controller (NEFCON) is

more succinct comparing to ANFIS and similar Neuro-Fuzzy

Inference Systems. It implements a three-layer structure of

Mamdani type fuzzy perceptrons.

As shown in Fig. 6, two layers of Membership Functions

(MF) are used instead of weights. Rule nodes of NEFCON

take the form as following, where formula y+ij = νij means to

add νij to the previous value of yij .

x1

x2

A1

A2

B3

B4

w1

w2

w3

w4

w5

w1y1

w2y2

w3y3

w4y4

w5y5

∑
y

MFInput Weight Rule Output

Fig. 5. Architecture of Artificial Neuro-Fuzzy Inference System

x1

x2

R1

R2

R3

R4

R5

∑
y

MF(1)Input Rule MF(2) Output

μ1

μ2

μ3

μ4

ν1

ν2

ν3

ν4

Fig. 6. Architecture of Neural Fuzzy Controller

IF x1j = μ1j and x2j = μ2j ... and xnj = μnj

THEN y+1j = ν1j and y+2j = ν2j ... and y+nj = νnj

yi =
∑
j

yij

Fuzzy error back-propagation learning algorithms are fre-

quently employed to adapt both the MF parameters and rule

nodes. The conventional triangular MF for NEFCON input and

output variables have three or two parameters respectively:

μij(x)
def
====

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

x− aij
bij − aij

, if x ∈ [aij , bij ]

cij − x

cij − bij
, if x ∈ [bij , cij ]

0, otherwise

(14)

where aij , bij , cij ∈ R, aij ≤ bij ≤ cij .

νj(y)
def
====

⎧⎨
⎩

dj − y

dj − ej
, if (y − dj)(y − ej) < 0

0, otherwise

(15)

where dj , ej ∈ R.

Output oy of NEFCON is calculated by:

oy =

∑
R oR · tR∑

R tR
(16)

where the output of activated rule can be represented by

oR = max{μ1,R(x1), · · · , μn,R(xn)}, and desired output

represented by tR = ν−1
R (oR). Then, the fuzzy rule error can

be applied to adjust parameters a, b, ..., e with a learning rate

similar to the one used for tuning ANFIS. The single output

architecture we use for prediction can also be regarded as a

special case of NEFPROX1 [25].

1We use an encapsulated .NET implementation with GUI developed by
Sahal Arafat Zain called NefProx.NET version 1.0

3179



C. Evolving Fuzzy Neural Networks

Evolving Fuzzy Neural Networks (EFuNN) was firstly pro-

posed as an instantiated FNN that evolves according to the

connectionism idea expatiated in ECOS [19]. The four-layer

structure is illustrated in Fig. 7.

EFuNN implements Mamdani type fuzzy rules. Therefore,

input variables are directly mapped to rules through fuzzy

membership functions without weights layer. There are richer

connections from MF(1) to rule nodes in EFuNN architecture

than in NEFCON. Although, after the rule layer EFuNN has

a technically similar structure as NEFCON, the underlying

considerations are quite different. MF(2) in fact represents the

actions to be activated. The most interesting fact about EFuNN

is that the rule nodes maintains two vectors of connection

weights in a dynamic manner. Rule nodes can be created or

interact with a rulebase (RB) by machine learning techniques

[13]. For each rule node Ri, weights associated to input

variables w1(Ri) and weights associated to output variables

w2(Ri) are updated by:

w1(R
t+1
i ) = w1(R

t
i) + ηi,1(w1(R

t
i)− xfuzzy) (17)

w2(R
t+1
i ) = w2(R

t
i) + ηi,2(A2 − yfuzzy)A1(R

t
i) (18)

where ηi,1 and ηi,2 are Ri’s learning rates for its input

layer and output layer connections. A2 = f2(w2A1) is

the activation vector of fuzzy output neurons. A1(R
t
i) =

f1(D(w1(R
t
i),xfuzzy)) is the activation function of rule node

Rt
i , where D is a function to measure a local normalized fuzzy

distance between two fuzzy membership vectors MF(1) and

MF(2) [18].

During the learning process, when a new example arrived

at a rule node Ri, its radius ri and sensitivity threshold si can

be updated using:

rt+1
i = rti +D(w1(R

t+1
i ),w1(R

t
i)) (19)

st+1
i = sti −D(w1(R

t+1
i ),w1(R

t
i)) (20)

which makes the structure always optimized at the current

stage. As a result, EFuNN is considered advantageous for

online learning problems.

x1

x2

A1

A2

B3

B4

R1

R2

R3

∑
y

MF(1)Input Rule MF(2) Output

ν1

ν2

ν3

ν4

RB

R′

Fig. 7. Architecture of Evolving Fuzzy Neural Network

D. Dynamic Evolving Neuro-Fuzzy Inference System

Dynamic Evolving Neuro-Fuzzy Inference System (DEN-

FIS) [18] implements TSK type fuzzy inference engine. The

link between antecedents xi and fuzzy sets Ai is forged

more randomly than in EFuNN. Each time m fuzzy rules

fire together to produce the output. Therefore, the inference

process can be represented as:

IF x1 = Am1 and x2 = Am2 ... and xn = Amn

THEN y = fm(x1, x2, ..., xn)

From the holistic perspective, DENFIS can be recognized

as an improved version of EFuNN. The main difference is on

learning phase. One modification is that DENFIS introduces an

online learning algorithm under the name of Evolving Clus-

tering Method (ECM) to continuously change the parameters

of triangular membership functions:

μ(x) = f(x, a, b, c)

= max(min(
x− a

b− a
,
c− x

c− b
), 0) (21)

where b is the value of cluster center of x, a and c are

dependent on b. The defuzzification process is the same as

ANFIS.

Another exclusive feature for DENFIS is that forgetting

factor is taken into account during fuzzy rule learning. This

feature enables DENFIS to be more robust than other FNN

types on condition that the principle behind modeling data is

evolving, which is attested in Section IV.

IV. SIMULATION

It is notable that there have been many discussion about

how to decide the time-delay and embedding dimension for

a chaotic time series. Some studies heuristically tune the

parameters based on the predicting result [23], while others

[9], [20] introduce some criteria. In our method, we take three

factors into consideration. Firstly, we attach importance to

the classic methods like first minimum mutual information

step and Cao’s embedding theorem [2]. Secondly, we align

the same method as popular in literature, for instance G-P

algorithm [12]. Thirdly, we respect the convention proposed

intuitively [35] or without explicit explanation. Kaplan-Yorke

dimensions are referred for consideration as well [33], though

they are not as reliable to evolving chaotic time series because

Kaplan-Yorke dimensions can suddenly jump as parameters

evolve.

For the benchmark autoregression (AR) method, we

determine the appropriate time lags with the help of plotting

partial autocorrelation function (PACF). For chaotic Duffing

time series, the proper time delay in our data sampling

timestep is unknown. Therefore, we resort to trial-and-error.

Experiments suggest the optimum RMSE is achieved when

k = 3. Finally we arrive at the sampling method according to

information delivered by Table I.
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TABLE I
SCALE PROPERTIES APPROXIMATED FOR SOME CHAOTIC SYSTEMS

Chaotic system Time delay Embedding dims. System
dims.

Logistic map 1 1 0.5
Duffing k 2 1
Mackey-Glass 6 4 2
Lorenz 3 6 3

To make our result comparable to previous studies, we

adopt the result evaluation criteria as in [11] and [14]. In

detail, three measurements addressing different aspect of the

performance are selected: root mean square error (RMSE),

non-dimensional error index (NDEI), and normalized mean

square error (NMSE). MSE is not presented, because it add

no more information other than the square of RMSE. When the

number of sampling n is large, NMSE is roughly the square

of NDEI in any single round of experiment.

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2 (22)

NMSE =

∑n
i=1(yi − ŷi)

2∑n
i=1(yi − ȳi)2

(23)

NDEI =
RMSE

σ(y1, y2, ..., yn)
(24)

where y, ŷ, and ȳ stand for the values observed from chaotic

time series, prediction made by FNN and average of observed

data respectively.

Around 1500 simulated values are generated and sampled

according to the following formulas from each evolving

chaotic time series. Lm, D, MG and L are the acronyms

for corresponding types of chaotic system.

Lmi = [Lm(t− 1), Lm(t)] (25)

Di = [D(t− 3), D(t), D(t+ 3)] (26)

MGi = [MG(t− 18), ...,MG(t),MG(t+ 6)] (27)

Li = [L(t− 15), L(t− 12), ..., L(t), L(t+ 3)] (28)

The first 100 data points are leftover to suppress early dis-

ordered behavior. In this early stage, the system is adapting

to the chaotic characteristics, but the influence of initial value

is still not negligible. The rest of data are partitioned into

around 1000 samples for training and the remaining samples

for testing. For each type of chaotic time series, experiments

are conducted 5 times for evolving parameters and 5 times

for static parameters, with various FNN structures. Due to the

limit of space, we only report the average RMSE, NMSE and

NDEI in Table II. The standard deviations, assuming error

measurements are normally distributed, are not included.

Autoregression (AR as in Table II) is provided as a bench-

mark method. We have selected the model with appropriate

order and timestep lag to minimize errors. White noise with

a standard deviation σ = 1 is experimented as well. If all

the predicting errors are significantly larger than errors on

white noise, we can conclude that this model is ineffective

on forecasting this type of time series.

Furthermore, we compare the performance of our imple-

mentation and results from other studies on predicting static

parameter Mackey-Glass chaotic time series with ANFIS in

Table III. The comparison shows that these measurements

can vary greatly from case to case. One possible reason is

these studies use different FNN configurations, for example

the maximum number of rules, initialization of time series etc.

Another factor to consider is the stability of the model itself.

As a consequence, the conclusion that one implementation is

better than another should be drawn prudently as long as errors

belong to the same order of magnitude.

As Table II implies2, most FNN models are more capable

for depicting chaotic time series than the classic autoregression

method. In most cases, evolving chaotic time series are more

difficult to approximate, but how much the predicting error

would be worse is not clear. Moreover, the predictability

diminishes as the dimension of chaotic system increase, re-

gardless of the specific model. For time series generated by

an evolving chaotic Lorenz system, using ANFIS or NEFCON

for prediction is nonsensical.

We have noticed that ANFIS is especially sensitive to the

parameter evolvement. This may be observed owing to the

rather dense connections between different layers. According

to our understanding, this feature makes the adjustment of

weights more clumsy in an offline learning environment.

Therefore, the model loses its stability and consistency in the

end.

Time
0 200 400 600 800 1000 1200

-150

-100

-50

0

50

100

150
Evolving chaotic Lorenz Time Series and ANFIS Prediction

Time
0 200 400 600 800 1000 1200

-100

-50

0

50

100

150

200
Prediction Errors (RMSE)

Fig. 8. Destabilization of ANFIS model due to parameter evolvement

2The bold font in Table II highlights the best performance of models
experimented for every data column, using average NDEI as the primary
measurement
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TABLE II
PERFORMANCE OF DIFFERENT TYPE OF FNNS FOR PREDICTING EVOLVING CHAOTIC TIME SERIES

Model Error White noise
Logistic map Duffing Mackey-Glass Lorenz

static evol. static evol. static evol. static evol.

AR
RMSE 1.01E+0 4.09E-1 4.85E-1 1.12E-1 1.44E-1 1.26E+0 3.92E+0 3.35E+0 5.47E+0
NMSE 1.03E+0 3.45E+0 4.87E+0 1.27E-2 1.91E-2 2.67E+1 7.88E+1 3.94E+0 6.36E+0
NDEI 1.01E+0 1.85E+0 2.21E+0 1.22E-1 1.38E-1 5.13E+0 9.01E+0 1.98E+0 2.35E+0

ANFIS
RMSE 1.17E+0 1.83E-4 1.01E-3 7.01E-2 6.67E-2 8.47E-2 1.65E-1 9.38E+0 1.44E+2
NMSE 1.26E+0 2.82E-6 2.09E-4 1.20E-1 1.20E-1 8.76E-2 1.73E+0 7.83E-1 3.64E+1
NDEI 1.18E+0 7.71E-4 3.38E-3 7.48E-2 6.95E-2 3.69E-1 6.19E-1 8.55E-1 6.92E+0

NEFCON
RMSE 1.00E+0 7.74E-2 2.02E-1 3.62E-1 3.43E-1 1.35E-1 2.07E-1 9.00E+0 2.73E+1
NMSE 1.03E+0 1.25E-1 4.77E-1 1.41E-1 1.22E-1 3.14E-1 6.12E-1 5.08E-1 1.40E+0
NDEI 1.01E+0 3.50E-1 6.86E-1 3.76E-1 3.48E-1 5.59E-1 7.64E-1 7.12E-1 1.18E+0

EFuNN
RMSE 1.39E+0 3.03E-1 4.43E-1 9.90E-2 9.91E-2 6.52E-2 2.16E-1 6.12E+0 1.44E+1
NMSE 1.94E+0 1.89E+0 2.26E+0 1.10E-2 2.39E-2 7.66E-2 7.25E-1 4.39E-1 4.35E-1
NDEI 1.39E+0 1.37E+0 1.50E+0 1.03E-1 1.34E-1 2.74E-1 8.30E-1 4.70E-1 6.57E-1

DENFIS
RMSE 1.06E+0 3.32E-2 3.78E-2 9.18E-2 9.16E-2 1.81E-2 1.37E-1 2.55E+0 7.13E+0
NMSE 1.12E+0 3.19E-2 3.81E-2 9.06E-3 1.81E-2 6.22E-3 3.02E-1 4.85E-2 1.02E-1
NDEI 1.06E+0 1.50E-1 1.07E-1 9.48E-2 1.19E-1 1.45E-1 5.32E-1 2.14E-1 3.13E-1

TABLE III
PERFORMANCE OF PREDICTING MG TIME SERIES WITH ANFIS

Reference RMSE NMSE NDEI

Maguire et al. [23] 1.05E-2 – –
Gholizade et al. [11] 1.80E-3 2.90E-5 –
Heydari et al. [14] 3.25E-2 – 1.44E-1
Our Simulation 8.47E-2 8.76E-2 3.69E-1

Fig. 8 illustrates the overreaction of ANFIS model more

explicitly when it is used to predict an evolving Lorenz chaotic

time series. In the first half part, the prediction closely follow

the target chaotic time series; while in the second half, the

prediction is over-sensitive to the realized values.

Among the experimented models, NEFCON has the best

consistency. The differences between each round of experi-

ments are small. NEFCON model also provides the closest

estimation of white noise statistics. In addition, the impact

of parameter evolvement is not conspicuous to NEFCON

comparing to other FNN models.

Despite the aforementioned disadvantages, ANFIS and

DENFIS can universally adapt to different chaotic systems.

This observation seems to indicate that TSK type Neuro-Fuzzy

Inference Systems are more powerful for predicting chaotic

time series because they establish direct link between input and

output variables. As the complexity of chaotic system grows,

the frequency domain spectrum evolves more rapidly with the

parameter change. Accordingly, the prediction model requires

algorithms to obtain priors, for example Evolving Clustering

Method (ECM), to emphasize the current state.

This theory is supported by the fact that, ANFIS predicts

Logistic map and Duffing system more accurately, but for

Mackey-Glass and Lorenz time series, DENFIS produces

better results. Although, whether the after-coming learning

phase should response to the detected parameter change or

not [24] remains a question untouched.

V. CONCLUSION

In this paper, we introduced the concept of evolving chaotic

time series. Four example systems that potentially exhibit

chaotic behavior are provided with details on dimension

properties and linear time dependency of parameters. Four

FNN implementations, namely ANFIS, NEFCON, EFuNN,

and DENFIS are used to predict the simulated chaotic time

series. Experimental results suggest that DENFIS skillfully

trades the prediction accuracy off against model stability and

consistency. Therefore, we consider TSK type Neuro-Fuzzy

Inference System to have better predictability among several

primary FNN architectures.

Further work will chiefly focus on answering two questions.

First, how would the phase portrait and other properties of

a chaotic time series change, if the system behind it has

nonlinearly evolving parameters or paradigm shift. Second,

what online learning techniques and trigger conditions can

be used to confer better prediction accuracy on TSK type

Neuro-Fuzzy Inference Systems. It is also of sufficient

interest to apply our methods on real world financial

data and aggregated data from social networks, for which

understanding the dynamics of chaotic system in behind is

challenging and not widely agreed.
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