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Abstract—Mapping continuous dimensional emotion to dis-
crete classes is an extremely difficult task. In this paper, we
predict the intensity classes of emotions based on valence and
arousal in segments of audio-visual recordings about car reviews.
Consequently, for unimodal features, we first employ baseline
methods and principal component analysis to search for the best
unimodal features in different modalities, which can simplify
the relationship between feature attributes. For multimodal
features, we perform multimodal fusion on the best and other
unimodal features through an early fusion strategy. For sentiment
analysis, we propose six hybrid temporal models for modeling
complex time dependencies. To avoid overfitting the validation
set and providing complementary information between different
modalities, we propose a multitask learning framework, which
can adaptively change the weight of loss per subtask.

Index Terms—Multimodal sentiment analysis; Multitask learn-
ing

I. INTRODUCTION

With the development of social networks, the ways people

convey their emotions are becoming increasingly diverse, mul-

tifaceted, and multimodal. However, how to analyze sentiment

from multimodal data is an opportunity and challenge in

the field of affective computing. Fortunately, many excellent

works [1]–[3] and datasets [4]–[6] have been proposed recently

on multimodal sentiment analysis, which are constantly promot-

ing this field. In affective computing, there are two mainstream

models to describe the emotion, one is the categorical model,

the other is the dimensional model [7]. For categorical models,

Ekman et al. [8] divided each emotion into independent labels

such as joy, sadness, fear, and other emotions, which has natural

interpretability, but the differences and relations between labels

are not able to compute better. Therefore, Hanjalic et al. [9]

divided emotion into two dimensions: arousal and valence,

which is more suitable than the categorical model in computing

affective. The greater the value of arousal and valence, the more

positive the emotion is, and vice versa. Especially, Cambria

et al. [10] proposed an hourglass-shaped model that is both

discrete and dimensional.
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Fig. 1: Task illustration: predicting the five sentiment classes

for arousal and valence every 250ms in the video. The solid

blue line and red dotted line indicate valence and arousal.

MuSe-Sent, sub-challenge of MuSe 2021, requires partici-

pants to predict the corresponding five advanced sentiment

classes for arousal and valence as shown in Fig. 1, and

encourage participants to use multimodal information for a

more robust multimedia content emotion analysis. Actually,

mapping continuous dimensional emotion to discrete classes

is an extremely difficult task. So far, dimensional emotion

has been successfully calculated only in a time-continuous

fashion [11]. In the previous Muse challenge, Li et al. [12]

explored various low-level descriptors (LLDs) and depth

features in a different modality and proposed several effective

multimodal fusion strategies. Additionally, Sun et al. [13]

extracted manual features and depth representation, and utilized

a long short-term memory (LSTM) network and self-attention

mechanism to capture time dependences in the video.

In this paper, we construct a multitask learning framework for

sentiment analysis. To be specific, we first utilize the baseline

methods and principal component analysis (PCA) to obtain the

best unimodal features in different modalities. Then, we propose

various hybrid temporal models to capture the time dependences

of multimodal features. Noticeably, we adopt the early fusion

strategy to fuse features in different modalities. Because the

combination of different features and models has a great impact

on the prediction results, we employ the two combinations

with the best F1 score to conduct multitask learning without

breaking the original best combination of features and models,

which provides complementary information between different

modalities and further improves the generalization ability.
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Additionally, our framework can adaptively change the

weight of loss per subtask instead of regulating parameters

manually. Our contribution to this challenge is as follows:

• We utilize baseline methods and PCA to explore various

unimodal features so as to simplify the relationship

between feature attributes, which paves the way for the

subsequent multimodal feature fusion.

• We fuse the best and some other unimodal features based

on an early fusion strategy for obtaining multimodal

features. Additionally, for performing sentiment analysis,

six hybrid temporal models are proposed to model complex

time dependencies in the videos.

• We proposed a multitask learning framework to make

up for the deficiency of the early fusion at capturing the

complementary information between different modalities.

Moreover, the generalization ability of the model has been

further improved.

II. RELATED WORK

Multimodal Features: For multimodal features, some studies

are still adopted handwritten features. For example, In AVEC

2013, Lozano et al. [14] extracted Gabor features and local

binary patterns from visual modality. Sun et al. [13], the

winner of MuSe 2020, extracted handwritten acoustic features

such as the IS13 feature from audio. In recent years, because

of the strong representation ability of the deep network

models, researchers prefer to utilize deep networks to learn the

representation of multimodal data. For example, in EmotiW

2019, Zhou et al. [15] employed three CNN backbones and

AlexNet to extract visual and audio features, respectively.

In AVEC 2018, the depth audio representation generated

by the VGGish model, which is better than the acoustic

features based on expert knowledge [16]. Additionally, in

multimodal sentiment analysis, text modality also plays a vital

role [17]. In AVEC 2017, various word vectors model such as

Word2Vec [18] and GloVe [19] are widely used.

Multimodal Fusion: Multimodal fusion strategies are always

one of the research focuses in multimodal sentiment analysis.

In MuSe 2020, Sun et al. [13] combined early fusion and

late fusion strategies. Li et al. [12] proposed a variety of

effective multimodal fusion strategies to integrate LLDs and

depth features. Additionally, Zadeh et al. [20] presented a tensor

fusion network (TFN) to capture the dependency relationships

within and between three modality data. Yang et al. [21]

introduced a modal temporal attention graph, which can

convert misaligned multimodal sequence data into a graph

with heterogeneous nodes and edges, which can obtain rich

information across modalities and time. And Hazarika et

al. [22] proposed a new framework, MISA, which projects

each modality data into two different subspaces for multimodal

fusion.

Model Architecture: Because recurrent neural networks

(RNNs) show extraordinary advantages in sequence modeling,

in MuSe 2020, the winners without exception adopted a LSTM

network for continuous dimension emotion recognition [12],

[13], which is a variant of RNNs. Moreover, some researchers

also put forward a lot of novel work. For example, Zadeh et

al. [23] proposed long-short term hybrid memory on the basis

of LSTM. Chaturvedi et al. [3] introduced a combined model

of convolutional neural network and fuzzy logic for predicting

the degree of a specific emotion. In addition, because of the

dependency between each emotion-related subtask, sentiment

analysis will perform better in a suitable joint framework. And

people pay increasing attention to emotion analysis based on

multitask learning recently. For example, Akhtar et al. [24]

proposed a multitask learning framework, which completes four

emotion and sentiment analysis tasks together, such as "3-class

categorical & 5-class ordinal classification for sentient". And

in the multitask learning framework, all experimental results

are better than the single task framework.

III. METHODOLOGY

A. Task Definition

Let X
(k)
j = [A

(k)
j , V

(k)
j , D

(k)
j ] represents the multimodal

feature extracted from the jth segment of the kth video, where

A
(k)
j , V

(k)
j , D

(k)
j represents the unimodal features from acous-

tic vision and text modalities. Then k ∈ {1, 2, . . . ,K} and K

denotes the number of videos. Additionally, let Y
(k)
j = {y(k)j }

is the corresponding sentiment label of value or arousal, where

j ∈ {1, 2, . . . , N} and N stands for the number of video

segments. According to the overall framework shown in Fig. 2

show, (1) we first apply baseline methods and PCA to explore

the best unimodal features Āj , V̄j , D̄j (2) Then, we fuse the

best and some other unimodal features based on an early fusion

strategy and conduct experiments in a variety of hybrid deep

temporal models. (3) Finally, we design a multitask learning

framework that can adaptively change the loss weights of

subtasks to predict sentient classes for each emotion dimension.

And the goal of multimodal sentiment analysis in this paper is

to maximize the following function:

Φ =

T∏
i=1

N∏
j=1

K∏
k=1

p
(
y
(i,k)
j | Ā(k)

j , V̄
(k)
j , D̄

(k)
j ; θ

)
(1)

where, y
(i,k)
j represents the sentiment label of valence or arousal

corresponding to the jth video segment of the kth video in the

ith subtask. T denotes the number of subtasks, and θ is the

set of model parameters in all subtasks.

B. Multimodal Features

Emotion can be conveyed in various modalities. For example,

the changes of voice and intonation in speech, facial expres-

sions, and body movements in vision, and semantic information

in the text. In this section, we introduce the features adopted

by our model.

1) Acoustic: eGeMAPS Feature: eGeMAPS, an extension

of GeMAPS [25], adds some features on the basis of 18

acoustic LLDs, including 5 spectral features and 2 frequency-

related features. In addition, a total of 88 statistical features

can be obtained on these LLDs. DeepSpectrum Feature:
DeepSpectrum feature can be obtained by feeding the spectral

map into the pre-trained image convolutional neural network
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Fig. 2: Overview of the proposed model in the prediction of arousal. The "baseline" is the Self-Attention+Bidirectional Long

Short-Term Memory (Bi-LSTM) model and the overline represents the unimodal features after PCA. The best and sub-best

models are both selected from six hybrid models according to their performance in the validation set. Additionally, we adopt

the early fusion strategy in multimodal fusion and concatenated the output of each subtask in shared hidden layers.

(such as VGGNet [26]), and it has been proved that it can

capture useful emotional information in speech [27]. VGGish
Feature: VGGish Feature can be obtained by feeding audio

into the pre-trained VGGish model. Among them, VGGish [28]

is a variant of VGGNet, which is pre-trained on AudioSet [29]

dataset containing more than 2 million human-labeled video

soundtracks and more than 600 audio event classes.

2) Vision: VGGFace Feature: VGGFace is the facial

feature, which can be extracted by feeding the picture obtained

by multitask revolutionary neural network (MTCNN) into the

pre-trained VGGNet. the training data of the VGGNet consists

of 2.6 million faces and more than 2500 identities. Compared

with other face recognition models, VGGFace can consume

less data and show higher performance. Xception Feature:
Xception Feature is the environmental features provided by

Xception [30] using stacked residual blocks. The network was

pre-trained on an ImageNet dataset [31] containing 350 million

images and 17000 categories.

3) Text: BERT Feature: The extraction process of BERT

Feature adopts a transformer-based [32] bidirectional encoder

BERT [33], which has been widely applied in various NLP

tasks. BERT Feature can be obtained by feeding unlabeled text

and their context into pre-trained BERT model. Especially, our

feature of 768 dimensions is the sum of the last four BERT

layers.

C. Principal Component Analysis

PCA is often used to reduce the dimension of high-

dimensional data. Importantly, the data after the dimension

reduction process can remove the noise and improve the quality.

To be specific, PCA uses orthogonal transformation to replace

the original n-dimensional features with m-dimensional features

with fewer dimensions. These new features are the linear

combination of the old features, which is the linear combination

that maximizes the sample variance. It is worth noting that

in the experiment, we employ the PCA algorithm based on

eigenvalue decomposition of the covariance matrix. Let n-

dimensional data X = {x1, x2, . . . , xn} is the input and needs

to be reduced to k-dimensional. The specific calculation process

is as follows:

• Processing the data using the method of the mean-residual

normalization.

• Calculating covariance matrix XXT .

• Solving the eigenvalue and eigendirection of the covari-

ance matrix XXT using the eigenvalue decomposition

method.

• Sorting the eigenvalues, and selecting the largest K of

them. Then, the corresponding K eigenvectors are used

as row vectors to form the eigenvector matrix P .

• Mapping the data into a new space constructed by K

eigenvectors, namely: Y = PX

D. Multitask sentiment analysis model

For achieving the more robust sentiment analysis model, we

perform multitask learning based on the two best F1 score

combinations of feature and hybrid temporal model.

1) Hybrid temporal models:
To determine the network structure of the multitasking learning

framework, we fused different unimodal features based on an

early fusion strategy similar to the method in [11], and proposed

six hybrid deep temporal models: Transformer (Way1), Self-

Attention+Bi-LSTM (Way2), Transformer+Bi-LSTM (Way3),

EfficientNet+Bi-LSTM (Way4), Self-Attention-EfficientNet+Bi-

LSTM (Way5), Transformer+EfficientNet+Bi-LSTM (Way6).
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Transformer: Like most seq2seq models, the structure of the

transformer is also composed of an encoder and decoder.
• Encoder: The encoder consists of six layers with the

same structure, and each layer contains two sub-layers: a

multi-head self-attention and a fully connected feed-forward

network. Admittedly, the Transformer can work partly because

the multi-head attention mechanism plays an important role.

The calculation process of multi-head attention mechanism is

as follows:

MH(Q,K, V ) = concat(head1, head2, ..., headn)Wh (2)

headi = Att(QWi
Q,KWi

K , V Wi
V ) (3)

Att(Q,K, V ) = softmax(
QKT

√
dk

)V (4)

where MH(.) and Att(.) represent the multi-head attention

layer and attention layer, respectively. wh, WQ
i , WK

i and WV
i

denote the learnable parameter matrices. Q, K,and V are the

set of queries, keys, and values, respectively. In addition, the

main difference between Self-Attention and traditional attention

mechanisms is Q = K = V .
• Decoder: Because the decoder needs to receive the global

semantic information of the encoder and the precoding results

of the model at the same time, the decoder adds an attention

sub-layer with the mask on the basis of the encoder. Other

structures of the decoder are the same as those of encoder.

Bi-LSTM: Bi-LSTM is a bidirectional LSTM, which makes

up for the lack that traditional LSTM cannot encode informa-

tion from back to front. Noteworthy, forward and backward

information is all particularly important in emotion analysis

tasks. Let the input is ut , the forward calculation process of

Bi-LSTM is as follows:

it = σs(Wiut + Ui
�ht−1 + bi) (5)

ft = σs(Wfut + Uf
�ht−1 + bf ) (6)

ot = σs(Wout + Uo
�ht−1 + bo) (7)

�ht = σh(ot ◦ (ft ◦ �ht−1 + it ◦ σh(Wcut + bc))) (8)

where, σs and σh are the sigmoid and tanh activation functions,

respectively. ◦ is element-wise multiplication i, f and o are

the input, forget and output gate vectors, respectively. W , U ,

and b are parameters of the model.
→
ht represents the hidden

state of model. Similarly, we can obtain another hidden state
←
ht. The concatenated result of the hidden states

→
ht and

←
ht is

the final hidden state ht = [
→
ht;

←
ht].

EfficientNet: Efficientnet V2 [34] is a model scaling method.

It uses a composite coefficient to enlarge the network from the

three dimensions of depth, width, and resolution. Instead of the

arbitrarily scaling method, it is based on neural structure search

technology to obtain the optimal set of parameters (composite

coefficients). Moreover, EfficientNet is not only much faster

than other convolutional neural networks but also has higher

accuracy. It is worth noting that in the experiment, in order

to better model the complex time-dependences in the video,

we use a one-dimensional convolution layer to replace the

two-dimensional convolution layer in the original model.

2) Multitask learning framework:
In this section, the multitask learning framework is proposed for

solving two problems: (1) the early fusion strategy is not able

to make full use of the complementary information between

multimodal data. (2) the proposed hybrid temporal models

may overfit the verification set and thus lack generalization

ability. The design idea of the framework is to find a common

representation in the middle layer of the hybrid temporal models

to fully complement information between multimodal data, and

then independently predict the sentient classes for each emotion

dimension in each subtask. Additionally, the hybrid temporal

models have better generalization ability in predicting sentiment

classes for each emotion dimension, because of the information

they share.

Since the loss of each subtask may behave differently, it

is essential to balance each loss weight of subtasks. Most

multitask learning framework adopts the following form of the

combined loss function.

LT (x, yT , ŷT ,WT ) =
∑
τ∈T

Lτ (x, yτ , ŷτ ,Wτ ) · λτ (9)

y′τ = softmax (WPhτ + bP ) (10)

ŷτ = argmax
k

(y′τ [k]) (11)

where, x represents the multimodal features. yτ and ŷτ are

the true and prediction labels, respectively. T denotes the

set of subtasks. τ ∈ T is the current subtask and λτ is

the corresponding loss weight. Wτ and WT are parameter

matrixes of the model. In addition, in our proposed task learning

framework, each subtask uses a fully connected network as

a classifier. Wp and bp represent the weight and bias of the

classifier, respectively.

It is not difficult to find that in the above loss function,

λτ will greatly affect the final result. However, the manual

adjustment process of parameter λτ will take a lot of expendi-

ture of time and effort. Therefore, we urgently need a strategy

that can change the loss weight of each subtask efficiently,

adaptively, and dynamically. Fortunately, inspired by [35], we

designed the following loss function, which can automatically

adjust the loss weight of each subtask based on homoscedastic

uncertainty.

LT (x, yT , ŷT ,WT ) =
∑
τ∈T

1

2δ2τ
Lτ (x, yτ , ŷτ ,Wτ ) + log (δτ )

(12)

where, δτ is a trainable parameter in each subtask, with an

initial value of 1. To speed up the convergence of the models

and avoid the over-fitting problem, we redefine the loss function

in the following form:

Lτ (x, yT , ŷT ,Wτ ) =
∑
τ∈T

1

2δ2τ
Lτ (x, yτ , ŷτ ,Wτ )

+ log (1 + δτ ) + η‖θ‖
(13)

where, η is the L2 regularization term and θ is the set of

parameter matrixes of all subtasks.
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TABLE I: Comparison between unimodal features and the

features after PCA. A, V, T represent audio, video, and text.

Features Modality Dimension PCA Features Dimension

DeepSpectrum A 4096 DeepSpectrum 38

V GGish A 128 V GGish 75

eGeMAPS A 88 eGeMAPS 10

Xception V 2048 Xception 304

V GGFace V 512 V GGFace 34

FAU V 35 FAU 14

BERT T 768 BERT 412

IV. EXPERIMENT

A. Dataset

In the MuSe-Sent sub-challenge of MuSe 2021, participants

need to predict five sentiment classes for each emotion

dimension (arousal or valence) on a segment level, based

on audio-visual recordings from the MuSe-CaR dataset [6].

It consists of 291 videos collected from YouTube. And the

training set, verification set, and test set contain 166, 62, and

64 videos respectively in the MuSe-Sent sub-challenge.

B. Experimental Setup

In this paper, all the deep learning models used are based on

the Pytorch framework. Additionally, the proposed six hybrid

temporal models, The detailed hyperparameters of the proposed

six hybrid temporal models are the following: the initial value

of learning rate, epoch, and optimizer is 0.001, 100, and Adam

in all six hybrid temporal models. Especially, the activation

function of EfficientNet is a sigmoid weighted liner unit (SiLU)

but that of other models is ReLU. Moreover, in Transformer,

the hidden size in the position-wise feed-forward layer and the

number of heads are 128 and 4, respectively. As for Bi-LSTM,

the hidden size is 64 which is the same as that of Self-attention.

C. The results of PCA

In this part, we specify the explained variance of PCA as

95% and conduct PCA on different modal features for the

reduced dimensionality. The experimental results are shown in

Table I. In the multi-dimensional feature vectors, some features

contribute little to prediction results. So, our purpose is to

eliminate these irrelevant or low correlation information to

improve the quality of samples, which can also reduce noise

and improve the robustness of the model.

D. The results of hybrid temporal model

Uni-modal Results: Firstly, we use the Self-Attention + Bi-

LSTM model to obtain the best unimodal features under

different modalities, namely: A: VGGish, V: FAU, T: BERT.

Then, the best unimodal features after PCA are fed into six

hybrid temporary models. From results shown in Table II, we

can find that the quality of the BERT feature is significantly

improved, while the performance of the other two features is

just the opposite. In particular, because the BERT feature

shows a surprising effect, the subsequent multimodal fusion

process will also replace the original BERT feature with the

BERT .

Bi-modal Results: We fuse the best unimodal features, based

on early fusion strategy and conduct experiments in six hybrid

temporal models. From results shown in Table II, we can

see that when the feature is VGGish+BERT and the model

is EfficientNet+Bi-LSTM, the best effect is achieved in the

prediction of sentiment classes for arousal. However, when the

model or feature changes, the performance of the model will

be greatly reduced. In a word, the performance of models will

fluctuate greatly with different combinations of features and

hybrid temporal models.

Multimodal Results: On the basis of bimodal features, we

continue to fuse more related features (such as VGGFace,

etc.) that have an average performance on baseline methods,

based on early fusion strategy. Then, we obtained four groups

of multimodal features and carried out experiments in six

hybrid temporal models. From results shown in Table III

and IV, we can conclude that when the multimodal feature

is VGGish+FAU+BERT+VGGFace, the prediction results of

both valence and arousal have achieved the best performance,

but the model architecture is different in predicting the

sentiment classes for valence or arousal. Additionally, we can

see that more features do not bring performance improvement

and even play a negative role. A possible explanation is that

the fusion of various features based on early fusion strategy is

not sufficient.

E. The results of the multitask learning

We select the two combinations of the best features and hy-

brid temporal models in each prediction task (arousal/valence)

as the main task and related task for multitask learning. Our

purpose is to make full use of the complementary information

between multimodal data. According to the experiment results

in Table V, we can infer that to a certain extent, conducting

multitask learning does complement the feature of the current

task by introducing the shared information from other tasks,

which further improves the generalization ability of the model

of the main task.

F. Submission Results

The best submission results are shown in Table VI. Although

our method is superior to the baseline method with the valence

of 0.3379 versus 0.3291, it lacks generalization ability in the

prediction task of the sentiment classes for arousal. Fortunately,

our method surpasses the baseline method with the combined

arousal and valence of 0.3362 versus 0.3282 on the test set.

V. CONCLUSION

In this paper, we explore various features from three

modalities (audio, video, and text) and carry out a lot of

experiments in six hybrid temporal models. Additionally, for

multimodal sentiment analysis, we also present a multitask

learning framework that can adaptively change the loss weight

per subtask. Firstly, we employ the baseline methods and PCA

for obtaining the unimodal features with the best F1 score from

each modality.
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TABLE II: F1 score performance of unimodal features and bimodal features on the validation set. The Way1 to Way6 represent

six hybrid temporal models respectively, and the best values under different features are highlighted in bold.

Features Modalities
Arousal Valence

Way1 Way2 Way3 Way4 Way5 Way6 Way1 Way2 Way3 Way4 Way5 Way6

Uni-modal feature

V GGish A 17.42 31.35 26.28 34.67 37.74 21.62 18.08 26.83 17.94 31.72 32.47 17.29

FAU V 14.19 26.27 26.28 27.45 36.30 26.40 14.78 24.65 23.26 27.14 30.75 28.01
BERT T 18.29 30.26 26.72 26.41 26.40 26.40 16.97 31.31 20.78 24.66 23.36 24.87

V GGish A 17.85 30.11 26.41 34.32 36.14 26.40 20.06 31.59 17.41 30.59 31.38 17.55

FAU V 14.17 26.28 26.42 26.53 29.72 26.40 14.89 24.72 23.30 25.40 25.44 26.55
BERT T 19.12 34.78 26.40 35.03 26.49 31.67 17.03 32.38 23.34 25.85 23.49 23.30

Bi-modal feature

FAU +BERT V+T 17.19 34.78 30.17 26.55 26.59 26.37 19.09 31.96 22.11 30.52 25.60 17.86

V GGish+ FAU A+V 17.83 31.98 26.47 31.70 26.26 26.36 19.03 32.23 18.80 31.06 32.14 17.35

V GGish+BERT A+T 19.59 23.30 26.21 34.60 26.53 26.07 17.39 31.58 18.26 24.75 27.20 17.60

TABLE III: F1 score performance of multimodal features on the arousal dimension on the validation set.

Features Modalities
Arousal

Way1 Way2 Way3 Way4 Way5 Way6

Multimodal feature

V GGISH + FAU +BERT A+V+T 17.27 35.61 26.53 36.39 26.47 20.06

V GGish+ FAU +BERT + V GGFace A+V+T 17.27 32.26 26.30 37.21 26.5 25.94

V GGish+ FAU +BERT + eGeMAPS A+V+T 17.53 26.62 26.03 26.57 37.05 20.48

V GGish+ FAU +BERT +XCEPTION + V GGFace+DeepSpectrum+ eGeMAPS A+V+T 17.93 36.97 29.22 26.60 26.43 20.85

TABLE IV: F1 score performance of multimodal features on the valence dimension on the validation set.

Features Modalities
Valence

Way1 Way2 Way3 Way4 Way5 Way6

Multimodal feature

V GGish+FAU+BERT A+V+T 17.43 32.17 19.45 31.24 23.41 18.14

V GGish+ FAU +BERT + V GGFace A+V+T 19.13 33.47 23.70 29.44 25.54 18.38

V GGish+ FAU +BERT + eGeMAPS A+V+T 18.79 31.57 20.70 31.58 25.79 17.58

V GGish+ FAU +BERT +Xception+ V GGFace+DeepSpectrum+ eGeMAPS A+V+T 18.93 32.02 21.94 27.20 23.69 17.66

TABLE V: F1 score performance of multitask learning model

on the validation set.

Main task Related task
Best F1 score

Feature Model Feature Model

Arousal V GGish Way5
V GGish+ FAU +BERT

+V GGFace
Way4 0.3807

Valence
V GGish+ FAU +BERT

+V GGFace
Way2 V GGish Way5 0.3366

TABLE VI: The best submission results of our method on

validation and test set.

Emotion Partition Baseline Proposed

Arousal Val 0.3772 0.3807

Valence Val 0.3017 0.3366

Arousal Test 0.3512 0.3345

Valence Test 0.3291 0.3379

In addition, we find that the quality of the BERT feature

is significantly improved after PCA, while other features

after PCA will play a negative role. Secondly, we introduce

six hybrid temporal models to capture the time-dependences

in segments of videos. When the multimodal feature is

V GGish + FAU + BERT + V GGFace, on the arousal

and valence dimension, the best prediction results are both

achieved. Finally, to make up for the defect that the early fusion

strategy can not make full use of the complementarity between

various multimodal features, we use the two best combinations

of features and models as the main task and related task in

our framework, which achieves information sharing between

various multimodal features. Moreover, our method surpasses

the baseline method with the combined arousal and valence of

0.3362 versus 0.3282 on the test set.

REFERENCES

[1] L. Stappen, L. Schumann, B. Sertolli, A. Baird, B. Weigel, E. Cambria,
and B. W. Schuller, “Muse-toolbox: The multimodal sentiment analysis
continuous annotation fusion and discrete class transformation toolbox,”
arXiv preprint arXiv:2107.11757, 2021.

[2] K. Zhang, Y. Li, J. Wang, E. Cambria, and X. Li, “Real-time video
emotion recognition based on reinforcement learning and domain
knowledge,” IEEE Transactions on Circuits and Systems for Video
Technology, 2021.

[3] I. Chaturvedi, R. Satapathy, S. Cavallari, and E. Cambria, “Fuzzy
commonsense reasoning for multimodal sentiment analysis,” Pattern
Recognition Letters, vol. 125, pp. 264–270, 2019.

[4] E. Cambria, Y. Li, F. Z. Xing, S. Poria, and K. Kwok, “Senticnet 6:
Ensemble application of symbolic and subsymbolic ai for sentiment
analysis,” in Proceedings of the 29th ACM international conference on
information & knowledge management, 2020, pp. 105–114.

[5] S. Poria, D. Hazarika, N. Majumder, G. Naik, E. Cambria, and
R. Mihalcea, “MELD: A multimodal multi-party dataset for emotion
recognition in conversations,” in ACL, 2019, pp. 527–536.

[6] L. Stappen, A. Baird, L. Schumann, and B. Schuller, “The multimodal
sentiment analysis in car reviews (muse-car) dataset: Collection, insights
and improvements,” arXiv preprint arXiv:2101.06053, 2021.

[7] S. Zhao, S. Wang, M. Soleymani, D. Joshi, and Q. Ji, “Affective
computing for large-scale heterogeneous multimedia data: A survey,”
ACM Transactions on Multimedia Computing, Communications, and
Applications (TOMM), vol. 15, no. 3s, pp. 1–32, 2019.

[8] P. Ekman and D. Keltner, “Universal facial expressions of emotion,”
Segerstrale U, P. Molnar P, eds. Nonverbal communication: Where nature
meets culture, vol. 27, p. 46, 1997.

[9] A. Hanjalic and L.-Q. Xu, “Affective video content representation and
modeling,” IEEE transactions on multimedia, vol. 7, no. 1, pp. 143–154,
2005.

[10] Y. Susanto, A. G. Livingstone, B. C. Ng, and E. Cambria, “The hourglass
model revisited,” IEEE Intelligent Systems, vol. 35, no. 5, pp. 96–102,
2020.

[11] M. Wöllmer, F. Eyben, S. Reiter, B. Schuller, C. Cox, E. Douglas-Cowie,
and R. Cowie, “Abandoning emotion classes-towards continuous emotion
recognition with modelling of long-range dependencies,” in Proc. 9th
Interspeech 2008 incorp. 12th Australasian Int. Conf. on Speech Science
and Technology SST 2008, Brisbane, Australia, 2008, pp. 597–600.

156



[12] R. Li, J. Zhao, J. Hu, S. Guo, and Q. Jin, “Multi-modal fusion for video
sentiment analysis,” in Proceedings of the 1st International on Multimodal
Sentiment Analysis in Real-life Media Challenge and Workshop, 2020,
pp. 19–25.

[13] L. Sun, Z. Lian, J. Tao, B. Liu, and M. Niu, “Multi-modal continuous
dimensional emotion recognition using recurrent neural network and
self-attention mechanism,” in Proceedings of the 1st International
on Multimodal Sentiment Analysis in Real-life Media Challenge and
Workshop, 2020, pp. 27–34.

[14] E. Sánchez-Lozano, P. Lopez-Otero, L. Docio-Fernandez, E. Argones-
Rúa, and J. L. Alba-Castro, “Audiovisual three-level fusion for continuous
estimation of russell’s emotion circumplex,” in Proceedings of the 3rd
ACM international workshop on Audio/visual emotion challenge, 2013,
pp. 31–40.

[15] H. Zhou, D. Meng, Y. Zhang, X. Peng, J. Du, K. Wang, and Y. Qiao,
“Exploring emotion features and fusion strategies for audio-video emotion
recognition,” in 2019 International Conference on Multimodal Interaction,
2019, pp. 562–566.

[16] J. Zhao, R. Li, S. Chen, and Q. Jin, “Multi-modal multi-cultural
dimensional continues emotion recognition in dyadic interactions,” in
Proceedings of the 2018 on Audio/Visual Emotion Challenge and
Workshop, 2018, pp. 65–72.

[17] S. Poria, E. Cambria, R. Bajpai, and A. Hussain, “A review of affective
computing: From unimodal analysis to multimodal fusion,” Information
Fusion, vol. 37, pp. 98–125, 2017.

[18] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean, “Dis-
tributed representations of words and phrases and their compositionality,”
in Advances in neural information processing systems, 2013, pp. 3111–
3119.

[19] J. Pennington, R. Socher, and C. D. Manning, “Glove: Global vectors for
word representation,” in Proceedings of the 2014 conference on empirical
methods in natural language processing (EMNLP), 2014, pp. 1532–1543.

[20] A. Zadeh, M. Chen, S. Poria, E. Cambria, and L.-P. Morency, “Tensor
fusion network for multimodal sentiment analysis,” in EMNLP, 2017,
pp. 1114–1125.

[21] J. Yang, Y. Wang, R. Yi, Y. Zhu, A. Rehman, A. Zadeh, S. Poria, and L.-P.
Morency, “Mtag: Modal-temporal attention graph for unaligned human
multimodal language sequences,” in Proceedings of the 2021 Conference
of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, 2021, pp. 1009–1021.

[22] D. Hazarika, R. Zimmermann, and S. Poria, “Misa: Modality-invariant
and-specific representations for multimodal sentiment analysis,” in
Proceedings of the 28th ACM International Conference on Multimedia,
2020, pp. 1122–1131.

[23] A. Zadeh, P. P. Liang, S. Poria, P. Vij, E. Cambria, and L.-P. Morency,
“Multi-attention recurrent network for human communication compre-
hension,” in Thirty-Second AAAI Conference on Artificial Intelligence,
2018.

[24] S. Akhtar, D. Ghosal, A. Ekbal, P. Bhattacharyya, and S. Kurohashi,
“All-in-one: Emotion, sentiment and intensity prediction using a multi-
task ensemble framework,” IEEE transactions on affective computing,
2019.

[25] F. Eyben, K. R. Scherer, B. W. Schuller, J. Sundberg, E. André, C. Busso,
L. Y. Devillers, J. Epps, P. Laukka, S. S. Narayanan et al., “The geneva
minimalistic acoustic parameter set (gemaps) for voice research and
affective computing,” IEEE transactions on affective computing, vol. 7,
no. 2, pp. 190–202, 2015.

[26] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[27] Z. Zhao, Y. Zhao, Z. Bao, H. Wang, Z. Zhang, and C. Li, “Deep spectrum
feature representations for speech emotion recognition,” in Proceedings
of the Joint Workshop of the 4th Workshop on Affective Social Multimedia
Computing and first Multi-Modal Affective Computing of Large-Scale
Multimedia Data, 2018, pp. 27–33.

[28] S. Hershey, S. Chaudhuri, D. P. Ellis, J. F. Gemmeke, A. Jansen,
R. C. Moore, M. Plakal, D. Platt, R. A. Saurous, B. Seybold et al.,
“Cnn architectures for large-scale audio classification,” in 2017 ieee
international conference on acoustics, speech and signal processing
(icassp). IEEE, 2017, pp. 131–135.

[29] J. F. Gemmeke, D. P. Ellis, D. Freedman, A. Jansen, W. Lawrence, R. C.
Moore, M. Plakal, and M. Ritter, “Audio set: An ontology and human-
labeled dataset for audio events,” in 2017 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2017,
pp. 776–780.

[30] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770–778.

[31] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet:
A large-scale hierarchical image database,” in 2009 IEEE conference on
computer vision and pattern recognition. Ieee, 2009, pp. 248–255.

[32] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” in Advances in
neural information processing systems, 2017, pp. 5998–6008.

[33] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training
of deep bidirectional transformers for language understanding,” arXiv
preprint arXiv:1810.04805, 2018.

[34] M. Tan and Q. V. Le, “Efficientnetv2: Smaller models and faster training,”
arXiv preprint arXiv:2104.00298, 2021.

[35] A. Kendall, Y. Gal, and R. Cipolla, “Multi-task learning using uncertainty
to weigh losses for scene geometry and semantics,” in Proceedings of
the IEEE conference on computer vision and pattern recognition, 2018,
pp. 7482–7491.

157


