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Abstract—Multimodal sentiment analysis involves identifying
sentiment in videos and is a developing field of research. Unlike
current works, which model utterances individually, we propose
a recurrent model that is able to capture contextual information
among utterances. In this paper, we also introduce attention-
based networks for improving both context learning and dynamic
feature fusion. Our model shows 6-8% improvement over the
state of the art on a benchmark dataset.

I. Introduction

Emotion recognition and sentiment analysis have become a
new trend in social media, avidly helping users to understand
opinions expressed in social networks and user-generated con-
tent [1]. With the advancement of communication technology,
abundance of smartphones and the rapid rise of social media,
large amounts of data are uploaded by web users in the form
of videos, rather than text [2]. For example, consumers tend
to record their reviews on products using a web camera and
upload them on social media platforms such as YouTube or
Facebook to inform subscribers of their opinions. These videos
often contain comparisons of products from competing brands,
the pros and cons of product specifications, etc., which can aid
prospective buyers in making an informed decision.

An utterance is a segment of speech bounded by breaths
or pauses. A review video often contains multiple utterances.
The goal of utterance-level sentiment analysis is to label each
utterance by its sentiment label. Utterance-level sentiment
analysis facilitates the understanding of the reviewer’ senti-
ment dynamics on multiple aspects of the review. Recently, a
number of approaches have been proposed in the field of mul-
timodal sentiment analysis [3], [4], [5]. All such approaches
consider each utterance as an independent entity and, hence,
ignore the relationship and dependencies between them. In a
video, however, utterances maintain a sequence and can be
highly correlated due to the development of the speaker’s
idea, co-reference and discourse structure. In particular, the
classification of an utterance can benefit from the contextual
information of other utterances. Modeling such contextual
relationship, however, may not be enough. Identifying relevant
and important information from the pool of utterances is
necessary in order to make a model more robust and accurate.

To this end, we propose an attention-based long short-
term memory (LSTM) network which not only models the
contextual relationship among utterances, but also prioritizes
more relevant utterances for classifying the target utterance.
Experimental results show that the proposed framework out-
performs the state of the art on benchmark datasets by 6-8%.
Below, we describe the major contributions of the paper:

o We propose a contextual attention-based LSTM (CAT-
LSTM) network to model the contextual relationship
among utterances and prioritize the important contextual
information for classification.

¢ We introduce an attention-based fusion mechanism,
termed AT-Fusion, which amplifies the higher quality
and informative modalities during fusion in multimodal
classification.

The remainder of this paper is organized as follows: Section II
describes the proposed method in detail; experimental results
and discussion are shown in Section III; finally, Section IV
concludes the paper.

II. Method

In the following subsections, we discuss the problem defi-
nition and explain the proposed approach in detail.

A. Problem Definition

Let us assume a video to be considered as V; =
[wjn wj2 wj3,...;uj;...uj1,] where uj; is the i*" utterance
in video v; and L; is the number utterances in the video. The
goal of this approach is to label each utterance u;; with the
sentiment expressed by the speaker. We claim that, in order to
classify utterance u; ;, the other utterances in the video, i.e.,
[uj | VEk < L;,k # i), serve as its context and provide key
information for the classification.

B. Overview of the Approach

The overview of the proposed approach is as follows:

1. Unimodal feature extraction We first extract utterance-
level unimodal features from the respective unimodal
classifiers. This phase does not consider the contextual
relationship among the utterances.



2. AT-Fusion — Multimodal fusion using the attention
mechanism In this step, the utterance-level unimodal
features extracted at Step 1 are fused using an attention
network (AT-Fusion) and the resulting output is used in
the next step for sentiment classification.

3. CAT-LSTM - Attention-based LSTM model for sen-
timent classification CAT-LSTM is an attention-based
LSTM network which accepts the features (output of Step
2) of a sequence of utterances per video and generates
a new representation of those utterances based on the
surrounding utterances.

C. Unimodal Feature Extraction

In this step, we extract unimodal features using dedicated
unimodal feature extractors. The utterances are treated inde-
pendently in this process.

1) Textual Features Extraction: We use a CNN for
textual feature extraction, which takes utterances represented
as a matrix of Google word2vec [6] vectors. Such vectors
cover 87% of the vocabulary of CMU-MOSI dataset; the
missing ones are initialized randomly. The convolution filters
are then applied to this matrix of word vectors.

The CNN has two convolutional layers: the first layer has
two kernels of size 3 and 4, with 50 feature maps each and the
second layer has a kernel of size 2 with 100 feature maps. The
convolution layers are interleaved with max-pooling layers of
window 2 x 2. This is followed by a fully connected layer of
size 500 and softmax output. We use ReLU as the activation
function. The activation values of the fully-connected layer are
taken as the features of utterances for text modality.

2) Audio Feature Extraction: Audio features are ex-
tracted with 30 Hz frame-rate and a sliding window of 100
ms using openSMILE toolkit. In order to identify samples
with and without voice, voice normalization is performed
using Z-standardization technique. The features extracted by
openSMILE consist of several low-level descriptors, e.g., voice
intensity, pitch, and their statistics, e.g., mean, root quadratic
mean.

3) Visual Feature Extraction: There are various choices
of deep networks specialized for image/video classification,
e.g., cascaded CNN layers and recurrent neural networks
(RNNs) such as LSTM and GRU. We chose 3D-CNN due
to its proven ability to learn image representations (like 2D-
CNN), along with the changes among the sequence of images
(frames) in a video [7]. Let V e R&/*"® represents an
utterance video, where ¢ = number of channels in an image
(in our experiments ¢ = 3, since the constituent images are
RGB), f = number of frames, i = height of each frame, and
w = width of each frame. We apply 3D convolutional filter
F to video V, where F e Rfmxexfaxfuxfw —f = = number
of feature maps, ¢ = number of channels, f; = number of
frames, f;, = height of the filter, and f,, = width of the filter
(we chose F' e R32*3%5%5%5) Following the philosophy of 2D-

CNN, 3D-CNN slides filter F' across video V' and produces
output cvout € RIm*ex(f=fatDx(h=fn+D)x(w=fu+1),

To discard irrelevant features, we apply max-pooling of
window 3 x 3 x 3 on cvout. Output of pooling layer is fed
to a fully-connected layer of size 300, followed by a softmax
layer for classification. The activations of the fully-connected
layer is used as the features of video V.

D. AT-Fusion — Attention-Based Network for Multimodal
Fusion

Attention mechanism has the ability to focus on the most
important parts of an object relevant to the classification, im-
proving the performance of the baseline deep neural networks.
The attention mechanism has been successfully employed in
NLP tasks such as sentiment analysis [8]. Not all modalities
are equally relevant in the classification of sentiment. In
order to prioritize only important modalities, we introduce
an attention network, termed as AT-Fusion, which takes as
an input audio, visual, and textual modalities and outputs an
attention score for each modality.

We equalize the dimensions of the feature vectors of all
three modalities prior to feeding them into the attention
network. This is done using a fully-connected layer of size d.
Let B = [B,, By, Bt] be the feature set after dimensionality
equalization to size d, where B, = acoustic features, B, =
visual features, and B, = textual features; following B ¢ R%*3,
The value of d when set to 300 gives best performance.

The attention weight vector oy, and the fused multimodal
feature vector F' are computed as follows:

PF = tanh(Wp.B) (1)
Qfyse = softmaw(wg.PF) 2)
F=B.0j,,. 3)

Here, Wg € R? p e RY, a?use e R3, and F € R%. We then
feed the output F' to the CAT-LSTM (Section II-E1, Figure 1)

for final multimodal sentiment classification of the utterance.

E. Classifier: Context-Dependent Sentiment Classification

A speaker usually tries to gradually develop his/her idea
and opinion about a product in the review, which makes the
utterances in a video sequential, temporally and contextually
dependent. This phenomenon motivates us to model inter-
utterance relationship. To this end, we use a LSTM layer,
in combination with the attention mechanism to amplify the
important contextual evidences for sentiment classification of
target utterance.

1) Proposed CAT-LSTM for Sentiment Classification:
LSTM is a specialized RNN, which models long-range depen-
dencies in a sequence. Specifically, LSTM solves the vanish-
ing gradient problem of conventional RNNs, while modeling
long-range dependencies. Current research in NLP indicates
the benefit of using such networks to incorporate contextual
information in the classification process [9], [10].

Let, 7 € R*M pe input to the LSTM network, where M
is the number of utterances in a video. The matrix = can be
represented as x = [y, %y, ..., 2¢,...x0/ ], Where x; € R? for
t=0to M.
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Fig. 1: CATF-LSTM takes input from multiple modalities, fuses them using AT-Fusion, and sends the output to CAT-LSTM for classification.

Each cell in LSTM can be computed as follows:

x=| o] 4)
fo=o(Wr.X +by) 5)

i = o (Wi X +b;) ©6)

oy =0(W,.X +b,) @)

¢t = [t ®@co1 + i @ tanh(We. X +b.) 8)
hi = oy © tanh(cy) )

where W;, W;, W, e R¥24 b, b b, € R are parameters to
be learnt during the training, o is the sigmoid function and ©
is element-wise multiplication.

The output of this LSTM layer is represented as H € R®>M
where H = [hy,ha,...,h,....,har] and h; € RY. We feed
the sequence of M utterance-level features (fused features F',
obtained in equation (3) or unimodal features) to LSTM and
obtain contextually-aware utterance representations H.

a) Attention Network: All surrounding utterances are
not equally relevant in the sentiment classification of the target
utterance. In order to amplify the contribution of context-rich
utterances, we use an attention network.

Let A; denote the t'" Attention network for utterance
represented by h;. The attention mechanism of A; produces
an attention weight vector a;; and a weighted hidden represen-
tation r; as follows:

P, = tanh(W),[t].H) (10)
oy = softmaz(w[t]’.P,) (11)
r = Hal (12)

where, P, e R®M o, e RM 1, e R?. And, W), e RM*dxd 4 ¢
RM*d are projection parameters with W;,[t] and w[¢] being
used by the ¢ attention model.

Finally, the LSTM representation for t*" utterance is mod-
ified as:

hy = tanh(Wy[t].ry + Wy[t].hy) (13)

Similar to the results obtained by Rocktischel et al. [11],
addition of the term W, [t].h, to W) [t].r, gives better result
in the experiments carried out. Here, h; € R and Wy, W, €
RMx*dxd are weights to be learnt while training. In some
experiments (e.g., Section II-F2b), we use the output h; as
contextual features for further processing.

b) Classification: Finally, each modified LSTM cell out-
put b} is sent into a softmax layer for sentiment classification.

Z; = softmazx((h))T Wiope[t] + bsose[t]) (14)
9 = argmax(Z;[j]), Vje€class (15)
J
where, Z, € Rvdim, Weort € RMxdxydim beopt €

RMxydim y,dim = number of classes, and 4, is the predicted
class.

F. Training

1) Unimodal Classification: In our work, we perform
classification on two types of data — unimodal and multimodal.
To classify the unimodal input, the extracted unimodal features
(Section II-C) are sent to the CAT-LSTM network as inputs.

2) Multimodal Classification: For multimodal classifi-
cation, the extracted unimodal features are first fed to the
AT-Fusion to produce fused multimodal features. Then, such
features are fed to the CAT-LSTM network for sentiment
classification. We call this multimodal sentiment classification
model as Contextual Attentive Fusion LSTM, i.e., CATF-
LSTM. The CATF-LSTM is shown in Figure 1. Multimodal
classification be accomplished using two different frameworks:



a) Single-Level Framework: In this framework, we
fuse context-independent unimodal features as explained in
Section II-D and feed those to CATF-LSTM for multimodal
fusion and classification.

b) Multi-Level Framework: Contextual unimodal fea-
tures can further improve the performance of the multimodal
fusion framework explained in Section II-F2a. In this fusion
scheme, we first send context-independent unimodal features
extracted from every modality to CAT-LSTM. The contextual
features yielded from CAT-LSTM are then fed to CATF-LSTM
for fusion and final classification. Both the unimodal and
multimodal classifiers are trained in an end-to-end manner
using back propagation, with objective function being log-loss:

loss = = 37 3 log(Zu[y]]) + M6|” (16)
)
where, y = target class, Z; = predicted distribution of jth
utterance from video V; s.t. ¢ € [0, N] and j € [0,L;]. A is
the Lo regularization term and 6 is the parameter set 6 =
{Wi, b,‘, Wf, bf, WO, bo, VVF7 wr, Wh, w, VVP7 W@-, Wsoft;
bso ft}-

In our experiments, we pad videos with dummy utterances
to enable batch processing. Hence, we also use bit-masks to
mitigate proliferation of noise in the network. The network is
typically trained for 500-700 epochs with an early-stopping
patience of 20 epochs. As optimizer, we use AdaGrad which
is known to have improved robustness over SGD, given its
ability to adapt the learning rate based on the parameters.

ITII. Experimental Results

In this section, we present the experimental results on
different network variants in contrast with various baselines.

A. Dataset details

We perform person-independent experiments to emulate
unseen conditions. Our train/test splits of the dataset are
completely disjoint with respect to speakers.

a) CMU-MOSI Dataset: Zadeh et al. [12] constructed
a multimodal sentiment analysis dataset termed Multimodal
Opinion-Level Sentiment Intensity (CMU-MOSI), consisting
2199 opinionated utterances, 93 videos by 89 speakers. The
videos address a large array of topics, such as movies, books,
and products. Videos were crawled from YouTube and seg-
mented into utterances. Each of the 2199 utterances were
labeled with its sentiment label, i.e., positive and negative. The
train set comprises of the first 62 individuals in the dataset.
So, the test set comprises of 31 videos by 27 speakers. In
particular, we use 1447 utterances in the training and 752
utterances to test the models out of which 467 are negative
and 285 are negative.

B. Different Models and Network Architectures

We have carried out experiments with both unidirectional
and bi-directional LSTM with the later giving 0.3-0.7% better
performance in all kinds of experiments. As this is an expected
and non-critical outcome, we present all the results below
using bi-directional LSTM variant. Additionally, we consider
the following models in our experiments:

a) Poria et al. (2015): We have implemented and
compared our method with the current state of the art ap-
proach, proposed by Poria et al. [4], who extracted visual
features using CLM-Z, audio features using openSMILE, and
textual features using CNN. Multiple kernel learning was then
applied on the features obtained from the concatenation of
the unimodal features. However, authors did not conduct any
speaker-independent experiments.

b) Poria et al. (2016): This is an extended approach with
respect to [4], which introduces a CNN-RNN feature extractor
to extract visual features. We reimplemented this approach in
our experiments.

c¢) Unimodal-SVM: We extract unimodal features (Sec-
tion II-C) and concatenate them to produce multimodal fea-
tures. A support vector machine (SVM) is applied on the
resulting feature vector for the final sentiment classification.

d) Simple-LSTM: In this configuration, the extracted
unimodal and multimodal features of the utterances are fed to
a LSTM without attention mechanism.

e) CAT-LSTM: This is the simple contextual attention-
based LSTM framework as described in Section II-El. For
multimodal setting, it accepts input generated by appending
unimodal features.

f) CATF-LSTM: This model is used for multimodal
classification. As explained in Section II-F, it consists of AT-
Fusion and CAT-LSTM, where the output of AT-Fusion is fed
to CAT-LSTM.

g) ATS-Fusion: In this variant, instead of feeding the
output of AT-Fusion to the cells of CAT-LSTM, we feed to
softmax classifiers. The utterances are treated independently
in this case.

h) Poria et al. (2015) + Our best model: In order to
perform a fair comparison with Poria et al. (2015), we feed
the features extracted by their method to our best performing
model.

i) Poria et al. (2016) + Our best model: This model
is similar to the model Poria et al. (2015) + Our best model,
except it uses the features extraction process from Poria et
al. (2016).

C. Single-Level vs Multi-level Framework

Multi-level framework outperforms single-level framework
in our experiments given the presence of contextual unimodal
features (see Table II). Hence, for brevity, apart from Table II,
we present only the results of multi-level framework.

D. AT-Fusion Performance

AT-Fusion employs the attention mechanism to fuse mul-
tiple modalities. In order to assess the effectiveness of AT-
Fusion, we compare it with a simple fusion technique where
the feature vectors from different modalities are appended and
fed to the sentiment classifier, i.e., CAT-LSTM.

Table II presents the performance of CATF-LSTM, which
utilizes AT-Fusion for feature fusion followed by CAT-LSTM
for sentiment classification. Given AT-Fusion’s ability to am-
plify the contribution of the important modalities during fu-
sion, it unsurprisingly outperforms the simple fusion method.



It should be noted that AT-Fusion can be integrated with
the other network variants, i.e., Simple-LSTM (Table III).
Table III also shows that AT-Fusion with softmax output, i.e.,
ATS-Fusion, which outperforms the unimodal-SVM thanks to
the superiority of the AT-Fusion over simple feature-append
fusion.

E. Comparison Among the Models

a) Comparison with the state of the art: As shown in
Table I, the proposed approach has outperformed the state of
the art [4], [13] in the range of 6.25%-7.5%. We use the same
set of textual and audio features used in [4], [13]. Notably,
apart from using a different fusion mechanism, our method
also uses a different visual feature extraction method. On the
CMU-MOSI dataset, the proposed visual feature extraction
method has outperformed the CLM-Z (used in [4]) and CNN-
RNN (proposed by [13]). When we employ our best classifier,
i.e., CATF-LSTM, on the features extracted by [4] and [13],
performance of those methods have improved. Using CATF-
LSTM on the features extracted by those methods, we obtained
better results than both of them for audio-visual, visual-
textual bimodal experiments. According to [4], [13] trimodal
classifier outperforms all unimodal and bimodal classifiers.
Hence, we compare our proposed method with those works
in the trimodal experiment. From these experimental results
(Table I), it is evident that the proposed contextual attention-
based LSTM network and fusion methodology are the key to
outperform the state of the art.

Models A+V+T
Poria et al. (2015) 73.55%
Poria et al. (2016) 75.13%
Features of Poria et al. (2015)+ CATF-LSTM 79.40%
Features of Poria et al. (2016) + CATF-LSTM | 80.25%
Our features + CATF-LSTM 81.30%

TABLE I: Comparison of state-of-the-art on multimodal classifica-
tion with our network: CATF-LSTM. Metric used: macro-fscore.
A=Audio;V=Visual;T=Textual.

b) unimodal-SVM: Our unimodal-SVM model yields
comparable performance with the state of the art. However,
simple-LSTM outperforms unimodal-SVM in all the experi-
ments (Table I) as the latter is incapable of grasping the context
information while classifying an utterance.

. Single-Level Multi-Level
Modality - ;
Feat Append AT-Fusion | Feat Append AT-Fusion
A+V 61.0 61.6 62.4 62.9
A+T 78.5 79.2 79.5 80.1
V+T 77.6 78.3 79.6 79.9
A+V+T 78.9 79.3 81.0 81.3

TABLE II: Comparison between single-level and multi-level fusion
mentioned in Section II-F2 using CAT-LSTM network. Feat Ap-
pend=Unimodal features are appended and sent to CAT-LSTM. AT-
Fusion is used with CAT-LSTM network. The table reports the macro-
fscore of classification. A=Audio;V=Visual;T=Textual.

Sentiment, on CMU-MOSI
Modalities [~ gpi-SvM Simple-LSTM | CAT-LSTM
o
s = |E |s |§ |%
z £ ol2 | L |2 |3
= & g 1= g g
A 58.1 595 | - 60.1 | - -
\" 53.4 549 | - 555 | - -
T 75.5 772 | - 79.1 | - -
A+V 58.6 61.4 | 61.8] 624 | 629 | 59.1
A+T 75.8 78.5 | 79.1| 79.5 | 80.1 | 76.3
V+T 76.7 78.7 | 79.1) 79.6 | 799 | 77.5
A+V+T | 779 80.1 | 80.6/ 81.0 | 81.3 | 78.3

TABLE III: Comparison of models mentioned in Section III-B.

The table reports the macro-fscore of classification.
Note: feat-appen=fusion by appending unimodal features.
Multi-level framework is employed (See Section II-F2).

A=Audio;V=Visual;T=Textual.

¢) CAT-LSTM vs Simple-LSTM: From Table III, we
can see that CAT-LSTM outperforms Simple-LSTM by 0.6-
1.1% in unimodal experiments; 0.2-1% in bimodal experi-
ments, and 0.9% in trimodal experiment. This again confirms
that, even though both networks have access to contextual
information, CAT-LSTM outperforms Simple-LSTM because
of its attention capability to capture important contexts. As
expected, CATF-LSTM further improves (0.3-0.6%) the per-
formance of CAT-LSTM as it employs attention mechanism
in fusion.

F. Importance of the Modalities

As expected, bimodal classifiers dominate unimodal clas-
sifiers and trimodal classifiers perform the best among all.
Across modalities, textual modality performs better than the
other two, thus indicating the need for better feature extraction
for audio and video modalities.

G. Qualitative Analysis and Case Studies

In this section, we provide analysis and interesting obser-
vations on the learnt attention parameters for both contex-
tual attention (CAT-LSTM) and attention fusion (AT-Fusion).
Following, we list some of these observations. The need for
considering context dependency (see Section I) is primal for
utterance classification. For example, the utterance “Whoever
wrote this isn’t the writer definitely” has the sentiment ex-
pressed implicitly and, hence, baseline unimodal-SVM and
state of the art fail to classify it correctly'. Information
from neighboring utterances, e.g., “And the dialogue threw
me off” and “The whole movie had a really dry dialogue”,
indicate the negative context for the utterance. Such contextual
relationships are prevalent throughout the dataset.

There are also cases where utterances are very ambiguous if
considered separately because of the lack of context, e.g., “You
never know whats gonna happen”. In such cases, our context
attention network attends to relevant utterances throughout the
video to find contextual dependencies.

IRNTN  classifies it as mneutral. It can be seen here

http://nlp.stanford.edu:8080/sentiment/rntnDemo.html
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(a) The visualization of the attention scores of unimodal CAT-LSTM (b) Visualization of the attention weights of the AT-Fusion network in
and trimodal CATF-LSTM. A,, T, V., Fi represent attention scores trimodal CATF-LSTM.

of audio, textual, and visual fusion, respectively.

Fig. 2: Target utterance for classification - U4: You never know whats gonna happen. The input utterances are - Ul: This is the most engaging endeavor yet. U2: And he puts
them in very strange and unusual characters. U3: Umm what really need about this movie is the chemical brothers did the soundtracks whats pulse pounding the entire way through.
U4: You never know whats gonna happen. US: Theres all these colorful characters. U6: Now it isn’t a great fantastic tell everybody about that kind of movie. U7: But I think its
one of those movies thats so unique. U8: Its colourful. U9: Its in you face. U10: And something that I can’t find anything else to compare it to.

Figure 2a shows the attention weights across the video for
the above-mentioned utterance. While audio and visual provide
decent attention vectors, text modality provides improved
attention. It can be clearly seen that utterances like Uy, U;
(Figure 2a) are the most relevant ones, which multimodal
attention has been able to capture, thus proving its effective-
ness. Interestingly, in this case the most important utterance
Ui is located far from the target utterance Uy, proving the
effectiveness of LSTM in modeling long distance sequence.

Figure 2b shows the contribution of each modality for the
multimodal classification. Rightly, text has been given the
highest weight by the attention fusion network, followed by
audio and visual. Although the context dependency among
utterances can be modeled in a simple LSTM network, there
are often cases where utterances with complementary contexts
are sparsely distributed across the video. In such situations,
neighboring irrelevant utterances may provide negative bias
for the utterance to be classified.

Our model, instead, provides an attention framework which
focuses only on the relevant utterances throughout the video.
For example, in one of the videos, the first utterance “I am
gonna give the reasons why I like him” has its answers from
the 7'" utterance onwards, with the intermediate utterances
being irrelevant. In such situations, CAT-LSTM performs
better than simple-LSTM model.

The effectiveness of AT-Fusion can also be seen in multiple
cases. In one such instance, the audio quality of the utterance
“Sigh it probably would have helped if I went with someone”
was affected by loud background noise. In simple feature-
append fusion models (e.g., unimodal-SVM), this utterance
is misclassified because of the high noise present in the fu-
sion. However, the multimodal attention-based fusion network
(CATF-LSTM) correctly attends the video and text modality
giving negligible attention on audio modality. This trend is
also observed in many other cases. We finally observe that,
in some cases, textual CAT-LSTM classifier performs better
than trimodal CATF-LSTM for the presence of noise in the
audio modality or when the speaker does not look directly at
the camera while speaking.

IV. Conclusion

Multimodal sentiment analysis is a very hot research topic
whose challenges are often underestimated. In this paper, we
discarded the oversimplified assumption that utterances in a
video are independent from each other. Hence, we developed
a new framework that models contextual information obtained
from other relevant utterances while classifying one target
utterance. As demonstrated in the experiments, our framework
outperforms the state of the art and paves the path for a more
context-aware and meaning-preserving multimodal analysis.
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