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A B S T R A C T

Sarcasm is a form of communication often used to express contempt or ridicule, where the speaker conveys
a message opposite to their true meaning, typically intending to mock or belittle a specific target. Sarcasm
detection has gained great attention in the field of natural language processing due to the fact that sarcasm
is widespread on social media and difficult to detect for machines. While early efforts in sarcasm detection
solely relied on textual data, the abundance of multimodal data on social media is also non-negligible. Recent
research has focused on multimodal sarcasm detection, where attention mechanisms and graph neural networks
were commonly used to identify relevant information in both image and text data. However, these methods
may overlook the importance of prior knowledge and cross-modal semantic contrast, which are crucial factors
for human sarcasm detection. In this paper, we propose a novel model named KnowleNet that leverages the
ConceptNet knowledge base to incorporate prior knowledge and determine image–text relatedness through
sample-level and word-level cross-modal semantic similarity detection. Contrastive learning is also introduced
to improve the spatial distribution of sarcastic (positive) and non-sarcastic (negative) samples. The proposed
model achieves state-of-the-art performance on publicly available benchmark datasets.
. Introduction

According to the Macmillan English Dictionary, sarcasm is defined
s the activity of saying or writing the opposite of what you mean, or of
peaking in a way intended to make someone else feel stupid or show them
hat you are angry [1,2]. Sarcasm detection is critical for sentiment anal-
sis, because the intended meaning of a sarcastic expression likely has
n opposite sentiment polarity, compared to its literal meaning [3,4].

At an early stage, sarcasm detection mainly utilized textual in-
ormation [5,6]. With the development of online social media, users
pload a large amount of multimodal information to social media,
.g., image, audio, text, etc., which brings new challenges for sarcasm
etection. Then, more and more researchers have drawn attention to
ultimodal sarcasm detection [7], whose models are based on attention
echanisms and graph neural networks. Some attention-based models

apture the inconsistency between modalities by designing different
eformation structures of attention mechanisms [8–10], while some
raph neural network-based models build multimodal relationships
ith graphs by constructing cross-modal graph networks [11,12]. Some
orks [13–16] argued that external knowledge is critical for detecting
nd understanding non-literal expressions. The integration of common-
ense knowledge has also proven instrumental in enhancing model
erformance in the field of affective computing [17,18], because the
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inherent difficulty in acquiring commonsense knowledge through task-
specific dataset learning alone. However, the aforementioned sarcasm
detection models boost performance by finding the emotional clues of
images and text, and ignore the importance of commonsense knowledge
for implicit emotion recognition.

In contrast, we intend to construct a model that fits the way of
human sarcasm detection with knowledge. From the perspective of
human sarcasm detection, prior knowledge and semantic similarity
detection between modalities are very important. As shown in Fig. 1a,
in non-sarcastic multimodal messages, the textual information is ex-
plicit, literally describing the content of the image. In other words, the
visual and textual information of a non-sarcastic instance is strongly
related. On the contrary, in the sarcastic example (Fig. 1b), semantic
information in text and image is often contrastive or implicit. Thus, the
image–text information is weakly related. The weak relatedness needs
to be identified with some common-sense information, because implicit
expressions of emotion often require more conceptual understanding of
words in different situations. For example, ‘‘nice cold’’’ is an expression
that defies common sense, since being sick is a bad thing.

In this work, we propose a knowledge fusion network (KnowleNet).
We first introduce the ConceptNet knowledge base [19] to obtain the
conceptual knowledge, and then design a new multimodal information
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Fig. 1. Examples of non-sarcasm and sarcasm. Each sample includes text, image, image caption, and image attribute.
fusion method, i.e., cross-modal semantic similarity detection method,
to detect the relatedness between image and text information. Due
to the combination of contrastive learning methods, the spatial distri-
bution of positive and negative samples is separated effectively [20],
which leads to a significant improvement in classification performance.

We evaluate our model on the publicly available multimodal sar-
casm detection benchmark dataset [21]. Compared with unimodal and
multimodal strong baselines, our KnowleNet achieves the best accuracy
(88.87%) and F1-score (86.33%), exceeding the strongest baseline
by 1.64% in accuracy and 2.88% in F1. The above improvements
demonstrate the effectiveness of our method. In addition, analytical
experiments explain the effect of different modules in the KnowleNet.
Our ablation study shows considerable performance degradation when
we remove commonsense knowledge based semantic similarity detec-
tion module (−2.98%) and contrastive learning triplet loss module
(−2.41%), which also proves the success of our proposed technical
components.

The main contributions of this work are summarized as follows:

• We propose a novel knowledge fusion network for multimodal
sarcasm detection, leveraging ConceptNet knowledge. To the best
of our knowledge, it is the first model that combines prior knowl-
edge to improve sarcasm detection accuracy.

• A new multimodal information fusion method is presented. The
word-level and sample-level cross-modal semantic similarity de-
tection modules are designed to detect the semantic consistency
of different modal information, which could learn useful features
for sarcasm detection.

• We introduce contrastive learning to distinguish the distribu-
tion of sarcastic (positive) and non-sarcastic (negative) samples.
Triplet loss is used to improve the representation of multimodal
features, yielding state-of-the-art performance on two publicly
available benchmark datasets.

2. Related works

2.1. Multimodal learning

Modality refers to the specific way in which people receive infor-
mation. Since multimedia data is often the transfer medium of multiple
forms of information, multimodal learning has gradually developed as
the main approach of multimedia content analysis and understand-
ing [22]. Researchers have achieved remarkable research results in the
field of multimodal learning [23,24].

Also, many image–text information fusion models have emerged in
recent years. The ERNIE-VIL [25] model proposed by Baidu used the
structured knowledge in the scene graph to enable the model to perform
fine-grained semantic alignment. The VIVO [26] model used Image-
Tag for pre-training so that the semantic tag could be aligned with the
region features in the image, enabling it to be used in the Image Caption
task to solve the problem of novel object recognition. RpBERT [27]
used a multimodal BERT model for multimodal named entity recog-
nition tasks, and the proposed relation propagation mechanism could
make better use of visual information based on the relatedness between
image and texts.
2

2.2. Multimodal sarcasm detection

In initial studies, sarcasm detection models mainly used textual
information [28–31]. The text data-based models performed sarcasm
detection by improving the language model with contextual semantic
features, word frequency, symbols, etc. With the emergence of more
and more multimodal data in social media, the use of multimodal
data for sarcasm detection has gradually attracted the attention of
researchers.

Multimodal sarcasm detection focuses more on information fusion,
representation, and information relatedness among multiple modalities,
which sets it apart from text-based models. Schifanella et al. [32] pro-
posed the first multimodal sarcasm detection model, which combined
textual and visual modalities using two different computational frame-
works. Cai et al. [21] created a multimodal sarcasm detection dataset
from Twitter and presented a hierarchical fusion model that used image
attribute information. Recent models have focused on attention mech-
anisms and graph neural networks (GNN). For instance, Pan et al. [9]
proposed a BERT-based model with inter-modality attention to capture
intra and inter-modality inconsistency. Wang et al. [10] designed a 2D-
Intra-Attention mechanism to extract relationships between words and
images. Tomás et al. [33] proposed a transformer-based architecture
for the fusion of textual and visual information. In terms of GNN, an
interactive graph convolutional network (GCN) structure was explored
to learn inconsistent relationships in-modal and cross-modal graphs
in a joint and interactive way to identify important clues in sarcasm
detection [11]. And Liang et al. [12] also designed a cross-modal
graph convolutional network to make sense of the inconsistent relations
between modalities for multimodal sarcasm detection. Recently, Ma-
lik et al. [34] analyzed whether image information is necessary to
understand the sarcastic intent of the text.

2.3. Challenge and motivation

However, existing image–text fusion methods only focus on finding
clues from the related information between images and text, and these
methods often have some errors and poor generalization in finding
implicit sarcasm clues. In addition, due to the lack of prior knowl-
edge, these models do not have an understanding of commonsense
information.

In order to re-think important features for sarcasm detection based
on how humans recognize sarcasm, we adopt a novel perspective
that emphasizes the significance of prior knowledge and cross-modal
semantic similarity. Given that sarcastic content often involves a re-
versal of the expresser’s actual intention, and that the same words or
sentences may convey different meanings in sarcastic situations, the
incorporation of prior knowledge with additional concepts is essential.
In addition, modeling the relatedness of information across modalities
through cross-modal semantic similarity detection is effective for de-
tecting sarcasm. In contrast to existing methods, we introduce both
word-level and sample-level cross-modal semantic similarity detection,
and employ a contrastive learning loss function to express the similarity
value as the distance between samples using a high-dimensional spatial

distance metric.
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Fig. 2. Overview of our proposed knowledge fusion network.
3. Methodology

We present KnowleNet, a knowledge fusion network for multimodal
sarcasm detection. The architecture of our proposed model is depicted
in Fig. 2. We consider text, image, image attribute, and image caption
as four modalities of data. Image attributes refer to the five attribute
words extracted from the images, while image captions denote sen-
tences generated from the images. Initially, we utilize a pre-trained
image caption model to generate the captions and encode all the data to
obtain feature representations. Specifically, we apply the BERT model
to encode text and image captions, while the ResNet model is used to
encode image data. Subsequently, we devise a knowledge-based word-
level semantic similarity detection module and a sample-level semantic
similarity detection module to extract effective features based on the
semantic consistency of information across modalities. Furthermore,
we introduce the contrastive learning loss function to improve the
separation of the spatial distribution of positive and negative samples.

3.1. Text and image feature representation

We use the method proposed by Xu et al. [35] as the image caption
model to generate captions. For the lower computation cost, we replace
the encoder with pre-trained MobileNetV3 [36]. The images  are input
to the image caption model to get the caption: 𝑐 = {𝑠1𝑐 ,… , 𝑠𝑙𝑐} (𝑙 is the
length of the caption).

For the text data, we express it as 𝑡 = {𝑠1𝑡 ,… , 𝑠𝑚𝑡 } (𝑚 is the length of
the sequence). The BERT model embeds and encodes 𝑐 and 𝑡 to yield
their representations. The BERT encoder’s outputs are the 𝑝𝑜𝑜𝑙𝑒𝑑_𝑜𝑢𝑡𝑝𝑢𝑡
3

to represents each input sequence as a whole. (𝑇𝑏, 𝐶 ∈ R1×𝑑𝑏 ; 𝑑𝑏 is the
dimension of BERT hidden states.)

𝑇𝑏 = 𝐵𝐸𝑅𝑇 (𝑡), (1)

𝐶 = 𝐵𝐸𝑅𝑇 (𝑐 ), (2)

where 𝐵𝐸𝑅𝑇 is the model of BERT.
As the same as the text, the images  are put into the pre-trained

ResNets model for feature extraction and further processed by the
average pooling layer. The image representation (𝐼 ∈ R1×𝑑𝑟 ; 𝑑𝑟 is the
dimension of ResNet hidden states) is given by

𝐼 = 𝐴𝑣𝑒𝑟𝑃 (𝑅𝑒𝑠𝑁𝑒𝑡()), (3)

where 𝑅𝑒𝑠𝑁𝑒𝑡 is the model of ResNet, and 𝐴𝑣𝑒𝑟𝑃 is the average
pooling operator.

3.2. Knowledge-based word-level semantic similarity detection

Semantic consistency between image and text is often a key feature
in determining sarcasm. As shown in Fig. 3, unlike the existing mod-
els based on attention mechanism, we first introduce the ConceptNet
knowledge network to associate more similar concepts, i.e., the prior
knowledge, with image attributes and text data.

ConceptNet [19] is a semantic network that aids computers in
comprehending the meaning of words used by people. This network is
represented by a sparse, symmetrical matrix. Each word is represented
by other words connected in the ConceptNet. The network calculates
the pointwise mutual information of the matrix entries, which is
smoothed with contextual distribution. Negative values are clipped to
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Fig. 3. Different processing procedures for positive(sarcasm) and negative(non-sarcasm) samples in knowledge-based word-level cross-modal semantic similarity detection module.
generate positive pointwise mutual information (PPMI). The dimension
of the resulting matrix is reduced to 300 dimensions through truncated
SVD, and the terms and contexts are combined symmetrically into a
single matrix of word embeddings. After that, the new vectors 𝑞𝑖 are
updated by minimizing the objective function 𝛹 (𝑄) to be close to their
original values 𝑞𝑖, and to the adjacent words in the graph with edge 𝐸.

𝛹 (𝑄) =
𝑛
∑

𝑖=1

[

𝛼𝑖 ‖‖𝑞𝑖 − 𝑞𝑖‖‖
2 +

∑

𝑖,𝑗∈𝐸
𝛽𝑖𝑗

‖

‖

‖

𝑞𝑖 − 𝑞𝑗
‖

‖

‖

2
]

, (4)

where, 𝛼𝑖 and 𝛽𝑖𝑗 are the connection weight values in ConceptNet. When
the original vector values do not exist, 𝛼𝑖 is set to 0. The above yields
the word embedding matrix of ConceptNet with a lexicon size of 510K.

We express the image attribute as 𝑎 = {𝑠1𝑎,… , 𝑠𝑢𝑎} (𝑢 is the length of
the sequence). We use the ConceptNet to process 𝑎 and 𝑡 to get their
vectorized representations (𝑇𝑐 ∈ R𝑘×𝑑ℎ , 𝐴 ∈ R𝑢×𝑑ℎ ; 𝑑ℎ is the dimension
of ConceptNet.):

𝑇𝑐 = 𝐶𝑜𝑛𝑐𝑒𝑝𝑡𝑁𝑒𝑡(𝑡), (5)

𝐴 = 𝐶𝑜𝑛𝑐𝑒𝑝𝑡𝑁𝑒𝑡(𝑎). (6)

The text features and image attributes for which conceptual knowl-
edge is obtained are used to determine similarity by matrix calculation
of the inner product. Since the sparsity of the matrix introduces ad-
ditional interference, we use a Max Pooling operator to extract key
features, followed by a Flatten layer for the representation.

𝐹 = 𝐹 𝑙𝑎𝑡(𝑀𝑎𝑥𝑃
(

𝑇 ⊗ 𝐴𝑇 )), (7)
4

𝑡𝑎 𝑐
where 𝑀𝑎𝑥𝑃 denotes the Max Pooling operator, 𝐹 𝑙𝑎𝑡 means the Flatten
layer.

Since the image attributes are extracted from images, which repre-
sent the information in the image to a great extent. We calculate the
similarity between image and text information by the method of word-
level semantic similarity detection, and more image–text association
clues can be found due to the introduction of concept knowledge.

3.3. Spatial mapping and sample-level semantic similarity detection

In addition to word-level semantic similarity detection, we consider
the sample level. We consider that not only the degree of relatedness
between words in the text and words in the image attributes but also
the feature information of the whole image has some relatedness with
the whole text, which is also important for the calculation of semantic
consistency. However, text and images have different encoders, result-
ing in their feature vectors not being in the same coordinate system.
If the image and text feature vectors are simply computed, satisfactory
results cannot be obtained.

Observing this problem, we perform matrix coordinate transforma-
tions on the feature vectors of text and images. Specifically, we first
concatenate the feature vectors of the image and the text data. And
then, we centralize the feature vectors, i.e., subtract the mean values.
(𝑋 ∈ R(𝑑𝑟+𝑑𝑏∗2)×𝑛; 𝑛 is the number of samples)

𝑇𝑡𝑐 = 𝑇𝑏 ⊕𝐶, (8)

𝐼 =
{

𝑚1, 𝑚2....𝑚𝑛
}

,
−
𝑚 = 1

𝑛
∑

𝑚𝑖, (9)

𝑛 𝑖=1
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𝑇𝑡𝑐 =
{

𝑡1, 𝑡2....𝑡𝑛
}

,
−
𝑡 = 1

𝑛

𝑛
∑

𝑖=1
𝑡𝑖. (10)

=
(

𝑇𝑡𝑐 ⊕ 𝐼
)𝑇 =

(

𝑡1, 𝑡2, … 𝑡𝑛
𝑚1, 𝑚2, … 𝑚𝑛

)

, (11)

Then the covariance matrix with its eigenvalues and the correspond-
ng eigenvectors are derived.

= 1
𝑛 − 1

𝑋𝑋𝑇

=

⎛

⎜

⎜

⎜

⎝

1
𝑛−1

∑𝑛
𝑖=1(𝑡𝑖 −

−
𝑡 )2 ⋯ 1

𝑛−1
∑𝑛

𝑖=1(𝑡𝑖 −
−
𝑡 )(𝑚𝑖 −

−
𝑚)

⋮ ⋱ ⋮
1

𝑛−1
∑𝑛

𝑖=1(𝑡𝑖 −
−
𝑡 )(𝑚𝑖 −

−
𝑚) ⋯ 1

𝑛−1
∑𝑛

𝑖=1(𝑚𝑖 −
−
𝑚)2

⎞

⎟

⎟

⎟

⎠

. (12)

The covariance matrix 𝐴 of 𝑋 can be calculated above, and then the
eigenvalues and eigenvectors are solved by the eigenvalue decomposi-
tion method to obtain 𝑄 and ∑. 𝑄 is a matrix composed of eigenvectors
f matrix 𝐴, ∑ is a diagonal array, and the elements on the diagonal are
he eigenvalues. We take the first 𝑝 columns of 𝑄 as the transformation
atrix 𝑃 ∈ R(𝑑𝑟+𝑑𝑏∗2)×𝑝, then 𝑌𝑡 = 𝑇𝑡𝑐𝑊1𝑃 ; 𝑌𝑖 = 𝐼𝑊2𝑃 . (𝑌𝑡, 𝑌𝑖 ∈ R1×𝑝.)

is used to change the feature vectors of text and images into the
ame dimension as 𝑃 . (𝑊1 ∈ R𝑑𝑏∗2×(𝑑𝑟+𝑑𝑏∗2), 𝑊2 ∈ R𝑑𝑟×(𝑑𝑟+𝑑𝑏∗2).)

= 𝑄
∑

𝑄−1 (13)

= (𝑌𝑡 − 𝑌𝑖)(𝑌𝑡 − 𝑌𝑖)𝑇 . (14)

With the feature matrix 𝑃 , we can obtain the vectors 𝑌𝑡 and 𝑌𝑖 that
ave been dimensionally reduced and mapped to the same coordinate
pace. Then, we calculate the spatial distance of the feature vectors 𝐷
o represent the semantic similarity of the image and text information.

Finally, we use the dropout layer to avoid overfitting problems and
se multiple fully connected layers to further fuse each modal feature
nd classification.

𝑓1 = 𝐷𝑟𝑜𝑝(𝑇𝑏), (15)

𝑓2 = 𝐷𝑟𝑜𝑝(𝜎(𝐹𝐶(𝐼 ⊕ 𝐶))), (16)

̂ = 𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝜎(𝐹𝐶(𝑇𝑓1 ⊕ 𝑇𝑓2)⊕ 𝜎(𝐹𝐶(𝐹𝑡𝑎))⊕ 𝜎(𝐹𝐶(𝐷)), (17)

here 𝐷𝑟𝑜𝑝 denotes the Dropout layer, and 𝐹𝐶 denotes the fully
onnected layer. 𝜎 is the 𝑅𝑒𝐿𝑈 activation function. ⊕ denotes the
oncatenate operator.

.4. Loss function

Furthermore, we introduce a contrastive learning loss function to
onduct the spatial distribution differentiation of positive and negative
amples. BinaryCrossentropy loss function and Triplet loss function are
ombined for learning. The BinaryCrossentropy loss learns to classify
arcastic and non-sarcastic samples in vector space. The Triplet loss
unction learns to expand the distance between positive and negative
xamples in vector space [37].

Specifically, given a triplet (𝑥, 𝑥+, 𝑥−) of a data set with sample size
. As shown in Eq. (18), we aim to minimize the distance between
nchor points and positive samples while maintaining the distance be-
ween them and negative samples. So that features with the same label
re as close as possible in spatial location, while features with different
abels are as far away as possible in spatial location. At the same time,
n order to keep the features of the samples from aggregating into a
ery small space, it is required that the negative example should be
ore distant than the positive example from the anchor point.

𝑑
(

𝑥, 𝑥+
)

→ 0, 𝑑 (𝑥, 𝑥−) → 𝑑
(

𝑥, 𝑥+
)

+ 𝛼 , (18)

where the 𝑑(⋅, ⋅) denotes the distance between two points and 𝛼 denotes
5

the margin.
Table 1
Detailed information of the multimodal sarcasm detection benchmark datasets.

Training Development Test

Positive (Sarcasm) 8642 959 959
negative (Non-Sarcasm) 11 174 1451 1450
Total 19816 2410 2409

Token Length 16.91 16.92 17.13

The overall distance of the triplet is expressed as

𝐿 = max
{

𝑑
(

𝑥, 𝑥+
)

− 𝑑 (𝑥, 𝑥−) + 𝛼, 0
}

(19)

According to the above equation, our input as ℎ
(

𝑥𝑖
)

, where ℎ
(

𝑥𝑖
)

represents semantic similarity features of word-level and sample-level,
as shown in Fig. 4 and Eq. (20).

ℎ
(

𝑥𝑖
)

= 𝜎(𝑤𝑡𝐹 𝑡𝑎 + 𝑏𝑡)⊕ 𝜎(𝑤𝑑𝐷 + 𝑏𝑑 ), (20)
(

ℎ
(

𝑥𝑎𝑖
)

, ℎ
(

𝑥𝑝𝑖
)

, ℎ
(

𝑥𝑛𝑖
))

𝜖 𝛾, (21)

here the 𝑤𝑡, 𝑤𝑑 denote the linear weight and 𝑏𝑡, 𝑏𝑑 denote the bias. 𝛾
s a triplet with sample size 𝑛.

Therefore, the specific calculation can be expressed as

ℎ
(

𝑥𝑎𝑖
)

− ℎ
(

𝑥𝑝𝑖
)

‖

‖

‖

2

2
+ 𝛼 < ‖

‖

‖

ℎ
(

𝑥𝑎𝑖
)

− ℎ
(

𝑥𝑛𝑖
)

‖

‖

‖

2

2
, (22)

he loss function is minimized as

𝑐 =
𝑛
∑

𝑖

[

‖

‖

‖

ℎ
(

𝑥𝑎𝑖
)

− ℎ
(

𝑥𝑝𝑖
)

‖

‖

‖

2

2
− ‖

‖

‖

ℎ
(

𝑥𝑎𝑖
)

− ℎ
(

𝑥𝑛𝑖
)

‖

‖

‖

2

2
+ 𝛼

]

. (23)

The corresponding gradient calculation is
𝜕𝐿𝑐

𝜕ℎ(𝑥𝑎𝑖 )
= 2(ℎ(𝑥𝑛𝑖 ) − ℎ(𝑥𝑝𝑖 )),

𝜕𝐿𝑐

𝜕ℎ(𝑥𝑝𝑖 )
= 2(ℎ(𝑥𝑝𝑖 ) − ℎ(𝑥𝑎𝑖 )),

𝜕𝐿𝑐
𝜕ℎ(𝑥𝑛𝑖 )

= 2(ℎ(𝑥𝑎𝑖 ) − ℎ(𝑥𝑛𝑖 )).

he total loss function can be expressed as (𝐵𝐶𝐸 denotes the Bina-
yCrossentropy loss function.)

= 𝐿𝑏 + 𝐿𝑐 = 𝐁𝐂𝐄 (�̂�, 𝑦) + 𝐿𝑐 . (24)

. Experiment

.1. Dataset

We use the publicly available multimodal sarcasm detection bench-
ark dataset called Dataset-1 in our experiments. The dataset was

reated by Cai et al. [21] and contained English tweets. In addition, Cai
t al. [21] also processed the dataset to extract image attributes from
mages. Therefore, each sample includes the image, text, and image
ttributes. The detailed data of the dataset is shown in Table 1.

Another multimodal sarcasm detection dataset, called Dataset-2 in
ur experiments, was created by Maity et al. [38]. They collected 5854
amples from open-source Twitter and Reddit platforms and the dataset
lso consisted of two modalities, text and image.

.2. Baselines

We compare our proposed KnowleNet with multiple well-known
xisting methods, such as:

• Image-modality methods: These models use only image data
for sarcasm detection. ResNet [39] is CNN-based image classifier
with residual connections. ViT is the model proposed by Doso-
vitskiy et al. [40] to apply transformer to image classification.
ConvNeXt [41] based on CNN and attracted a great deal of
attention because of its state-of-the-art performance in image

processing.
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Fig. 4. The effectiveness of minimizing the triplet loss function.
• Text-modality methods: These models are based only on text
data for sarcasm detection. TextCNN [42] based on convolutional
neural network for text classification. The Bi-LSTM [43] struc-
ture is a type of recurrent neural network that can incorporate
both past and future contextual information for predicting the
current output. Meanwhile, SIARM [44] employs inner-attention
mechanisms to detect sarcasm in textual data. SMSD [45] uses
a self-matching network to capture semantic inconsistent infor-
mation. BERT [46] is a pre-trained language model based on
transformer.

• Multimodal methods: These models use both image and text
data for multimodal sarcasm detection. HFM [21] proposed a
hierarchical multimodal features fusion model for multimodal
sarcasm detection. VisualBERT [47] is a pre-trained image–
text model, consisting of a stack of transformer layers. Recent
models like D&R Net [8], Res-Bert [9], Intra-Att [10], Att-
Bert [9] based on attention mechanism, while InCrossMGs [11]
and CMGCN [12] based on graph neural networks.

4.3. Settings

For baseline models, we use their default parameter settings as
in the original papers or implementations. For the KnowleNet model,
we respectively use a pre-trained ResNet-152 model and a BERT-base
uncased model to encode image and text data. The dropout rate is 0.5.
The length parameters are 𝑘 = 20, 𝑢 = 5. The dimension parameters
are 𝑑𝑏 = 768, 𝑑𝑟 = 2048, 𝑑ℎ = 300, 𝑝 = 300. We train the model with
Adam [48] optimizer and stop training if the validation loss does not
decrease for 10 consecutive epochs. The learning rate is 1𝑒 − 5.

4.4. Evaluation

Following existing baseline models, we use Accuracy, Precision,
Recall, and F1-score to measure the model performance. Since the
label distribution of the dataset is imbalanced, following Liang et al.
[12], we also calculate the Macro-F1 score for evaluation. The Macro-
F1 score is calculated by averaging the F1 values of each label, which
means that the number of data is not considered, and each class is
treated equally.

• True Positives (TP): the number of samples for which the pre-
diction is positive, and the actual label is also positive.

• False Positives (FP): the number of samples for which the pre-
diction is positive, and the actual label is negative.

• True Negatives (TN): the number of samples for which the
prediction is negative, and the actual label is also negative.

• False Negatives (FN): the number of samples for which the
prediction is negative, and the actual label is positive.
6

Table 2
Comparison of accuracy and F1-score results between the proposed KnowleNet model
and other strong existing models on the Dataset-1. The models with ∗ are based on
BERT and ResNet models.

Modality Model Acc(%) Pre(%) Rec(%) F1(%)

Text TextCNN [42] 80.03 74.29 76.39 75.32
SIARN [44] 80.57 75.55 75.70 75.63
SMSD [45] 80.90 76.46 75.18 75.82
Bi-LSTM [43] 81.90 76.66 78.42 77.53
BERT [46] 83.85 78.72 82.27 80.22

Image ResNet [39] 64.76 54.41 70.80 61.53
ViT [40] 67.83 57.93 70.07 63.43
ConvNeXt [41] 67.78 58.91 69.15 63.62

Multimodal HFM [21] 83.44 76.57 84.15 80.18
D&R Net [8] 84.02 77.97 83.42 80.60
Res-Bert∗ [9] 84.80 77.80 84.15 80.85
Intra-Att∗ [10] 85.64 80.01 84.84 82.35
Att-Bert∗ [9] 86.05 78.63 83.31 80.90
InCrossMGs [11] 86.10 81.38 84.36 82.84
CMGCN∗ [12] 87.23 – – 83.45

KnowleNet∗ 88.87 88.59 84.18 86.33

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑃

(25)

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁

(26)

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙
𝑃 𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

(27)

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇𝑃 + 𝑇𝑁
𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃 + 𝑇𝑁

(28)

5. Results

In this section, we evaluate our KnowleNet with some strong base-
line models to demonstrate the effect of our model.

Specifically, we want to show:

• Can our model achieve satisfactory results in the publicly avail-
able multimodal sarcasm detection benchmark dataset compared
with unimodal methods and other multimodal methods?

• The KnowleNet model consists of many modules, what are the
effects of each of these modules on KnowleNet?

5.1. Main results

On the Dataset-1, we divided the experiment into three groups. As
shown in Table 2. Text-modality methods: BERT reaches the high-
est accuracy(83.85%) and F1-score(80.22%) based only on text data,
which shows its outstanding performance in the sarcasm detection task.
Image-modality methods: ConvNeXt and ViT achieve the accuracy of
67.78% and 67.83%, which are pretty close. However, compared with
text-modality methods, the image-modality methods do not perform
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Table 3
Comparison of Macro-F1 results between the proposed KnowleNet model and other
baseline models on the Dataset-1. The models with ∗ are based on BERT and ResNet
models.

Modality Method F1(%) Macro-F1

Pre(%) Rec(%) F1(%)

Text TextCNN [42] 75.32 78.03 78.28 78.15
SIARN [44] 75.63 80.34 78.81 79.57
SMSD [45] 75.82 80.87 78.20 79.51
Bi-LSTM [43] 77.53 80.97 80.13 80.55
BERT [46] 80.22 81.31 80.87 81.09

Image ResNet [39] 61.53 60.12 73.08 65.97
ViT [40] 63.43 65.68 71.35 68.40
ConvNeXt [41] 63.62 64.85 72.73 68.56

Multimodal HFM [21] 80.18 79.40 82.45 80.90
Res-Bert∗ [9] 80.85 78.87 84.46 81.57
Att-Bert∗ [9] 80.90 80.87 85.08 82.92
InCrossMGs [11] 82.84 85.39 85.80 85.60
CMGCN∗ [12] 83.45 – – 85.61

KnowleNet∗ 86.33 88.83 88.21 88.51

Table 4
Comparison of accuracy and F1-score results between the proposed KnowleNet model
and other transformer-based models on the Dataset-1.

Model Modality Acc(%) Pre(%) Rec(%) F1(%)

VisualBERT
[47]

Multimodal 83.51 76.66 82.94 79.68

BERT [46] Text 83.85 78.72 82.27 80.22
ViLBERT
[49]

Multimodal 84.68 77.52 86.37 81.71

RoBERTa
[50]

Text 88.28 86.32 85.48 85.89

BERTweet
[51]

Text 88.36 87.26 88.01 87.63

ALBERT [52] Text 89.17 88.86 87.65 88.25

KnowleNet
(ALBERT-
based)

Multimodal 92.69 91.57 90.85 91.21

well, which shows text data may contain more effective feature infor-
mation. It will be more challenging if we rely only on image data for
sarcasm detection. Multimodal methods: we compare our KnowleNet
model with some strong models proposed for sarcasm detection or other
multimodal tasks. Compared with unimodal methods, most multimodal
methods perform better. However, with the continuous improvement
of pre-trained models for text and image processing, some unimodal
methods are now surpassing the performance of previous multimodal
methods, as seen in the difference in performance of BERT(83.85%)
and HFM(83.44%). Therefore, we use the same text and image pre-
trained models for a fair comparison. As shown in Table 2, the models
with ∗ are all based on BERT and ResNet models. The experimental
results show that our model achieves the best results, outperforming
the strongest baseline (CMGCN) by 1.64% in accuracy and 2.88% in
F1, which demonstrates the effectiveness of our model.

In addition, because of the problem of positive and negative sample
imbalance, we also introduce Macro-F1. As shown in Table 3, macro
metrics are higher, which indicates that the problem of unbalanced
positive and negative samples can obviously affect the final results,
and the model has better detection performance for negative samples.
Our KnowleNet also achieves better Macro-F1 results of 88.51%, which
exceeds the strongest CMGCN model by 2.9%.

Recently, many transformer-based models have shown promising re-
sults. Therefore, we test multiple unimodal and multimodal
transformer-based models on the Dataset-1. As shown in the Table 4,
ViLBERT extends the BERT architecture to a multimodal model and
get the accuracy of 84.68%. The accuracy of RoBERTa, BERTweet,
and ALBERT is very close, reaching 88.28%, 88.36%, and 89.17%,
7
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Table 5
Comparison of accuracy and F1-score results on the Dataset-2.

Modality Model Acc(%) Pre(%) Rec(%) F1(%)

Text BERT-GRU [38] 59.72 – – 59.12
RoBERTa [50] 61.82 62.03 60.31 61.16

Image ResNet [39] 59.39 – – 57.79

Multimodal Maity et al. [38] 62.20 – – 61.47

KnowleNet 64.35 63.72 62.08 62.89

respectively. The greater performance of ALBERT also helps our model
to get higher accuracy (92.69%) and F1-score (91.21%).

Most of existing works have conducted extensive experiments and
comparisons on the Dataset-1. We also test our proposed model on an
additional publicly available dataset for multimodal sarcasm detection.
As shown in the Table 5, our KnowleNet achieves the best accuracy
(64.35%) and F1-score (62.89%). Compare with the strongest baseline
model proposed by Maity et al. [38], which also use the BERT model
and the ResNet model as the encoders, our accuracy is improved by
2.15%.

5.2. Visualization study

For a better explanation of the effectiveness of our proposed model,
we performed the visualization of the KnowleNet. As shown in Fig. 3,
Fig. 4, and Fig. 5, the processing of the samples after they enter the
model is shown in detail. In Fig. 5, it can be clearly observed that after
the optimization of the contrastive learning loss function, the positive
and negative samples are well separated in the spatial distribution. We
use the technique of T-SNE to downscale the high-dimensional features
(Eq. (20)) into three dimensions for visualization.

5.3. Ablation study

The proposed KnowleNet consists of many modules, since the com-
bination of different modules in a model can produce different perfor-
mances, we conduct some ablation experiments on Dataset-1 to show
the effects of different modules.

As described in Section 3, the knowledge-based word-level seman-
tic similarity detection module, the spatial mapping and sample-level
semantic similarity detection module, and the triplet loss module are
important modules in our model. As shown in Table 6, we remove
different modules respectively and conduct ablation experiments. The
performance degradation is considerable when we remove the spatial
mapping and sample-level semantic similarity detection module (w/o
). This demonstrates the effectiveness of sample-level semantic sim-
ilarity detection in adding useful feature information, as well as the
usefulness of the matrix coordinate transformation technique in better
fusing multimodal feature vectors generated by different encoders.
Note that removing the knowledge-based word-level semantic similar-
ity detection module (w/o ) dramatically degrades the performance,

hich verifies the significance of the conceptual knowledge and our
nowledge fusion method. From the results of w/o , we consider
hat the triplet loss is important to separate positive and negative
amples and then affects the final result. This conclusion is also well
emonstrated in Section 5.2.

.4. Case study

To further explain the effectiveness of our KnowleNet for sarcasm
etection task, we provide case study on the sample that is incorrectly
redicted by Cai et al. [21] and is presented in their error analysis
ection. As shown in Fig. 6, the insulting gesture in Fig. 6b is in
ontrast to the text content ‘thanks for’. But the attention-based model

ould not obtain the commonsense information that this gesture is
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Fig. 5. Visualization results for the triplet loss optimization.
Fig. 6. Case study presentation for samples processed by the cross-modal semantic similarity detection module.
Table 6
Results of ablation experiments on Dataset-1. ‘‘w/o  ’’ means KnowleNet model
without the mapping and sample-level semantic similarity detection module. ‘‘w/o  ’’
means KnowleNet model without the knowledge-based word-level semantic similarity
detection module. ‘‘w/o ’’ means KnowleNet model without the triplet loss module.

Model Acc(%) 𝛥 F1-score(%) 𝛥 Macro-F1(%) 𝛥

w/o  85.12 −3.75 81.85 −4.48 83.38 −5.13
w/o  85.89 −2.98 82.21 −4.12 84.58 −3.93
w/o  86.46 −2.41 83.32 −3.01 85.63 −2.88

KnowleNet 88.87 – 86.33 – 88.51 –

insulting, which causes the detection to fail. Our model obtains effec-
tive features by combining commonsense and conceptual knowledge
and using cross-modal semantic similarity detection methods. We can
observe that with the semantic similarity detection module, different
features are generated for sarcastic and non-sarcastic samples, which
will significantly impact the performance of sarcasm detection.

5.5. Summary of experimental results

In this section, we summarize the experimental results to demon-
strate the validity of the proposed model. (1). By comparing the
results of the unimodal and multimodal models, we observed that the
multimodal model tends to perform better. Even though the results of
the models based on image data are unsatisfactory, multimodal models
with additional image data tend to outperform the models based on
text data, benefiting from effective multimodal fusion methods. (2).
Our model achieves better results when comparing existing multimodal
8

and unimodal models. It is demonstrated that introducing conceptual
knowledge (prior knowledge) followed by semantic similarity detection
at different levels is effective for sarcasm detection. (3). Visualization
and ablation experiments explain the effect of different modules in
the KnowleNet. The word-level and sample-level semantic similarity
detection methods could learn more effective features, while the triplet
loss further optimizes the spatial distribution of positive and negative
sample features.

6. Conclusion

A new and innovative model called Knowledge Fusion Network
(KnowleNet) is proposed in this paper. We analyze the sarcasm de-
tection task from a new perspective, i.e., by combining prior knowl-
edge and the semantic similarity between image and text for de-
termining sarcasm. Our word-level and sample-level cross-modal se-
mantic similarity detection methods leverage conceptual knowledge
information, which is a novel approach that has not been explored
before to the best of our knowledge. Moreover, we employ a con-
trastive learning approach with the triplet loss to optimize the spatial
distribution of positive and negative sample features. Our proposed
model achieves state-of-the-art results on publicly available bench-
mark datasets, demonstrating its superior performance in multimodal
sarcasm detection.

On the other hand, we find that metaphors frequently appeared in
sarcastic expressions, because they allow for a layer of indirectness and
irony. By using metaphors, speakers can express their true intent in a
subtle or veiled manner. This creates a sense of incongruity between
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what is said and what is meant, adding depth and complexity to the
sarcastic expression. In future work, we will combine the proposed
KnowleNet model and a metaphor processing tool [53] to study the
relationships between metaphors and sarcastic expressions.
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