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Abstract—Multimodal sentiment analysis has increasingly attracted attention since with the
arrival of complementary data streams, it has great potential to improve and go beyond unimodal
sentiment analysis. In this paper, we present an efficient separable multimodal learning method
to deal with the tasks with modality missing issue. In this method, the multimodal tensor is
utilized to guide the evolution of each separated modality representation. To save the
computational expense, Tucker decomposition is introduced, which leads to a general extension
of the low-rank tensor fusion method with more modality interactions. The method, in turn,
enhances our modality distillation processing. Comprehensive experiments on three popular
multimodal sentiment analysis datasets, CMU-MOSI, POM, and IEMOCAP, show a superior
performance especially when only partial modalities are available.

SENTIMENT ANALYSIS is the study of opin-
ions, emotions, appraisals, and attitudes towards
different entities, e.g., objects or people. It is a
potential but challenging research topic in affec-
tive computing [1]. Inspired by the humans cog-
nition, which generally captures information from
multiple perception ways, sentiment analysis with
Multimodal Learning (MML) [2] has emerged to
endow the computational agent the same ability.

Instead of only utilizing single input stream,
MML leverages the complementary information
from multiple modalities. Representing multi-
modal data, however, is not easy since both intra-
modal and cross-modal dynamics should be well
modeled to avoid errors in the final prediction [3],
[4]. Benefited from deep neural networks, tensor-
based approaches [5], [6], [7] for multimodal
feature representations have already achieved su-
perior performance.
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Previous tensor-based methods [8], [9] com-
pute the interactions of every dimension of each
unimodal representation so that the interactions
between modalities are fully involved. The out-
put compact tensor is able to model the multi-
modality representation very well. However, these
approaches are always computational expensive
and will become invalid once one or more modal-
ities are missing.

In this regard, we propose a computationally
efficient method which is robust to the modality
missing issues for sentiment analysis. Specifi-
cally, we provide a modality distillation method
based on tensor fusion network [9], in which
the learning from privileged information mech-
anism [10] is introduced. On one hand it builds a
compact tensor to capture the intra-modality and
cross-modality dynamics while the modalities are
available.

On the other hand, complementary informa-
tion is distilled from this tensor for each uni-
modal representation such that the representation
for available modalities could also capture the
interactions even one or more modalities are
missing. Based on the message passing between
individual modality representation and the multi-
modal tensor, we adaptively adjust the temper-
ature of modality distillation. As this compact
multimodal tensor will lead to a higher-order
weight tensor for further prediction, we introduce
Tucker decomposition for the weight tensor. In-
terestingly, this decomposition provides modality-
specific weight for each modality.

Thus, modality-specific components could be
captured from the multimodal tensor, which in
return enhances the distillation progress. Finally,
we conduct extensive experiments on three mul-
timodal sentiment analysis datasets. Results show
that our model has a comparable or even superior
performance when all the modalities are avail-
able, and more importantly, it is still robust and
gets overwhelming results when partial modalities
are missing. Our contributions are as follows:

• We propose a novel strategy based to deal with
sentiment analysis tasks with modality missing
issue. This is the first separable tensor network
with knowledge distillation.

• To improve the computational efficiency, we
introduce Turker decomposition for the weight

tensor, which also provides the modality-
specific weight so that it enhances the distilla-
tion processing.

• Extensive experiments on three real-life mul-
timodal sentiment analysis datasets show that
our model gets comparable performance when
all modalities available and superior results
when one or more modalities are missing.

Related work
Sentiment analysis has been one of the most

active research topics of affective computing in
the last decade [11]. It is a valuable and potential
task with various real-world applications, includ-
ing financial market prediction, business review
analysis, and even politics. According to [12],
sentiment analysis tasks can be categorized into
two parts, i.e., basic sentiment analysis tasks
and sub-categories of the major tasks. From the
method perspective, deep learning-based methods
are becoming very popular for sentiment analysis
due to their high performance in recent times.
From the modality perspective, there have been
multiple modalities which can be utilized for
multimodal sentiment analysis. For instance, Liu
et al. described a tensor networks for sentiment
recognition from three modalities, including text,
video and audio [13]. [14] uses deep model
for emotion classification, with multiple input
streams containing EEG and peripheral physi-
ological signals. However, very few works ex-
plore the multimodal sentiment analysis task with
modality missing issues, since it is much more
challenging.

A general strategy is to infer the missing
modality from the existing ones by modeling
the probabilistic relationships among them [15].
Inspired by the insight that translation from a
source to a target modality provides a method
of learning joint representations using only the
source modality as input, MCTN [16] learns ro-
bust joint representations by translating between
modalities. Tsai et al. [17] proposed a factorized
learning method by dividing representation into
multimodal discriminative factors and modality-
specific generative factors, which can deal with
missing modality issues as well. Instead of uti-
lizing a reconstruction method, we aim at a
distillation method since reconstruction itself is
a hard task.
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Compared with traditional early- or late- level
fusion, tensor-based methods [9], [13] are better
approaches to model the intra- and inter-modal
dynamics. They construct tensor by calculating
the interaction of every dimension in each modal-
ity based on Cartesian-products. Meanwhile, one
of the main drawback of tensor-based method is
its high-dimensional property. Liu et al. [13] pro-
posed a low-rank tensor-based method (LMF) for
feature fusion. However, LMF does not deal with
missing modality issues and it gives too much
constraints for each tensor, e.g., requires that
every modality representation shares the same
length. Here, we introduce Tucker decomposition
to reduce the computational expense and LMF
tensor fusion network is actually a special case
of our method.

Methodology
We form the problem as a separable multi-

modal learning issue with privileged information.
Consider a machine learning processing with
the training data formulated by a collection of
triplets {(x1, x

∗
1, y1), ......, (xn, x

∗
n, yn)}, where

the (xi, yi) is the data-label pair commonly used
in supervised learning tasks and can be accessed
during the whole learning procedure. xi is the
input data (feature) and yi is its label. The novel
element x∗i represents the heterogeneous data of
xi with different modalities and it is missing
during the inference procedure. Thus, x∗i works as
the privileged modalities to support the learning
process. Then our goal is to find the best function
fs from the function space Fs,

fs = argmin
fs∈Fs

l(σ(fs(xi)), yi, I((xi, x
∗
i ))), (1)

where l is a classification loss function. σ works
as the prediction layer, e.g., commonly used fully
connected layer. I is a function to get side
information. Like in [10], in analogy to a good
Bayesian prior, the teacher I provides an oppor-
tunity to learn characteristics about the decision
boundary which is not contained in the training
samples. To simplify the formulation step, let x
represent xi and assume there is only one modal-
ity in it. This can be easily generalized to issue
with more than one modality. Thus, its privileged
information x∗ contains M − 1 modalities, here
M > 1 is the total number of modalities.

Figure 1 represents the overall framework of
our method. We build an independent model for
each input modality and compute the interaction
tensor Z (Multimodal Tensor in Figure 1) based
on each modality representation. Instead of using
the tensor directly for prediction, it is used to
guide the learning process of single modality
representation (zm). This way, we expect that zm

could capture the complementary knowledge. So:

fs =argmin
fs∈Fs

1

n

n∑
i=1

[l(y, σ(fs(x)))

+ αl(s, σ(fs(x))) + βl∗(z∗, fs(x))],

(2)

where n is the number of training samples, l∗ is
a loss function for tensor representation. α and
β are the hyper-parameters used to balance the
importance of each part. s is the soft label vector
is the soft complementary tensor,

s = σ̂(Z/Ts), z∗ = fp(Z/Tz), (3)

of which the σ̂ is another prediction function and
fp is a project function that makes z∗ sharing
the same size with fs(x). Like [9], Z is a mul-
timodal tensor computed by Cartesian-products.
Temperature parameters Ts and Tz control how
much to soften or smooth the class probability
predictions and the complementary information,
respectively. We alternatively update multimodal
tensor and separated tensor. In this way, the sepa-
rated modality representation can also capture the
modality interaction information and thus could
deal with missing modality cases.

Since different modalities may prefer different
temperatures, instead of providing a soft target for
the student network with the predefined learning
directions, all the separated modality represen-
tations are dynamically learnt from the comple-
mentary tenor with adaptive temperatures based
on the messages interaction between modalities.
Suppose mi is the message held by zi and mi is
constructed based on zi and its prediction,

mi = fp1
(σ(zi))||fp2

(zi). (4)

Here the fp1
and fp2

are two project functions.
They project the tensor prediction and represen-
tation into the same space. The ·||· indicates the
concatenation operation.
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Figure 1. Illustration of the Framework. Since the ‘Multimodal Tensor’, including all modalities in training, is
not available during inference, we build separable networks for different modalities and let the multimodal tensor
dynamically guide each feature learning process. Then, the Tucker decomposition for the ‘Weights’ is introduced thus
the heavy weight is replaced by [Tc;W1,W∗,Wh] and the computational burden can be much lower.

Then the distillation temperature T is calcu-
lated by

T = fpt
([mi||mZ ]), (5)

where fpt
is another projection function. mZ is

the message from the multimodal tensor. Both the
temperatures Ts and Tz can be computed by this
equation.

With the method formulated before, one could
build a separable multimodal learning model
with the capability of capturing modality interac-
tions from the privileged information. However,
the computational burden increases exponentially
with the modality number and the dimension of
each input representation. As the tensor Z ∈
Rd1×d2×···×dM

, one should apply a weight W ∈
Rd1×d2×···×dM×h to map the tensor to a final
representation vector zh ∈ Rh and thus for the
final prediction. So we get that

zh =W ·
M⊗

m=1

zm. (6)

The weight tensor is with order-(M+1). Thus,
the computational cost for message mZ is
O(

∏M

m=1 d
m), which is expensive. Therefore,

like [5], we conduct a Tucker decomposition for
the weight matrix to improve the computational
efficiency. Thus we get

zh = ((Tc×1W1)×2...×MWM)×M+1Wh·
M⊗

m=1

zm

(7)
with Wi ∈ Rdi×ti , Wh ∈ Rh×tM+1

and Tc ∈
R

∏M+1
i=1 ti Here, operator ×i is the i-mode prod-

uct.

This decomposition is very useful. Firstly, the
computational expense now is O(

∑M

m=1 d
m +∏M+1

m=1 t
m), which is much lower than previous

one since tm << dm. Secondly, each weight
component corresponds to a specific modality.
Thus, modality-specific weight can be performed
on each modality. That is

zh = ((Tc×1(z
>
1 W1)...×M (z>MWM))×M+1Wh.

(8)

Here, weight matrices project each modality to
respective feature space and the weight tensor
Tc is learned to capture the interaction between
them. Once we get the the final representation zh,
we could perform the final prediction.

Note that weight tensor Tc gives every di-
mension at every modality a weight to compute
the intra- and inter- connections. As a trade-off
between model complexity and efficiency, one
could add sparsity constraints to Tc. For any
element zh[k] at dimension k ∈ Rh, it can be
treated as a correlation between elements from the
different modalities weighted by the tensor slice
Tc[:, : ... :, k], of which the structure definitely
can be constrained by the rank constraint.

As a special case, this method is able to
degrade to Low-rank fusion method when set
the weight tensor Tc to an identity, which means
different modalities share the same scale of the
dimension in respective feature space and the
interaction between each modality is only allowed
at the same dimension.
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According to Eq (8),

zh[k] =
R∑
i=1

M⊗
m=1

W
(i)
m,k ·

M⊗
m=1

zm

=
R∑
i=1

W
(i)
1,kz

1 ◦
R∑
i=1

W
(i)
2,kz

2 · · · ◦
R∑
i=1

W
(i)
M,kz

M .

(9)

Here, the W is decomposed with the rank of R.
The W

(i)
m,k is the i − th decomposition of the

k − th slice of the weight tensor W for m−th
modality. ◦ means element-wise product. So, it is
clear that low-rank fusion network [13] is a spe-
cial case of this Tucker decomposition method.
Therefore, in this way, we find a modality specific
weight-tensor for each modality representation.
Then, we go one big step further. We apply the
modality-specific weight to construct the individ-
ual modality representation and the final repre-
sentation vector zh is used as the complementary
information to lead the distillation process.

Experiments
We perform the following experiments on

three real-world datasets for multimodal senti-
ment analysis task. They are CMU-MOSI [9],
POM [20], and IEMOCAP [21]. Each dataset
contains three modalities, which are videos, audio
and text. Following [13], we perform exactly the
same pre-processing for fair comparison. First,
we test with the case that all the modalities are
available and compare with the state of the arts.
Then we show the robustness of our method on
the cases with one or more modalities missing.
Finally, we also explore the effectiveness of each
parts in the modality distillation.

Implementation
To compare with previous state-of-the-art

methods, we build simple and straightforward
neural networks for these three modalities.
Like [13], for the visual and acoustic features,
we build a two-layer fully connected network to
get the embedded modality representation. For
text feature, we employ LSTM to capture the
sequences information in the feature. After that,
according to Eq (8), we build a tensor-based mod-
ule to capture the interactions between modalities.
To model the message between a specific modal-
ity representation and the multimodal tensor, we

employ two fully connected layers on the modal-
ity representation and its prediction. The outputs
are unified to 32 after this projection. Then they
are concatenated according to Eq (4). The same
operation is performed on the multimodal tensor.
Eventually, the output vectors are concatenated
and thus the adaptive temperature is computed
based on Eq (5).

During the training, we train the model for
50 epochs with a patience of 10, which stops the
training once the loss has not decreased for 10
epochs. We also perform a grid search to find the
best model on the validation dataset. For the grid
search, like in [13], we search the best size for
the hidden representation for the three modalities,
the network training related hyper-parameters like
batch size, learning rate, dropout rate and weight
decay. We also search the rank R of the Eq (9)
in the set of [1, 4, 8, 16].

All Modalities Available Issues
Since all modalities are available, the multi-

modal tensor is used for final prediction. Here,
we compare with eight state-of-the-art methods.
SVM-based method works as the baseline, which
applies a SVM [22] classifier directly on the
concatenated features. DF [6] builds one net-
work for each modality and combines all the
outputs with a joint network for final prediction.
BC-LSTM [8] and MV-LSTM [18] are based
on LSTM. MARN [19] and MFN [7] are two
attention-based methods, while MARN models
modality interactions by using a multi-attention
block with a hybrid memory and the MFN in-
troduces an attention mechanism along time and
captures interactions with a multi-view gated
memory. TFN [9] and LMF [13] are two tensor-
based methods, which are most related to our
work. TFN creates a multi-dimensional tensor to
capture the view-specific and cross-view dynam-
ics and LMF performs a high-efficient multimodal
fusion method with low-rank decomposition.

All the results are listed in the Table 1. There
are 12 results from each method for these three
datasets. Though our model is not designed di-
rectly for the complete information task, one can
still find the comparable capability of our model.
For instance, we get two best and two second best
results on the IEMOCAP dataset. In all of these
12 results, 67% of our results can get the top-
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Table 1. Performance comparison(all modalities are existing) on CMU-MOSI, POM, and IEMOCAP with eight current
best results. Top-3 results are marked in bold. Note that our model is not directly designed for this multimodel fusion
task. Nonetheless, our model gets a comparable or even superior performance when compared with them.

CMU-MOSI POM IEMOCAP

Method MAE Corr Acc-2 F1 Acc-7 MAE Corr Acc F1-Hp F1-Sd F1-Ag F1-Nu

SVM-Based 1.864 0.057 50.2 50.1 17.5 0.887 0.104 33.9 81.5 78.8 82.4 64.9
DF [6] 1.143 0.518 72.3 72.1 26.8 0.869 0.144 34.1 81.0 81.2 65.4 44.0
BC-LSTM [8] 1.079 0.581 73.9 73.9 28.7 0.840 0.278 34.8 81.7 81.7 84.2 64.1
MV-LSTM [18] 1.019 0.601 73.9 74.0 33.2 0.891 0.270 34.6 81.3 74.0 84.3 66.7
MARN [19] 0.968 0.625 77.1 77.0 34.7 - - 39.4 83.6 81.2 84.2 65.9
MFN [7] 0.965 0.632 77.4 77.3 34.1 0.805 0.349 41.7 84.0 82.1 83.7 69.2
TFN [9] 0.970 0.633 73.9 73.4 32.1 0.886 0.093 31.6 83.6 82.8 84.2 65.4
LMF [13] 0.912 0.668 76.4 75.7 32.8 0.796 0.396 42.8 85.8 85.9 89.0 71.7

Ours 0.996 0.606 74.0 74.0 34.3 0.836 0.313 36.2 86.0 85.9 88.7 72.3

3 performance. All of our results can achieve a
top-5 results. Overall, our model is comparable
with the state-of-the-arts when all modalities are
available.

Modality Missing Issues
Here, we evaluate our model on the cases

with one or more modalities missing. As there is
little works in this case, we implement four ap-
proaches here, including two traditional methods
(SVM and Sparse Tikhonov-Regularized Hashing
(STRH) [23]) and two deep models (Deep-S
and LMF-S). SVM gives a prediction directly
on the available modalities. Likewise, Deep-S
also directly builds the network for the available
modalit(ies). For fair comparison, we keep all
other neural modules consistent with our model
excepts for the distillation related ones. STRH
enforces both the 0-norm induced sparsity con-
straints and the Tikhonov regularization on the
binary solution vectors to maximize cross-modal
correlation. Since LMF is a special case of our
model, we extend LMF to a separated one, LMF-
S. We keep same depth for each sub-network for
fair comparison. Likewise, we also conduct score-
level fusion for the final output for cases with
more than one modality available.

It can be seen from Tables 2 and 3 that, for the
case with only one modality, our method gets a
overwhelming performance. For instance, On the
dataset of CMU-MOSI, when there is only text
information, with the modality distillation, our
model achieves the best results. This performance
is even comparable to the cases where all modal-
ities are available, which shows the robustness of
our model. For the cases with two modalities, our

method can also achieve superior performance.
For example, on the IEMOCAP datatset, when
both audio and text data available, our model
gets F1-Ag with 87.1%, which is even better
than most methods in the Table 1 with all the
modality available. However, the SVM and LMF-
S methods only achieve 72.6% in the same case.
Meanwhile, there are a few failed cases(5/72),
like F1-Nu value with visual and audio in the
IEMOCAP dataset. It may be caused by the
fusion catastrophe, which is a common issue in
MML. Nonetheless, for most of the cases, we
could get a superior performance.

Ablation study
We also perform corresponding ablation study

to investigate each parts of adaptive modality
distillation. Firstly, we investigate the effective-
ness of the distillation method in our model.
In fact, the framework LMF-S is equal to our
model without the distillation mechanism. Thus
it can be used to evaluate the effectiveness of
our modality distillation method. Then, we eval-
uate the influence of the adaptive temperature
mechanism. To this end, we remove the message-
interaction based distillation by giving a fixed
temperature (2) for all the distillation processing.
This method is referred as Our-fixed. All the
comparison results are listed in the Table 3.

When compared to the LMF-S, our perfor-
mance is very competitive. For example, on the
IEMCAP dataset, we get F1 score of 82.6 % for
the class sad (F1-Sd) when there is only video
data, while LMF-S only get 70.6%. One could
find more examples in the Table 3. This proves
the effectiveness of our distillation module. Then
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Table 2. Performance comparison(One modality is missing). The best results for different inputs are marked with:
Visual+Audio, Audio+Text, and Visual+Text, respectively.

CMU-MOSI POM IEMOCAP

Methods Available Modality MAE Corr Acc-2 F1 Acc-7 MAE Corr Acc F1-Hp F1-Sd F1-Ag F1-Nu

SVM
Visual+Audio 1.553 0.006 51.7 12.6 16.3 0.951 0.054 29.7 73.4 73.8 67.8 55.2
Audio+Text 1.982 0.116 53.5 11.6 14.7 1.038 0.059 30.9 78.9 76.8 72.6 51.3
Visual+Text 1.977 0.091 54.1 19.7 15.7 1.047 0.053 30.1 75.4 72.9 66.5 56.1

STRH
Visual+Audio 1.479 0.009 53.5 17.4 16.7 0.929 0.032 34.2 71.0 78.8 71.9 52.3
Audio+Text 1.447 0.089 51.3 18.9 19.5 0.912 0.013 32.7 79.3 79.6 78.6 54.2
Visual+Text 1.420 0.005 51.9 31.4 18.7 0.923 0.012 32.5 73.6 71.3 73.5 56.2

Deep-S
Visual+Audio 1.429 0.113 44.7 27.6 15.7 1.100 0.141 29.7 79.4 73.8 67.8 59.2
Audio+Text 1.311 0.313 56.5 47.7 21.6 1.155 0.159 31.3 78.9 76.8 72.6 58.5
Visual+Text 1.323 0.331 56.5 47.7 21.3 1.124 0.166 31.1 79.4 72.9 66.5 64.1

LMF-S
Visual+Audio 1.467 0.074 44.7 47.4 18.5 0.988 0.120 32.6 81.0 78.8 81.9 54.5
Audio+Text 1.103 0.541 68.9 69.0 29.0 0.903 0.171 32.9 79.3 79.6 83.6 64.4
Visual+Text 1.165 0.527 68.2 68.2 28.5 0.904 0.183 33.1 82.6 81.0 82.4 63.9

Ours-fixed
Visual+Audio 1.457 0.070 51.6 50.5 17.6 0.878 0.209 34.3 79.7 82.2 84.8 49.5
Audio+Text 1.091 0.547 69.2 70.1 30.9 0.881 0.247 33.1 80.7 82.3 85.7 65.6
Visual+Text 1.076 0.531 67.9 67.9 27.8 0.887 0.230 32.8 81.6 82.3 86.4 63.5

Ours
Visual+Audio 1.374 0.126 55.7 54.7 22.1 0.865 0.243 34.8 82.2 81.5 85.2 54.2
Audio+Text 1.117 0.569 70.7 70.8 29.8 0.863 0.248 33.6 83.6 83.2 87.1 68.5
Visual+Text 1.082 0.569 69.4 69.8 33.4 0.881 0.256 33.7 83.5 81.7 84.0 65.2

Table 3. Performance comparison(Two modalities are missing). The best results are markedThe best results for different
inputs are marked with: Visual, Audio, and Text, respectively.

CMU-MOSI POM IEMOCAP

Methods Available Modality MAE Corr Acc-2 F1 Acc-7 MAE Corr Acc F1-Hp F1-Sd F1-Ag F1-Nu

SVM
Visual 1.481 0.010 48.1 17.4 14.7 0.995 0.015 32.5 68.3 70.1 66.8 54.2
Audio 1.595 0.007 46.9 13.7 16.0 0.893 0.047 33.7 67.9 72.1 71.9 51.3
Text 1.983 0.091 54.2 17.9 15.1 0.999 0.051 30.1 72.9 75.6 65.3 41.4

STRH
Visual 1.458 0.004 52.5 11.3 16.3 0.939 0.023 34.0 70.2 61.3 57.3 51.4
Audio 1.522 0.003 51.9 10.7 16.2 0.885 0.037 32.4 68.5 69.4 72.4 41.9
Text 1.433 0.002 53.4 25.4 17.1 0.921 0.018 33.5 71.2 70.2 71.9 53.7

Deep-S
Visual 1.441 0.130 44.7 27.6 15.4 1.069 0.148 29.5 79.9 70.3 67.8 64.8
Audio 1.417 0.095 44.8 27.6 16.0 1.131 0.134 29.9 78.9 78.1 79.9 53.7
Text 1.206 0.532 68.3 67.9 27.2 1.180 0.184 32.7 78.9 75.6 65.3 63.4

LMF-S
Visual 1.398 0.066 55.2 52.3 21.1 1.050 0.104 29.8 80.4 70.6 66.8 54.3
Audio 1.458 0.040 49.1 48.2 16.0 0.930 0.151 32.4 78.9 79.7 82.3 48.4
Text 1.108 0.535 69.3 68.4 27.9 0.912 0.228 33.2 81.4 80.2 81.2 63.5

Ours-fixed
Visual 1.466 0.180 45.5 30.9 15.5 0.869 0.144 34.3 81.8 81.7 85.6 65.3
Audio 1.475 0.075 51.6 49.9 18.9 0.867 0.204 33.8 82.4 80.9 86.3 64.8
Text 1.084 0.541 70.3 70.4 30.4 0.912 0.218 33.8 83.6 83.2 85.9 64.9

Ours
Visual 1.390 0.137 55.2 50.7 18.2 0.875 0.136 34.1 82.5 82.6 86.1 66.7
Audio 1.377 0.160 56.7 56.2 22.7 0.879 0.147 33.2 83.2 81.4 85.7 66.1
Text 1.074 0.570 71.8 70.9 30.5 0.884 0.273 35.4 84.1 82.0 86.2 66.9

we compare with Our-fixed. From Table 3 we
know that, more than 80% (70/84) results benefits
from the adaptive temperature mechanism and
have been improved, which definitely proves the
effectiveness of our adaptive mechanism.

Conclusion
In this paper, a novel message-interaction

adaptive modality distillation is proposed to deal
with the multimodal sentiment analysis, which is
an important research topic in affective comput-
ing. The proposed method is successfully applied

to multimodal learning problems with modality
missing issues, which are common cases in the
real-life but rarely considered in previous works.
The method constructs a separable tensor fusion
network with learning from the privileged infor-
mation, and provides an adaptive distillation strat-
egy based on the modality messages. In this way,
our method could successfully capture from even
missing modalities the intra- and inter- modality
interaction dynamics, thus improves the perfor-
mance for modality missing issues. To further
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enhance the computational efficiency, we perform
a Turker decomposition for the weight tensor.
Interestingly, we found that the famous low-
rank tensor fusion method is a specific case of
our model. Comprehensive experiments on three
real-life multimodal sentiment analysis datasets
prove that the proposed method is superior to the
existing methods with modality missing issues
and it is also comparable to the state-of-the-art
approaches when all modalities are available.
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