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Abstract—The sentiment index of market participants has been 
extensively used for stock market prediction in recent years. 
Many financial information vendors also provide it as a service. 
However, utilizing market sentiment under the asset allocation 
framework has been rarely discussed. In this article, we investigate 
the role of market sentiment in an asset allocation problem. We 
propose to compute sentiment time series from social media 
with the help of sentiment analysis and text mining techniques. 
A novel neural network design, built upon an ensemble of evolv-

ing clustering and long short-term memory, is used to formalize 
sentiment information into market views. These views are later 
integrated into modern portfolio theory through a Bayesian 
approach. We analyze the performance of this asset allocation 
model from many aspects, such as stability of portfolios, comput-
ing of sentiment time series, and profitability in our simulations. 
Experimental results show that our model outperforms some of 
the most successful forecasting techniques. Thanks to the intro-
duction of the evolving clustering method, the estimation accu-
racy of market views is significantly improved.
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I. Introduction

Financial markets are among the most complex and cha-
otic dynamic systems in human society. Numerous fac-
tors could contribute to the fluctuation of market 
prices through the bids and offers on assets. In this 

price formation mechanism, the psychology and behavior of 
market participants have an important role to play. Public 
mood is a very efficient and universal variable that reflects the 
attitudes of market participants. Furthermore, the rise of Web 
2.0 applications and the growing popularity of social media 
have accelerated the spread of information, which brings 
more importance to the subjective views on the market. 
Empirical study [1] suggests that current stock price move-
ments in major markets are essentially affected by new infor-
mation and the beliefs of investors.

Another reason that we believe incorporating the public 
mood would be beneficial to the stock market prediction task 
is that this approach brings in public yet incremental informa-
tion. In contrast, many technical analysts rely solely on mining 
of the patterns of past price series. In recent trends of applying 
artificial intelligence techniques, especially machine learning 
and deep neural networks to stock market prediction, a large 
part of the computer science community has the same limita-
tions. However, as chaos theory and many cases in [2] suggest, 
there are no “detectable patterns” as time evolves even for 
deterministic systems. This does not necessarily mean the cur-
rent prices reflect all the past information as the efficient-mar-
ket hypothesis (EMH) suggests, but as the prices are driven by 
new information, the past patterns fade quickly away. Conse-
quently, the pattern-chasers are always one step behind if they 
simply build the model with past prices.

Other than the price series, there are models in literature 
that include macroeconomic variables, such as a company’s 
book value and investment suggested by multi-factor models 
[3]. However, the problem of these models is that updates of 
these factors are usually slow. Unlike many economic factors, 
the public mood can be instantaneously monitored, and esti-
mated as an aggregation of the market sentiments of individuals. 
Previous studies have investigated various sources of public 
mood, such as stock message boards [4], microblogging plat-
forms [5], newspapers [6], Really Simple Syndication (RSS) 
feeds [7] and more [8]. Wuthrich et al. [6] used occurrences-
weighted keyword tuples from an expert system to measure the 
public mood; Zhang and Skiena [7] leveraged word-level posi-
tive and negative counts to derive polarity and subjectivity for 
specific companies; Antweiler and Frank [4] manually labelled 
some messages to train a Naive Bayes classifier that predicts bull-
ish, bearish, or neither based on the bag-of-words representation 
of messages; Smailović  et al. [5] trained an Support Vector 
Machine (SVM) based on a large tweet data collection classified 
by emoticons. Recently, Weichselbraun et al. [8] proposed senti-
ment analysis of social media stream based on mining knowl-
edge base enriched dependency trees. Though using different 
techniques from knowledge engineering to machine learning, 
many of them have reported correlations between public mood 

and price movements. Statistical test and simulation results also 
manifested the predictive power of public mood [9, 10].

Despite the important role in stock market prediction, it is 
not sufficient or straightforward for an individual to make his 
investment decision based on a set of public mood data and 
predicted prices. Because public mood does not directly affect 
the market: it does indirectly through market participants’ 
views and their consequent behavior. The interaction is often 
referred as higher order beliefs in game theory. Then, a ques-
tion that naturally arises is about bridging public mood with 
market views [11]. However, discussion about the mechanism 
of how market views are formed from public mood is heavily 
overlooked in specific scenarios. In this article, we address the 
problem of incorporating public mood to the asset allocation 
framework. The market views are formed computationally 
from the sentiment time series as a prior belief of the investor. 
Trading simulation and experiments prove the high quality of 
our approach of formulating market sentiment views. The 
informational enhancement using this sentiment prior leads to 
more than 10% annualized portfolio yield on average when 
compared to various state-of-the-art asset allocation strategies.

The remainder of the article is organized as follows: the next 
section provides the background of modern portfolio theory, and 
explains the concept of Bayesian asset allocation; following, we 
describe modeling market sentiment views and the optimization 
objectives; next, we present the method for generating sentiment 
time series; later, we evaluate our methodologies by running 
trading simulations with various experimental settings; in the 
end, we discuss our findings and propose concluding remarks.

II. The Asset Allocation Problem

A. The Mean-Variance Method
The portfolio construction paradigm has been prevalent for 
investment for more than half a century. Given the total amount 
of capital available as a constraint, the investor will need to allo-
cate it to different assets. Generally, assets that generate higher 
returns also bear more risk. Based on the idea of trading off 
between asset returns and the risk taken by the investor, the con-
cept of an “efficient portfolio” was proposed by Markowitz [12, 
13]. Consider a one-period model. Assume n assets are selected 
and the i-th is assigned a weight ,wi  then the portfolio return will 
be the weighted mean of expected return for each asset, portfo-
lio risk can be measured by the variance of return vector. There-
fore, an “efficient portfolio” meets the following condition:
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where d  is a risk aversion coefficient, in  denotes the expected 
return on asset ,i  ijv  is the covariance between asset i  and ,j  n  
is the number of assets.
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The optimized weights of an efficient portfolio are then 
given by the first order condition of equation 1:

	 ( )w 1
d nR=) - 	 (2)

where ( )n 1n #  is a vector consisting of expected returns ,in  and 
( )n nR #  is the covariance matrix of asset returns. At the risk level 

of holding w) , the efficient portfolio achieves the maximum 
expected return among all other alternatives, and for all portfo-
lios that have an expected return equal to holding w) , the effi-
cient portfolio has the minimum risk measure [14].

However, both n  and R are unknown in practice. The tra-
ditional approach to this problem is to use their estimation nt  
and Rt  instead, based on the observed past asset prices. Using a 
time window of length ,T  we can calculate the two maximum 
likelihood estimators as:
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where pt  is the price vector of length n  for time point .t
Noted that the price series is often non-stationary in the real-
world, as a result, the estimators are very sensitive to the choice 
of .T  The situation is worsened by the fact that, the Markowitz 
model per se is not stable for the estimators of return and vola-
tility as inputs, because errors propagate during the multiplica-
tion of matrices. Consequently, the Markowitz model often 
delivers many zero positions and an imbalanced portfolio [15].

B. Bayesian Asset Allocation
Many theoretical approaches have been developed to incorpo-
rate Bayesian priors [16]. Unlike the original Markowitz model, 
the Bayesian perspective treats n  and R not as fixed numbers, 
but as random variables. One can only infer their probability 
distribution function (pdf). Intuitively, the observed sample size 
T  can be included as a so-called “diffuse prior” to indicate the 
uncertainty of parameter estimation. By doing so, the pdf will be 
flatter for a smaller ,T  indicating the wider confidence interval 
with fewer samples. Therefore, the assets are riskier in a Bayesian 
framework since parameter uncertainty can be an additional 
source of risk that always exists. However, with the aforemen-
tioned diffuse prior, the optimized vector of weights is just a 
scalar adjustment of the Markowitz model, which makes little 
difference in terms of information leveraged. To exhibit the 
decisive advantage of the Bayesian approach, it is crucial to elicit 
informative variables [15], which in our case is a sentiment prior.

To elegantly combine the sentiment prior with other market 
fundamentals, we resort to a specific form of the Bayesian 
approach proposed by Black and Litterman [17]. In the Black-
Litterman model, the probability distribution of portfolio returns 
is inferred by two antecedents: the equilibrium risk premiums ( Π ), 
and a set of views on the expected returns of the investor. Usually, 

the equilibrium risk premiums are calculated as in the capital asset 
pricing model (CAPM). CAPM states that for asset i, the equilib-
rium risk premium is proportional to the market premium:

	 ( )i i f i m fn n b n nP = - = - 	 (5)

where mn  is the market expected return, and fn  is risk-free 
interest rate.

The Black-Litterman model assumes that the equilibrium 
returns are normally distributed as ~ ( , )r Neq xP R , where R is 
the covariance matrix of asset returns, and x  is an indicator of 
the confidence level of the CAPM estimation of Π. The market 
views on the expected returns are also normally distributed as 

~ ( , )r QNviews X . We denote the posterior distribution of the 
portfolio returns providing the views by ,rBL  where the sub-
script stands for the Black-Litterman model. Then, it is mathe-
matically clear that rBL  can also be written as a normal 
distribution ( , ),N BL BLn R  where both BLn  and BLR  can be 
derived from the Bayes’ theorem:
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With BLn  and ,BLR  the optimized Bayesian portfolio has a 
similar form to equation 2:

	 ( ) .wBL BL BL
1

d nR=) - 	 (7)

The next section will discuss how the Black-Litterman model 
presents the market views in a more natural and human-under-
standable way, instead of explicitly giving the pdf of Bayesian 
posterior returns.

III. Market Views
Starting from the physical meaning of Q  and X, the Black-Lit-
terman model defines two types of market views [18]. A relative 
view takes the form of “I have 1~  confidence that asset x will 
outperform asset c  by %a  (in terms of expected return)”; an 
absolute view takes the form of “I have 2~  confidence that 
asset z  will outperform the market by %b ”. Consequently, we 
obtain the definition of market views as below.

Definition 1
For a portfolio consisting of n  assets, a set of k  views can be 
represented by three matrices ,P Q, ,k n k 1 , and ,k kX . P  indicates 
the assets mentioned in views. The sum of each row of P  
should either be 0 (for relative views) or 1 (for absolute views); 
Q  is the expected return for each view; and the confidence 
matrix X is a measure of covariance between the views.

The Black-Litterman model assumes that the views are 
independent of each other, so the confidence matrix can be 
written as ( , , ..., )diag n1 2~ ~ ~X = . Following the steps de
scribed in [19], it can be further derived from equation 6 and 
definition 1 that:

	 [( ) ] [( ) ]P P P QBL
1 1 1 1 1

n x xR X R P X= + +- - - - -l lt t 	 (8)
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	 [( ) ] .P PBL
1 1 1

xR R R X= + +- - -l t � (9)

In practice, an easier-to-compute definition of market views 
is more frequently used as below.

Definition 2
Market views on n  assets can be represented by three matrices 

, ,P Q, ,n n n 1  and ,,n nX  where P ,n n is an identity matrix; ;Q R,n
n

1 !  
,n nX  is a nonnegative diagonal matrix.
It can be mathematically proved that the two definitions are 

equivalent in terms of expressiveness. However, definition 2 is 
more intuitive, since matrix P  can be eliminated. And only 
when definition 2 holds, we can use the Black-Litterman 
assumption that the views can be described using a multivariate 
normal distribution. Finally, our task can be restated as estimat-
ing the variables in equation 8 and 9 with the help of a senti-
ment prior.

A. Estimating volatility, confidence, and return
We adopt the calculation of the equilibrium risk premiums 
P^ h using CAPM. It follows that the estimation of parameters 

of posterior distribution of the expected portfolio returns as in 
the Black-Litterman model depends on three factors: the equi-
librium volatility as a covariance matrix ,R^ h  the investor’s 
confidence of his own views ,X^ h  and the investor’s expected 
returns as in his views .Q^ h

Our method uses the past k-days observed returns to calcu-
late the covariance matrix. For asset i  and asset ,j  the element 

ijv  as in covariance matrix R is estimated as follows:
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where r p p pi n i n i n i n1 1= -- - - - - -^ ^h h.
In the most original form of the Black-Litterman model, 

the confidence matrix X is set manually according to investors’ 
experience. Whereas in the numerical example given by [18], 
the confidence matrix is derived from the covariance matrix:

	 ( ( ) ) .diag P PxX R= lt � (11)

This is because ( )P PxR l can be understood as a covariance 
matrix of the expected returns in the views as well. Using defini-
tion 2, it is easier to understand this estimation, because P is an 
identity matrix, ( )P PxR l is already diagonal. The underlying 
assumption is that the variance of an absolute view on asset i is 
proportional to the volatility of asset .i  If the past return series of 
asset i  implies high risk, then no matter how the market views are 
formed, the investor is less confident in it. In this initial case, the 
estimation of X utilizes past information of asset price volatilities.

The expected return has the most salient relation to the mar-
ket sentiment. Our hypothesis is that there exists a responding 
strategy to surf market sentiment that statistically makes profits 
(generates alpha). Assuming the Black-Litterman agent uses the 

past price series ( )p ,t k  and trading volumes ( )v ,t k  to empirically 
form and update the expected return of their views, we further 
use the current time market sentiment on assets ( )st  as a prior. 
We learn this time-varying strategy using a novel deep recurrent 
neural network (RNN) design that is based on evolving cluster-
ing method (ECM) and long short-term memory (LSTM) net-
work and, hence, termed ECM-LSTM:

	 ECM-LSTM , ;( ( ) ).Q Q p v st BL ,t k t,k t=t t � (12)

ECM [20] is usually used for on-line systems, in which it 
performs a one-pass, maximum distance-based clustering pro-
cess without any optimization. The method is very fast due to 
its nature of efficiently recording and updating the centroids 
and clustering radiuses. LSTM is a special type of RNN with 
gated units. The LSTM unit often includes an input gate, a for-
get gate, and an output gate. All the gates are updated with the 
current input and previous output state. This unit architecture 
is claimed to be well-suited for learning to predict time series 
with an unknown size of lags and long-term event dependen-
cies [21, 22].

ECM-LSTM is inspired by the observation that forecasts 
made by simply applying LSTM adapt to the incoming data 
too fast. Whereas real-world financial time series are usually 
very noisy, which will cause over-fitting to meaningless signals 
if used for an off-line training. The ECM mechanism was first 
proposed for partitioning of the input space to learn rules for 
fuzzy inference systems. Similarly, we can endow the LSTM 
model with stability by only learning from critical new incom-
ing data, namely when the old clustering pattern is updated. 
[22] shows that none of its variants can improve upon the stan-
dard LSTM architecture significantly on various tasks. There-
fore, we implement the vanilla LSTM unit as described in [22].

The ECM-LSTM training and forecasting procedure is 
depicted in algorithm 1, where v denotes the sigmoid function, 
Qt 1-t  is the model forecasting of the previous state, while Qt 1

)
-  is 

the last observable ground truth, or a guideline for the investor’s 
expected returns. Activation functions of input gate, forget gate, 
and output gate are denoted by ,i  ,f  and .o  W  are state transfer 
matrices, and b are the bias vectors. The state of each LSTM cell 
for time point t  is updated by the current period information on 
its previous state ct 1- . ( , )C Ri i  are the clustering centroids and 
corresponding radii for the input vector space.

B. The Optimal Market Sentiment Views
We derive the optimal market views [ , , ]P Q X) t  as in definition 2 
with the sentiment conditioned expected returns using the 
inverse optimization problem of the Black-Litterman model. 
Consider a multi-period model of the portfolio, our objective 
is to maximize the amount of capital at period ( )t 1+ :

	 .p
p

Capital Capital w
t

t
t t t1

1
# 9=+

+
� (13)

Because wt  is independent from ,Capitalt  for each period t  the 
optimal portfolio weights are thus:
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	 p pargmaxw w t tt t 18 9=) + 	 (14)

where 8  and 9  are element-wise operators. Obviously, the 
solution of equation 14 is a one-hot vector representation 
where the weight of the asset with the maximum /p pt t1+  
equals 1. The interpretation can be without short selling and 
transaction fees, one should reinvest his whole capital daily to 
the fastest-growing asset in the next time period. Let this wt

)  be 
wBL
)  in equation 7, we will have:

	 ( )w , ,t BL t BL t
1

d nR=) - 	 (15)

substituting ,BL tR  and ,BL tn  with equations 8 and 9 for period 
,t  we will have:

  [ ( [( ) ] )]w P Pt t t t
1 1 1 1

d xR R X= + +) - - - -l t

             [( ) ] [( ) ] .P P P Qt t t t t t
1 1 1 1 1

x xR X R P X+ + )- - - - -l lt t � (16)

Therefore, the optimal expected returns for our market 
views for each period t  can be solved from equation 16:
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IV. Sentic Computing
The market views require summarizing sentiment from a great 
deal of textual data. The quality of sentiment time series is 
obviously critical, because the data is later employed in the 
model training of estimating expected return .Q  This is a non-
trivial sentiment analysis task that involves other natural lan-
guage processing techniques, such as named-entity recognition, 
word polarity disambiguation, sarcasm detection, and aspect 
extraction [23]. Sentic computing [24] is the state-of-the-art 
framework that enables sentiment analysis of text not only at 
document or paragraph level, but also at sentence, clause, and 
concept level. In contrast to the statistical approaches, sentic 
computing combines both knowledge-based polarity inference 
and a backup machine learning technique. A basic statistical 
approach counts the positive and negative words in a sentence; 
however, the sentence structure is not taken into account. By 
averaging the word polarities, positive and negative words will 
nullify each other, which brings about difficulties for analyzing 
sentiment in complicated contexts.

Sentic computing mainly leverages a concept-level knowl-
edge base termed SenticNet1 [25], a commonsense knowledge 
base of 100,000 concepts, and sentic patterns [26], a group of 
linguistic rules to explicitly catch the long-term dependency in 
texts. First, multiple relation tuples are extracted from the sen-
tence with the Stanford typed dependency parser [27]. Then, a 

semantic parser further extracts concepts. We look up the con-
cepts from SenticNet, and trigger sentic patterns to process the 
relations and intrinsic polarities of these concepts. If the con-
cepts are not in SenticNet, the method resorts to a classifier 
built by machine learning. Figure 1 depicts this sentence-level 
polarity detection process.

Sentic computing embraces high interpretability required 
by most of financial applications and is powerful in many tricky 
cases. The rest of this section provides real-world examples 
from social media where sentic computing outperforms many 
other techniques.

A. Examples of Applying Sentic Patterns
❏❏ Example 1: I had a feeling $AAPL would go down, but this 
is stupid
The preprocessing of this sentence will need to know that 

“$AAPL” refers to “Apple company” and completes the miss-
ing period at the end of the sentence. However, the interesting 
part is that by denying his own previous opinion, the speaker 
actually advocates his bullish mood of Apple company and 
labels this sentence as positive. The bag-of-words model would 

1https://github.com/yurimalheiros/senticnetapi/

Algorithm 1 ECM-LSTM training and forecasting procedure.

Data: Incoming data stream p,  ,v  s
Result: Expected return estimation Qt

t

1	 Initialize LSTM parameters ,W  ;b
2	 if 0C = Y then 
3	     (p ,v ,s );C t,k t,k t0 =

4	     ;0R0 =

5	     Go to line 15; 
6	 else 
7	     (| | (p , v , s ) | |);minD Ct,k t,k tmin i= -

8	     if DR minib $^ h then 
9	         Add (p , v , s )t,k t,k t  to C i  where Dmin  holds; 
10	         Go to line 24; 
11	     else 
12	         ( , ) (| | (p , v , s ) | | );minS i C Rt,k t,k tmin i i= - +

13	         if S 2Rmin i2  then 
14		  Add (p ,v ,s )t,k t,k t  to ;C  
15		  i (W [ ,p ,v ,s ] b );Qt i t,k t,k t it 1 +$v= -

t

16		  f (W [ ,p ,v ,s ] b );Qt f t,k t,k t ft 1 +$v= -
t

17		  o (W [ ,p ,v ,s ] b );Qt o t,k t,k t ot 1 +$v= -
t

18		  c f c i (W [ ,p ,v ,s ] b );Qt t t 1 t c t,k t,k t ct 1= + +9 9 $ --
t

19		  o (c );tanhQ t tt 9=t

20		  Update ,W  b with 
{i, f,o}

( )
;

Q Q
t 1

t t1 1

2

2 -)
- -

-

t

21		  else 
22		  Add (p ,v ,s )t,k t,k t  to C i  where Smin  holds; 
23		  Update ( , );C Ri i

24		  o tanh(c );Q t t 1t 9= -
t

25	         end 
26	     end 
27	 end 
28	 return ;Qt

t
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identify “down” and “stupid”, both are negative and concludes 
the whole sentence as negative. A machine learning based sen-
timent analysis model, for instance provided by Google Cloud 
Natural Language API (Google SA)2, also fails for this example.

Sentic computing would first identify the concept “go_
down” from SenticNet, which is negative. This polarity will be 
passed through a nominal subject relation to “Apple company”, 
and the relative clause modifier relation to “feeling”. Note that 
this whole structure and “stupid” are linked by an adversative 
but-conjunction, thus the sentic pattern “negative but negative &  
positive” is triggered, giving the overall sentence a positive polarity. 
This process is further elaborated with Figure 2.

❏❏ Example 2: $AAPL will be down today again but the down draft 
is slowing. By end of next week I think it’s getting bought back
In addition to example 1, the preprocessing will have to con-

vert the ASCII based encoding for the apostrophe, and recognize 

two sentences: “Apple will be down today 
again but the down draft is slowing.” and 
“By end of next week I think it’s getting 
bought back.” Google SA assigns the first 
sentence with sentiment score –0.20 and 
the second sentence 0.0, thus the overall 
sentiment is averaged as –0.10.

However, the user labels the message 
as positive and many would agree on 
the obviousness that both the two sen-
tences are positive. Sentic computing 
does not provide the correct score for 
the first sentence but gets the correct 
overall label as positive. First, a but-con-
junction has the highest priority such 
that the polarity of the first sentence 
is consistent with “the down draft is slow-
ing”. Concept “down_draft” is not in 
SenticNet, hence it inherits the polarity 
of “down”: –0.31. Although slowing of 
down draft is positive in the stock mar-
ket, the concept “is_slowing” is neutral 
in the general domain knowledge base 
SenticNet. Therefore, the negative score 
passes through the whole sentence, giv-

ing the first sentence sentiment score of –0.31. The concept 
“bought_back” carries a sentiment score of 0.82. The senti-
ment score of “next” –0.56 is passed through an adjective mod-
ifier relation to “next week”, and because of the noun modifier 
relation between “end” and “week”, the polarity of “by end of 
next week” is inverted to a slightly positive 0.02, The overall 
polarity of the second sentence is thus ( . ) (1 1 0 82 1- - -

. ) .0 02 0 82= . The entire message has a sentiment score of 
(( .0 82+( . ))/ . .0 31 2 0 26- =

❏❏ Example 3: $AAPL moment of silence for the 180 call gam-
blers. lol.
This message contains an “lol”, probably acronym for 

“laughing out loud”. The user expresses his negative mood by 
indicating there is evidence that the stock price of Apple would 
not reach 180 and derogating those hold the optimistic opinion 
as “gamblers”. Google SA gives the sentence a positive senti-
ment score of 0.30, and the same as most of machine learning 
based methods, it is difficult to analyze where the error does 
come from.

Sentence

Typed Dependency
Parser

Semantic Parser

Bag of ConceptsBag of Words

False TrueIn
SenticNet

Sentic PatternsTrained Classifier

Polarity Value

Figure 1 The sentic computing algorithm working at sentence level, adapted from [26].

nsubj

root

dobj

det

acl:relcl but-conj

nsubj nsubj

aux cc cop

I had a feeling $AAPL would go down but this is stupid

Figure 2 Sentiment score propagates from low-level concepts to sentence-level polarity via dependency tree.

2https://cloud.google.com/natural-language/ [accessed on 2017-12-16]
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Sentic computing takes the polarity of “silence” 0.11 as 
the sentiment score for “moment of silence” since it is a noun 
modification relation. However, the case mark “for” updates 
the overall polarity to depend on the latter part “the 180 call 
gamblers”. Since “moment of silence” is positive but “gambler” has 
a negative score of –0.74 in SenticNet, the pattern triggered a 
more intense negativity for “moment of silence for gamblers” as 

| . | .0 74 0 86- - =- .
By applying sentic computing to the message data stream 

from social media, we can count the daily positive and nega-
tive messages and compute the average sentiment score for a 
specific asset and hence form sentiment time series. In the sec-
tion of experiments, we can observe the magic power of 
agglomerating individual level sentiment of messages as a prior 
for market prediction.

V. Experiments
In this section, we evaluate the quality and effectiveness of our 
formalization of market sentiment views. First, we compare the 
result of sentic computing with labels given by users themselves. 
Next, we run trading simulations with the intelligent Bayesian 
asset allocation model and benchmark on several portfolio con-
struction strategies. Finally, we discuss our findings.

A. Data and Sentiment Time Series
In this study, we collect the opinion messages from StockTwits, 
which is a popular social network for investors and traders to 
share financial information. Besides, we obtain the historical 
closing price of stocks and the daily trading volumes from the 
Quandl API; the market capitalization data from Yahoo! 
Finance. We investigate a time period of 3 months from 2017-
08-14 to 2017-11-16. For missing values, such as the closing 
prices on weekends and public holidays, we fill the gap with 
the closest historical data.

Our dataset comprises 38,414 messages for Apple, 4,298 
messages for Goldman Sachs, 2,157 messages for Pfizer, 1,094 
messages for Newmont Mining, 2,847 messages for Starbucks, 
and 76,553 messages for other tickers. Table 1 provides the 
confusion matrix between user labeling and sentic computing 
results on Apple Inc. In total, 14,524 user labeled messages that 
mentioned Apple are analyzed in the investigated period. From 
Table 1 the accuracy of polarity detection can be easily calcu-
lated as 59.8%. Given the noise in raw data and the general 
domain knowledge base we use, this is a fairly acceptable result. 
Another issue to note is that user labeling cannot be fully 
understood as a ground truth, but only as a reference. Because 
only a small portion (usually less than 20%) of users will label 
their messages regardless of the sentiment expressed, the subset 
that has user labels may not be an unbiased sample.

However, the visualization of the two time series of positive 
and negative message counts that expands on time axis can bet-
ter exhibits the consistency between two sources (Figure 3).

We take the trader mood index from a third commercial 
product (PsychSignal) for comparison. Their message data 
stream gathers various sources including Stocktwits and others. 

Their sentiment analysis engine is not disclosed as well. We cal-
culate the correlation of two time series as:

	 Correlation(s , s ) . 
((s s ) (s s ))E

1 2
1 1 2 2

s s1 2

- -
v v

=
r r

� (18)

Table 2 reports the significant and positive correlation 
between the time series from three sources.

B. Trading Simulation
We construct a portfolio by randomly selecting stocks of big 
companies. The portfolio consists of 5 stocks: Apple Inc 
(AAPL), Goldman Sachs Group Inc (GS), Pfizer Inc (PFE), 
Newmont Mining Corp (NEM), and Starbucks Corp (SBUX). 

Table 1 Confusion matrix between user labeling and sentic 
computing results.

Sentic computing

Positive Negative Total 

User labeling Positive 7234 3748 10982

Negative 2097 1445 3542

Total 9331 5193 14524
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Figure 3 The time series of positive and negative message counts 
from two sources (x-axis: days, y-axis: counts).
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This selection covers both the NYSE and NASDAQ markets 
and diversified industries, such as technology, financial services, 
healthcare, consumer discretionary. The social media post fre-
quencies also vary to a large extent among these companies. 
Traditional industries generally get less attention. The prices per 
share are adjusted according to the stock split history for com-
puting all related variables, however, dividends are not taken 
into account. In the simulations, we assume no short selling, 
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Figure 4 Performance of intelligent Bayesian portfolios with different sources of sentiment time series (x-axis: days, y-axis: thousand dollars).

Table 2 Correlation of message time series between user 
labeling, sentic computing, and PsychSignal.

Positive messages Negative messages

User-Sentic +0.964 +0.795

User-Psych +0.185 +0.449

Sentic-Psych +0.276 +0.282
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taxes, or transaction fees, and we assume the 
portfolio investments are infinitely divisible, 
starting from 10,000 dollars.

We benchmark our portfolio perfor-
mance with the following three asset alloca-
tion strategies:
1)	The equal-weighted portfolio (EW): 

we hold equal weights (20%) for the five 
stocks in our portfolio throughout the 
period investigated. In this case, the portfolio perfor-
mance averages the price movement of five stocks. This 
strategy is fundamental and minimum information is 
required. However, in forecasting of complex systems 
such as stock market, this effortless strategy performs bet-
ter than many more complicated strategies.

2)	The ARIMA portfolio (ARIMA): we re-invest daily 
according to the forecasted prices. The forecasting is pro-
duced by an ( , , )p d qARIMA  model (autoregressive inte-
grated moving average) for each stock and parameters are 
inferred from historical data as follows. First, increase d  
until the differentiated time series is stationary. Then, set 
the maximum p  and q  as the order of the last significant 
partial autocorrelation and autocorrelation. Finally, 
choose ( , )p q  that produces the minimum Akaike infor-
mation criterion (AIC). In fact, except the ARIMA(0, 
1,  2) model for PFE, other prices exhibit random walk 
behavior (ARIMA(0, 1, 0)).

3)	The Holt-Winters portfolio (HW): we re-invest daily 
according to the one-step-forward price forecasts. The 
forecasting is produced by a Holt-Winters additive 
smoothing method with time-varying parameters. The 
model HW( , , )t t ta b ct t t  is specified at each time point t  by 
minimizing the root mean square error (RMSE) of simu-
lated time series in a sliding window ,( )t k t- .

Note that ARIMA and HW portfolios do not require any 
prior, however, they are considered to be among the most 
effective forecasting techniques across different tasks when 
informative data from other sources are not available [28].

We further construct intelligent Bayesian portfolios with 
sentiment time series from different sources using the Black-
Litterman approach. Following the previous research [18], we 
set .0 25d =  and .0 05x = . For the simplicity of neural net-
work structure, we use a single layer of 64 LSTM units fol-
lowed by a densely connected layer of the size of the number 
of assets. The hidden LSTM layer uses 20% dropout. The trad-
ing performances are demonstrated in Figure 4, where unit of 
portfolio capital is 1,000 dollars.

C. Evaluation
Diversified metrics have been proposed to evaluate the perfor-
mance of portfolios [29–31]. The difficulty of evaluation is par-
tially due to the fact that there does not exist a simple way to 
calculate the distance to the gold standard portfolio. The same 
deviation in portfolio weights may be amplified or narrowed 
by volatility of asset prices. Therefore, we abandon metrics on 

weights and report four direct financial metrics: annualized 
return (AR), Sharpe ratio (Sh.R), Sortino ratio (So.R), and the 
maximum drawdown (MDD).

Annualized return measures the profitability of a given 
portfolio. We assume in a natural year, the portfolio keeps a 
constant compound growth rate as in the investigated period t. 
Let . ,T 365 25=  we have:

	 AR . 
Capital
Capitalt t

T

0
= c m 	 (19)

Sharpe ratio is a risk-adjusted return measure. We choose 
the equal-weighted portfolio as a base, so that the Sh.R of EW 
will be 1.00:

	 Sh.R ( )/ ( ) . 
( / )

R R
R RE

vw

vw

portfolio

portfolio

v v
= � (20)

Sh.R uses the standard deviation of daily returns as the 
measure of risk. Note that to distinguish between good and 
bad risk, we can also use the standard deviation of downside 
returns only [32]. So.R is calculated in this manner.

MDD measures the maximum possible percentage loss of 
an investor:

	 MDD . max
Value

Value Value
t t

t

0
=

-
1 1 x

x' 1 � (21)

Asset allocation strategies with large MDD tend to give rise 
to panic and impatience among investors and expose the port-
folio to the risk of withdrawal. Table 3 presents these metrics.

Table 3 Performance metrics with the top 3 in bold.

AR(%) Sh.R So.R MDD(%)

EW 23.07 1.00 1.00 1.76 

ARIMA 10.72 0.56 0.61 3.79

HW 13.03 0.34 0.36 6.16

LSTM(Psych) 33.52 0.71 0.79 3.84

LSTM(Sentic) 27.21 0.61 0.68 5.05

LSTM(User) 24.82 0.64 0.68 4.61

ECM-LSTM(Psych) 45.51 0.74 0.82 3.45

ECM-LSTM(Sentic) 35.45 0.66 0.73 2.89

ECM-LSTM(User) 37.53 0.71 0.87 3.40

The improvement of introducing an ECM mechanism  
is confirmed by the fact that in terms of all these 
metrics, the ECM-LSTM portfolios systematically 
outperform their counterparts using the same source 
of sentiment views.
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D. Findings
Figure 4 shows that, regardless of the sentiment source and 
network implementation details for estimating market views, 
the intelligent Bayesian portfolios exhibit similar moving pat-
terns. These patterns can be seen as intrinsic to the model and 
portfolio selection. In addition, in two of three portfolios using 
ECM-LSTM, the crash observed elsewhere between 2017-09-
15 and 2017-09-25 is effectively corrected.

EW is the most stable strategy in the experiments. In Table 3, 
EW also has the best Sh.R, So.R, and minimum MDD. ARIMA 
and HW are more volatile than EW. This is because after fore-
casting of next-day prices, the whole capital is invested to the 
only winning asset, thus the risk is not well diversified. The 
cumulative return of these two strategies cannot compare EW in 
this period as well, resulting in very small Sh.R and So.R. These 
two strategies would not be preferred.

All the portfolios that have taken market sentiment into 
account achieve higher AR than the three basic strategies dis-
cussed above. The improvement of introducing an ECM mech-
anism is confirmed by the fact that in terms of all these metrics, 
the ECM-LSTM portfolios systematically outperform their 
counterparts using the same source of sentiment views.

In the experiments, So.Rs are greater than Sh.Rs, indicating 
that the market trend in this period is going up. However, all the 
strategies have So.Rs and Sh.Rs less than 1. This observation 
holds in most well-formed markets, because seeking for a higher 
AR inevitably causes the investor to take greater unit risk.

The quality of the source of sentiment time series should be 
important, though the difference between the three sources we 
examined is not very clear. It seems that PsychSignal provides 
the most accurate sentiment data stream, in terms of both the 
volume of social media data collected and the portfolio perfor-
mance. However, using just the user labeled message counts 
sometimes also achieved a balanced and advantageous result.

VI. Conclusion
Market sentiment has attracted a great deal of attention in the 
computational intelligence and econometrics communities. 
However, the problem is often formulated as a price forecasting 
task rather than asset allocation task. In this work, we proposed 
a sophisticated approach to compute the asset-level market sen-
timent from social media data stream, and integrate it to the 
state-of-the-art asset allocation method using market views. 
Cross validation experiments suggest that the sentiment time 
series obtained using sentic computing is comparable to some 
commercial tools. Considering its transparency and good inter-
pretability, sentic computing is of great potential for broader 
financial applications that require natural language processing.

Another important contribution is made to the problem 
“how to deal with noisy financial data when applying machine 
learning techniques”. By introducing ECM as a screening 
mechanism for LSTM, the learned market views are smoothed 
and portfolio crash is effectively reduced. This novel method 
improves the AR of our asset allocation strategies by circa 10% 
on average. Other metrics experimented with, such as the 

Sharpe ratio and MDD, are improved as well when compared 
to the vanilla LSTM estimation based strategies.
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