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Abstract—Automatic personality detection has gained increas-
ing interest recently. Several models have been introduced to
perform this task. The weakness of these models is their inability
to interpret their results. Even if the model shows excellent
performance over test data, it can sometimes fail in real-life
tasks since it may incorrectly interpret a statement. To investigate
this issue, we evaluate two approaches. In the first approach,
we generate sentence embeddings by training a siamese Bi-
LSTM with max-pooling on the psychological statement pairs to
compute the semantic similarities between them. In the second
approach, we evaluate state-of-the-art pretrained language mod-
els to see whether their output representations can distinguish
personality types. Both of these approaches outperform state-of-
the-art models for this task with less computational overhead.
We conclude by discussing the implications of this work for both
computational modeling and psychological science.

Index Terms—Personality detection, Interpretability, BERT

[. INTRODUCTION

Al has the potential to assist health experts in dealing with
the increasing rate of mental health issues and disorders. This
increasing trend has been the subject of recent investigations
such as the recent trends in mental ill health and health-related
behaviors in two cohorts of UK adolescents that show depres-
sive symptoms and self-harm were higher in 2015 compared
with 2005 [1]. How social media impacts mental health has
also been studied [2]. This increasing rate of mental issues
has accelerated due to the COVID-19 pandemic. According to
a Kaiser Family Foundation poll, people have become more
socially isolated and stressed. Nearly half of Americans report
the coronavirus crisis is harming their mental health [3], [4].

According to a 2020 Harris Poll, between 46% and 51% of
US adults were using social media more since the outbreak
began [5]. Increased social media use means more digital
footprints, and since people’s personality and private traits can
be identified based on them [6], this pandemic challenge can
be turned into an advantage to provide more support for people
based on their needs. A WHO survey showed that COVID-19
further burdened the already limited mental health services in
many countries [7]. Since mental health service resources are
limited and mental health issues have increased, the increase in
social media use provides an opportunity for Al researchers to
utilize the produced digital footprints to help diagnose people’s
mental health issues.
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Personality traits are defined as the set of relatively stable
characteristics which describe our feelings and behavior. These
traits play important roles in individuals’ futures and life
outcomes [8], [9]. Among the various personality tests, the
Big-Five, which is also called OCEAN, is known to be the
most reliable test for assessing people’s personality [10]. The
OCEAN test describes personality in five measures: Openness,
Conscientiousness, Extraversion, Agreeableness, and Neuroti-
cism. Previous work has investigated the relationship between
personality and mental disorders. Studies have shown that
neuroticism plays a vital role in depressive and anxiety disor-
ders [11]. Regarding the other traits, resilience demonstrates a
strong inverse relationship with neuroticism and strong posi-
tive relationships with extraversion and conscientiousness and
a small but statistically significant positive relationship with
openness [12]. Hence, understanding a person’s personality
can provide a better insight for detecting mental illnesses.
In addition to psychological motivation, personality traits are
also useful in recommendation systems [13]-[15], product and
service personalization [16], [17], job screenings [18], social
network analysis [19], and sentiment analysis [20].

In this work, we address the following two questions:
Does the embedding, which is used for current state-of-the-art
model, capture psychological information? If not, how can it
be improved? In order to answer these questions, we first in-
troduce an approach for evaluating embeddings in personality
detection. Following that, with metric learning in mind [21],
we apply two different approaches using two siamese archi-
tectures for generating the embeddings from the psychological
statements. The first approach produces sentence embeddings
by means of computing semantic similarities between psycho-
logical statements representing different traits. In the second
approach, different variants of another siamese sentence en-
coder, Sentence-BERT, for producing sentence embeddings for
classifying psychological traits are investigated. Both of these
approaches surpass the previous state-of-the-art models used
in this task with the BFI statement data [22]-[24]. The second
approach outperforms the previous state-of-the-art models with
the Essays dataset [25] and the Kaggle personality dataset [26].
Extensive experiments with the Essays dataset and the BFI
statements are performed and discussed. These experiments
have focussed on these two datasets since the MBTI test (used
in the Kaggle personality dataset) has been questioned for



its comprehensiveness, dependability, and lack of independent
categories [27], whereas the OCEAN personality test (the Es-
says dataset) is considered as more reliable. These approaches!
not only outperform the previous state-of-the-art model but
also reduce the computational overhead.

II. RELATED WORK

There are a variety of personality tests that are based on
psychological discoveries [28]. The most accepted one in
the field of psychology is the Big Five model, also called
OCEAN [10]. This personality test is the one focussed on in
this paper. OCEAN assesses five dimensions of personality
(Openness to Experience, Conscientiousness, Agreeableness,
Extraversion, and Neuroticism or when positively keyed, emo-
tional stability). One other commonly used personality model,
which is used in a comparison below, is Myers-Briggs, also
known as MBTI [29]. MBTI categorizes personalities into 16
types; each one can be described as a combination of 4 bi-
nary categories (Extroversion/Introversion, Sensing/Intuition,
Thinking/Feeling, Judging/Perceiving). Since the MBTI test
has been questioned for its comprehensiveness, reliablity, and
lack of independent categories, the OCEAN personality test is
chosen as the main focus of this paper.

Given the limited mental health service resources, there is
a strong need for an automated assistant tool. Al models have
proven to be good candidates as they perform more accurately
than humans in personality judgment [30]. Some models used
psycholinguistic features to identify personality [31]. In the
field of deep learning-based automatic personality detection,
the hierarchical CNN model [32] and multitask learning [33]
have attracted a lot of attention. A full comparison between
previous proposed models is given in [34] and perspectives are
analyzed in [35]. Although the deep models are improving
the accuracy in this field and their approaches have built
the foundations of our current work, they suffer from some
issues that prevent them from serving as well as they ought
to. For example, the results might be based on the studied
socio-cultural group. Lewis [36] has analyzed this diversity
and has shown that the results can vary depending on the
observed cohort. In addition, due to the delicate nature of
mental health tasks, trust is an important criterion that these
black-box models cannot satisfy without using a post-hoc
explainability approach [37].

Current NLP models that understand human language are
mostly proposed by large companies such as Facebook and
Google, enabled by their high-spec infrastructure to create
their high accuracy predictors [38]-[40]. Although they are not
runnable on regular computers, their pre-trained versions can
be used in personality detection with a small amount of fine-
tuning to be adapted to this task [41], [42]. Considering that
there is usually a trade-off between accuracy and simplicity,
the task to obtain an optimal, yet simple model is non-
trivial. Only a few papers, such as [43] (BB-SVM), have
proposed high accuracy models in this field without sacrificing

Code: https://github.com/amirmohammadkz/interpretable_personality
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simplicity. BB-SVM also introduced a BERT-based personality
model that can be used for longer sequences as well. How-
ever, even though this model is able to be run on ordinary
computers, its interpretability, especially the justification for
the choice of the pre-trained model, has yet to be addressed.
First, as well as the existing trade-off between complexity
and accuracy, a trade-off also exists between performance
and transparency (i.e., explainability of the outcomes). The
higher performing models tend to be more opaque [44]. As
the model becomes more opaque, the need for explainability
increases. To alleviate this problem, post-hoc explainability is
used. This type of explainability is divided into model-agnostic
approaches, which can be used for any model, and model-
specific ones. A full comparison of explainable Al methods is
given in [45]. Also, contemporary models learn from examples
in specific datasets. This issue challenges the model when it
faces new examples that are not the same as the previously
observed ones since current models are not using experts’
knowledge. So, even though the current models can do their
best for their specific dataset, they cannot incorporate the
socio-cultural diversity among groups of people, which results
in the different ways they articulate their thoughts [36].

With the emergence of accurate Al models, theorists and
researchers make normative claims based on the models’
results [46]. Some of the previous experience has also shown
how these models can be exploited for detrimental goals [14],
[47]. Hence, by making the Al models more interpretable,
more descriptive facts can be obtained based on their results.
Ethical concerns can be slightly alleviated because of the
insight which the model provides. [41] is one of the few works
that address both improving personality detection accuracy
using deep learning models and providing understandable
insight using post-hoc explainablity approaches. This work is
used as the baseline for the current paper.

III. METHODOLOGY

This section discusses the interpretable sentence represen-
tation generation approaches using the siamese architectures,
the dataset we use for training the model, and the datasets
used for evaluating the performance of the models. The sen-
tence representation is generated by means of computing the
semantic similarities between psychological statements. The
reason behind choosing this approach is to preserve enriched
semantics in the vector representations. Finally, the approach
to interpret the output of the model is discussed along with the
evaluation of the model. The interpretability of our approach
is evaluated using the feature relevance and visual explanation
methods of the post-hoc explainability category [45], by
computing the cosine similarity between the input and baseline
sentences and using PCA visualization, respectively.

A. Datasets

In this work, we used the Essays dataset [25], which consists
of 2468 essays written by students and annotated according to
the Big Five personality, and the Kaggle dataset, a collection
of 8675 records collected from the PersonalityCafe forum [26].



B. Evaluating the Embeddings

In order to evaluate the pretrained BERT-base model for
meaningful personality representations, we have used a sim-
plified version of the Big Five Inventory (BFI) [22]-[24].
BFI is a self-report questionnaire that consists of 44 short
phrases. Participants rate each of these statements based on
their situation. Each statement focuses on assessing one of the
five traits. We have simplified this version to make it easier for
language models to extract meaningful representations from
them. For example, the statement “I am someone who is
talkative”, which assesses the extraversion rate of a person,
is converted to “I am talkative”. In addition, to increase
the dataset size, we have also added the adapted version
of BFI [48], [49] to the original one. The final simplified
statement set consists of 85 sentences, 44 of which belong
to the original BFI statements and the rest are obtained from
the adapted version. We then use the pretrained version of
BERT-base to extract the representations of the tokens.

We have followed the best representation of [41] which is
averaging the output of the second to last layer to get the
final representation of each statement. Next, we transform the
embeddings using a PCA [50] with 2 principal components.
The result of the PCA is illustrated in Fig. 1. The B-points
are clustered in the upper half of the bottom right quadrant,
whereas the 0- and 1-points are almost all in the left or upper
quadrants. The representations of the baseline sentences are
very close to each other and the distance between them and
the corresponding trait statements are much larger. Hence, we
can conclude that even when [41] gets high accuracy using
these representations, it will not be generalizable since the
extracted embeddings do not manifest the related personalities.
Considering that this current state-of-the-art representation
uses a rich corpus and state-of-the-art language models, we
can infer that older ones probably also suffer from this issue.
Furthermore, even if the baseline representations obtained
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Fig. 1. Visualization of the personality statements after applying PCA on the
average of the output of layer 11 of Bert-base [41]. 1 and 0 mean “High” and
“Low” rate of a specific trait, respectively, and “B” is for baseline sentences.
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Fig. 2. Architecture of the model with siamese Bi-LSTM and max-pooling
for the interpretable tool for personality detection. (a) The training of the
model, (b) After training, the Bi-LSTM followed by the max-pooling layer
act as the sentence encoder.

from the previous methods maintain sufficient distance, their
classification performance is worse compared to [41] which is
also not acceptable. This motivates our investigating a model
which cannot only improve the classification performance but
also enhance explainability.

C. Interpretable Representation for Personality Detection

This paper investigates two different approaches for pro-
ducing vector representations from psychological statements.
The core idea behind both approaches is to use the extracted
embeddings from the baseline sentences and BFI statements
in order to evaluate the performance of the model. The output
embedding can be explainable using this comparison.

Both of these approaches use siamese architectures using
deep learning models. The first approach utilizes siamese Bi-
LSTM with max-pooling over time of the output vectors. This
model is trained on the simplified BFI statement pairs for
computing the similarity between them. The second approach
evaluates the Sentence-BERT variants [51]. The reason behind
choosing the siamese models here is that we try to detect
the personality traits not by applying direct classification
approaches but rather by preserving the semantics of the
statements where statements reflecting similar traits remain
close to each other in the embedding space. This objective
is achieved by leveraging psychological datasets (the BFI
statements and the baseline sentences).

1) Bi-LSTM with Max-pooling: To extract the feature vec-
tors of both the BFI statements and the baseline sentences,
we have used the siamese architecture of Bi-LSTM over the
BERT word embeddings from layer 11 of BERT-base. The
architecture is inspired by the InferSent model [52]. The
basic idea of this model is to generate a sentence embedding



by means of computing the semantic similarity between two
sentences. This semantics attempts to preserve the personality
trait from the BFI statement. For the word embeddings, we
have chosen the output of layer 11 of the pre-trained BERT-
base. For any given sentence pair, word embeddings are fed
to two identical Bi-LSTMs. These Bi-LSTMs share the same
parameters and weights. For a sequence of N words, Bi-
LSTM produces a set of N vectors. The final hidden state
representation for each time step is generated by concatenating
the hidden representation of the forward (h;) and backward
LSTMs (h;) [53]. For each time step, max-pooling is applied
over these concatenated hidden representations ([h;, h;]) to
generate an intermediate sentence representation. In the next
step, three operations, concatenation, point-wise difference and
point-wise multiplication, are performed on the representations
obtained for both of the sentences from the sentence pair.
Finally, the outcome of these three matching operations are
concatenated and fed to a feed-forward neural network for
classification like [52]. Suppose, v and v are the intermediate
representations for the sentences after max-pooling. Then
[, v, |u —v]|, (u*v)] would be the final feature representation
to be fed to the following classifier. The classifier outputs
either 0 or 1 where 1 indicates the sentences offer semantically
similar traits and O otherwise. Fig. 2 portrays the overall
architecture of the model. After the training is done, the Bi-
LSTM together with the max-pooling layer acts as the encoder
for generating the sentence representation. This representation
is a 768 dimensional vector.

2) Sentence-BERT: Sentence-BERT [51] is a refinement of
the pretrained BERT using siamese and triplet structures. It can
derive sentence representations preserving the semantics of the
sentences. Unlike BERT, which outputs rich token embeddings
and [CLS] with poor semantics for the sentence, Sentence-
BERT produces semantically richer sentence embeddings. It
is trained on the sentence pairs from the SNLI dataset [54]
and multi-genre NLI dataset [55]. It has been shown that
sentence embedding models trained on natural language in-
ference datasets have better semantic preserving abilities [52].
For this reason, Sentence-BERT outputs semantically richer
sentence embeddings. Sentence-BERT incorporates a mean-
pooling operation over the output of each BERT embedding
to generate two sentence embeddings for the sentence pair.
Then two matching operations, concatenation and point-wise
difference, are performed on them. Finally, this feature is fed
to the softmax classifier. After the fine tuning is complete, the
fine-tuned BERT with the mean-pooling act as the sentence en-
coder. Using this pretrained Sentence-BERT is then a straight-
forward approach. After being given a sentence, it directly
outputs the corresponding 768 dimensional vector sentence
embedding. The architecture of Sentence-BERT is shown in
Fig. 3. We have conducted experiments on the Essays, the BFI
statements, and the Kaggle datasets using different variants
of Sentence-BERT [56]. In all cases the overall architecture
remains the same, only the BERT encoder is varied. Some
prominent variants are ROBERTa [40] and MPNet [57].
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Fig. 3. Architecture of Sentence-BERT. (a) Training of the model on the
natural language inference datasets. (b) Sentence encoder.

IV. EXPERIMENTS

To analyze the effectiveness of our siamese Bi-LSTM
model, for each personality trait ¢, we create all possible cor-
responding BFI statement pairs together with the appropriate
label, (s;,sj,l; ;), where l; ; is 1 if the statements s; and s;
have the same label and 0O if s; and s; have different labels.
Then, we feed the statement pairs as inputs to the model
and use [; ; as the label which the model tries to predict.
Applying this approach over the BFI statements, the data set
has 681 sentence pairs. Among these, 600 samples are used
for training and the remaining 81 are used for validation. This
small dataset was sufficient for training the siamese LSTM
model with some good training and validation accuracies.
While testing this model on the BFI statements, it achieved
a better result compared to the previous models [41]. This
comparison is performed using the PredLabel and SimScore
metrics. In addition, the finetuned embedding are also assessed
by replacing the embedding part of the model in [41] for
classifying the Kaggle and Essays datasets. However, the
model trained on this data did not achieve state of the art
accuracies as the training data was comparably small.
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Fig. 4. Visualization of the personality statements after applying PCA on
the feature vectors of Bi-LSTM and max-pooling. 1 and 0 mean “High” and
“Low” rate of a specific trait, respectively, and “B” is for baseline sentences.



We have trained the siamese Bi-LSTM model for only 25
epochs where the best result was found at the 21st epoch.
While training, the batch size was set to 10 with 10% dropout.
Standard gradient descent was used for optimization with
a learning rate le™®. The forward and backward LSTMs’
hidden representations are 384 dimensional vectors. After the
training phase, we use the feature vectors extracted from the
Bi-LSTM for evaluation as we did in Section III-B for the BFI
statements. After extracting the feature vectors of both the BFI
statements and the baseline sentences, for each statement that
belongs to trait ¢ we assign a similarity score and prediction
label based on the closeness to the corresponding baseline
sentences as follows:

Vs; € Sy : SimScore(s;)
(=) 1C(si,b00) +

{

where [; is the label of s;, C'is cosine similarity, and b o, by 1
are the baseline feature vectors of trait ¢. To report the result
of a specific model, we use accuracy for the PredLabels and
the average of the SimScores. For the Sentence-BERT models,
the BFI statements and baseline statements are fed to the
pretrained encoders and then the accuracy of the PredLabels
and the average of the SimScores are computed. While testing,
we aggregated both the simplified and non-simplified versions
of the BFI statements to generate a more generalized model.
The embeddings of the BFI and the baseline statements are
extracted from the encoder portion of the siamese Bi-LSTM
as previously described and finally, PredLabels and SimScores
are measured. In the case of experimenting with the Essays
dataset, no further training is performed. The statements are
fed to the models (both the Bi-LSTM with max-pooling and
the Sentence-BERTs). Then they are tested against the baseline
statements to compute the performance metrics. The Kaggle
dataset is tested with the Sentence-BERTSs only.

(—1)ZZC(SZ‘, bt,O)
and

1, if C(Si, bt,l) > C(Si, bt,O)
0, otherwise

PredLabel(s;)

V. RESULTS

The accuracies of the PredLabels are shown in Table I,
and the SimScores for the BFI statements, in Table II. For
three traits, Bi-LSTM with max-pooling outperforms the CLS
and average methods of BERT which were used in [41]’s
state-of-the-art model for this task and outperforms on the
average result as well. For each of the personality traits, the
0- and 1-statements form distinguishable and well-separated
clusters except for the Neuroticism and Extroversion baseline
sentences, which are so close to each other. The PCA result
is illustrated in Fig. 4. The evaluation also tries to identify
whether the model is able to assign the correct binary trait
label to the statements. For Openness, Conscientiousness, and
Agreeableness, as it is shown in Fig. 4, the model can almost
completely understand which statement belongs to which
baseline trait.
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TABLE 1
COMPARISON OF ACCURACIES OF PredLabelS OF DIFFERENT
REPRESENTATIONS.
Model [¢] C E A N Average
BERT (average) [41] 61.11 52.94 41.18 64.71 56.25 55.24
BERT (CLS) 33.33 58.82 41.18 47.06 62.5 48.58
Bi-LSTM with max-pooling 94.44 100.00 32.35 100.00 53.13 75.98
avg_word_¢ ings_glove.6B.300d 33.33 58.82 70.59 76.47 43.75 56.59
avg_word_embeddings_glove.840B.300d 33.33 64.71 88.24 70.59 62.50 63.87
avg_word_embeddings_komninos 33.33 70.59 76.47 70.59 75.00 65.20
avg_word_embeddings_levy_dependency 33.33 41.18 47.06 64.71 62.50 49.76
nli-bert-base 66.67 76.47 70.59 88.24 100.00 80.39
nli-bert-base-cls-pooling 77.78 76.47 70.59 88.24 93.75 81.36
nli-bert-base-max-pooling 77.78 88.24 70.59 88.24 93.75 83.72
nli-bert-large 94.44 94.12 100.00 88.24 93.75 94.11
nli-bert-large-cls-pooling 88.89 88.24 100.00 88.24 100.00 93.07
nli-bert-large-max-pooling 88.89 82.35 100.00 88.24 100.00 91.90
nli-distilbert-base 72.22 88.24 17.65 88.24 93.75 72.02
nli-distilbert-bas 2 77.78 82.35 11.77 88.24 87.50 69.53
nli-distilrobert: 72.22 94.12 70.59 88.24 100.00 85.03
nli-mpnet-base-v2 100.00 88.24 94.12 94.12 93.75 94.04
nli-roberta-base 94.44 82.35 100.00 88.24 93.75 91.76
nli-roberta-base-v2 83.33 94.12 100.00 88.24 100.00 93.14
nli-roberta-large 100.00 100.00 100.00 88.24 100.00 97.65
paraphrase-distilroberta-base-v 1 3333 70.59 47.06 70.59 87.50 61.81
paraphrase-xlm-r-multilingual-v1 83.33 70.59 47.06 76.47 93.75 74.24
stsb-bert-base 72.22 76.47 76.47 76.47 87.50 77.83
stsb-bert-large 88.89 88.24 100.00 82.35 68.75 85.65
stsb-distilbert-base 72.22 88.24 29.41 82.35 93.75 73.19
stsb-distilroberta-base-v2 72.22 82.35 70.59 82.35 100.00 81.50
stsb-mpnet-base-v2 94.44 94.12 94.12 100.00 93.75 95.29
stsb-roberta-base 100.00 70.59 76.47 82.35 100.00 85.88
stsb-roberta-base-v2 88.89 70.59 88.24 88.24 100.00 87.19
stsb-roberta-large 100.00 94.12 76.47 88.24 100.00 91.77
TABLE 11
COMPARISON OF SimScoreS OF DIFFERENT REPRESENTATIONS.
Model [e] C E A N Average
BERT (average) [41] 0.011 0.007 -0.003 0.026 0.002 0.009
BERT (CLS) 0.001 0.001 -0.011 0.012 0.009 0.002
Bi-LSTM with max-pooling 0.082 0.064 -0.01565 0.079 0.008 0.044
avg_word_embeddings_glove.6B.300d 0.000 0.039 0.038 0.066 0.011 0.031
avg_word_embeddings_glove.840B.300d 0.000 0.036 0.040 0.082 0.077 0.047
avg_word_embeddings_komninos 0.000 0.036 0.031 0.039 0.077 0.036
avg_word_embeddings_levy_dependency 0.000 -0.007 0.002 0.020 0.075 0.018
nli-bert-base 0.124 0.148 0.073 0.253 0.321 0.184
nli-bert-base-cls-pooling 0.145 0.134 0.063 0.277 0.330 0.190
nli-bert-base-max-pooling 0.116 0.141 0.035 0.187 0.224 0.141
nli-bert-large 0.231 0.211 0.160 0.270 0.211 0.217
nli-bert-large-cls-pooling 0.224 0.166 0.159 0.281 0.304 0.227
nli-bert-large-max-pooling 0.163 0.169 0.246 0.283 0.264 0.225
nli-distilbert-base 0.068 0.149 -0.088 0.194 0.224 0.109
nli-distilbert-base-max-pooling 0.088 0.147 -0.082 0.162 0.166 0.096
nli-distilroberta-base-v2 0.037 0.119 0.046 0.180 0.181 0.112
nli-mpnet-base-v2 0.148 0.086 0.209 0.253 0.223 0.184
nli-roberta-base 0.194 0.158 0.142 0.228 0.356 0.215
nli-roberta-base-v2 0.160 0.117 0.138 0.206 0.226 0.169
nli-roberta-large 0.248 0.278 0.245 0.274 0.415 0.292
paraphrase-distilroberta-base-v 1 0.020 0.025 0.002 0.060 0.080 0.037
paraphrase-xlm-r-multilingual-v1 0.032 0.030 -0.004 0.074 0.117 0.050
stsb-bert-base 0.158 0.129 0.150 0.200 0.212 0.170
stsb-bert-large 0.251 0.174 0.145 0.261 0.140 0.194
stsb-distilbert-base 0.119 0.163 -0.041 0.221 0.272 0.147
stsb-distilroberta-base-v2 0.045 0.131 0.039 0.196 0.227 0.128
stsb-mpnet-base-v2 0.174 0.081 0.206 0.191 0.179 0.166
-roberta-base 0.259 0.095 0.152 0.305 0.352 0.233
stsb-roberta-base-v2 0.107 0.097 0.122 0.190 0.243 0.152
stsb-roberta-large 0.218 0.262 0.077 0.226 0.315 0.219

Regarding Neuroticism, although the SimScore is better than
both the CLS and the average methods, the classification
metric was not satisfactory. Extraversion also seems to be
the most difficult trait to be identified by baseline sentences.
Although the statements are separated, the embeddings of “I
am extrovert” and “I am introvert” are still too close, resulting
in the poor result. We believe this issue happens because of
the dataset which is used for training BERT. Overall, since
we have not used the baseline sentences in any phase of the
training process, and they are used only in the evaluation, we
believe that Bi-LSTM with max-pooling has used the general
language model knowledge enriched with knowledge from the
psychological statements to distinguish between traits.



TABLE III
ACCURACY OF BI-LSTM WITH MAX-POOLING AND SENTENCE BERT MODELS ON ESSAYS AND KAGGLE DATASETS.

Essays Kaggle MBTI
MODEL 6] C E A N Average 1/E N/S T/F P/ Average
Majority Baseline 515 508 517 531 500 514 770 853 541 604 69.2
BERT-base [41] 646 592 600 588 605 60.6 783 864 744 644 75.9
BERT-large [41] 634 589 592 583 589 59.7 788 863  76.1 672 77.1
Bi-LSTM max-pooling_combined 61.7 54.6 55.0 56.7 55.9 56.8 - - - - -
average_word_embeddings_glove.6B.300d 632 585 563 572 585 58.7 772 865 769 662 76.7
average_word_embeddings_glove.840B.300d | 63.0 58.0 572 575 577 58.7 786  87.1 79.6 68.6 78.5
average_word_embeddings_komninos 62.5 579 553 56.6 58.5 58.1 77.0 86.2 74.3 63.0 75.1
average_word_embeddings_levy_dependency 614 559 54.0 533 56.7 56.3 77.0 86.2 70.2 60.5 735
nli-bert-base 640 600 587 582 604 60.2 776 864 70.8 625 74.3
nli-bert-base-cls-pooling 638 59.7 577 59.1 60.1 60.1 716 863 71.1 62.2 74.3
nli-bert-base-max-pooling 63.0 580 567 574 584 58.7 715 862 697 618 73.8
nli-bert-large 635 598 57.1 587 608 60.0 776 863 712 622 74.3
nli-bert-large-cls-pooling 63.6 592 579 587  60.1 59.9 715 863 713 627 74.4
nli-bert-large-max-pooling 63.0 581 583 585 591 59.4 775 862 70.8 619 74.1
nli-distilbert-base 625 588 585 578 594 59.4 776 862 714 623 74.4
nli-distilbert-base-max-pooling 624 570 575 575 602 58.9 715 862 688 617 73.6
nli-distilroberta-base-v2 632 585 595 587 615 60.3 81.0 873 779 715 79.4
nli-mpnet-base-v2 642 588 597 591 606 60.5 81.0 872 781 69.3 78.9
nli-roberta-base 620 591 589 592 590 59.6 777 863 720 624 74.6
nli-roberta-large 639 595 602 595 613 60.9 80.7 872 777 709 79.1
nli-roberta-base-v2 62.8 59.7 58.9 59.3 60.8 60.3 719 86.5 72.0 63.1 74.9
paraphrase-distilroberta-base-v1 65.0 578 59.3 59.0 597 60.2 80.1 87.1 76.2  70.7 78.5
paraphrase-xlm-r-multilingual-v1 63.6  58.1 588 573 598 59.5 79.1 86.6 742 678 71.0
stsb-bert-base 640 591 577 581  60.6 59.9 78.1 865 724 634 75.1
stsb-bert-large 624 569 580 581 614 59.4 715 8.5 713 624 74.4
stsb-distilbert-base 628 580 580 57.1 593 59.1 785 865 73.1 64.6 75.7
stsb-distilroberta-base-v2 638 589 585 589 598 60.0 811 872 773 710 79.2
stsb-mpnet-base-v2 642 586 587 59.0 611 60.3 811 875 780 69.1 78.9
stsb-roberta-base 634 582 574 578 595 59.3 803 86.8 76.1 658 77.2
stsb-roberta-base-v2 634 587 597 589  60.6 60.3 81.0 873 775 703 79.0
stsb-roberta-large 627 584 576 580 59.7 59.3 80.1 86.6 742 654 76.6

TABLE IV
THE PEARSON CORRELATION BETWEEN THE PREDLABEL ACCURACY AND
THE ESSAYS ACCURACY FOR ALL SENTENCE-BERT EMBEDDINGS.
*p <.05. ¥#p <.001, TWO-TAILED.

[0 © T E ] A [ N | Ae
[ 0.086 | 0.488% | 0.208 | 0.662°* | 0.533"* | 0.700* |

Average results have shown that this model is successful
in learning the personality trait-specific representations
while retaining its knowledge from the pre-trained
BERT. Even though the Bi-LSTM with max pooling
outperforms the previous state-of-the-art when compared
by performance metrics as well as richer personality trait-
specific representation generation, the Sentence-BERT based
model outperforms this one. We have experimented with
different variants of Sentence-BERT. Among them, the most
prominent results are found when RoBERTa-large or MPNet
are used as the encoder in the Sentence-BERT architecture.
In terms of accuracy of the PredLabels and SimScores,
overall, RoBERTa-large performs the best. It achieves an
accuracy for PredLabel of 97.65% which is almost double the
previous state-of-the-art model’s accuracy [41]. Apart from
Agreeableness, its PredLabel accuracy is 100%, whereas
for Agreeableness, it’s 88.24%. MPNet achieves 100%
PredLabel accuracy for Agreeableness. On average MPNet
achieves 95.29% PredLabel accuracy. In terms of SimScores,
RoBERTa-large performs the best in all cases apart from
Agreeableness. Still, its average value, 0.292, is more than
three times that of [41]’s result.

For Agreeableness, the encoder with MPNet performs the
best for SimScore, 0.305, and on average it achieves 0.233.
Fig. 5 portrays in a 2D projection the representations generated
by the RoBERTa-large version of Sentence-BERT, showing
that the closeness of each statement to any particular trait is
very clear. For each of the personality traits, the 0-, 1- and
B-statements form distinguishable and well-separated clusters
(with a couple of exceptions) as demonstrated. One issue
of note, two metrics, PredLabel and SimScore, are used to
measure the performance of the model. PCA has been used
only to provide a visualization of the embeddings to show
how close the representations of the similar trait samples are.
We have also used other visualization techniques like t-SNE,
UMAP, and LDA. As all the visualization results are very
similar, we have reported only the PCA visualization.

To evaluate the generalizability of the model, we tested these
models on the Essays and the Kaggle personality datasets.
This time the Bi-LSTM with max-pooling performs worse
than [41]’s work. The overall accuracy is almost 2% lower
for the Essay dataset. But this is justifiable as this Siamese
model was trained on very short sentences from the BFI
statements, whereas the Essays dataset comes with long para-
graphs. Additionally, LSTM based models face shortcomings
while working with very long sequences. But the Sentence-
BERT models, without any kind of additional operations,
outperform the BERT-based averaging technique [41]. This
time, RoBERTa-large achieves 60.9% accuracy which is an
almost 1 percentage point boost compared to previous works.
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Fig. 5. Visualization of the personality statements after applying PCA on
nli-roberta-large version of Sentence BERT. 1 and 0 mean “High” and “Low”
rate of a specific trait, respectively, and “B” is for baseline sentences.

In the case of the Kaggle personality dataset, ROBERTa-
large gains almost 2 percentage points more accuracy (79.1%).
However, DistilRoBERTa performs the best for this dataset and
achieves 79.4% accuracy. In both cases, MPNet shows promi-
nent results with accuracies 60.3% and 78.9%, respectively.
We also computed the Pearson correlation of the accuracy of
PredLabel and Essays to see if the PredLabel accuracy gives
any insight into how an encoder works for real world datasets.
As demonstrated in Table V, although the experimented en-
coders are not specifically designed for long sequence datasets
such as Essays, for most traits, especially the average of the
traits, there is a significant positive correlation between these
two accuracies. Hence, we can conclude that using PredLabel
is a good approach for picking the best encoder for real-life
datasets.

One notable significance of these models is that none
of them have been enhanced with any kind of additional
psychological features, unlike [41]. While training, the models
are simply trained with sentence pairs. Thus it reduces the
computational overhead as well. And as RoBERTa-large was
initially trained over larger sequences and then fine-tuned
again over natural language inference data, Sentence-BERT
with RoBERTa-large earns the capability to produce sentence
embeddings preserving richer semantics than the others. Fur-
thermore, as the Sentence-BERT models are trained on a very
large corpus of real life inference data compared to the siamese
LSTM model, which is trained on the small BFI statement
pairs dataset, they have achieved the ability to provide better
representations of the statements.

VI. CONCLUSION

In this paper, we addressed the weaknesses of state-of-the-
art personality detection models. With computationally less
overhead, our model delivers sentence embeddings for psycho-
logical statements with rich semantics. Our results showed that
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our enriched representations distinguish the personality traits
better than the CLS and average methods which are common
in the field. Furthermore, we used the enriched representations
in addition to Sentence-BERT models to classify traits based
on their closeness to the baseline psychological statements so
the result can be regarded as interpretable. Our experiments
improved the Kaggle state-of-the-art accuracy by 2.3 percent-
age points and Essays by 0.3 percentage points. This work
restricts the statements at the sentence level. In future, it can be
extended to the paragraph level using hierarchical models like
SMITH [58] so that better representations from the paragraphs
can also be captured. Besides, BFI statements can be used
within the prediction model to identify the closeness of each
of the samples in the dataset with each of the BFI statements.
We believe this method will help psychologists to get better
insights into the prediction.
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